A rough scheme to couple free and porous media
Abstract
This paper is devoted to the computation of flows between free and porous media separated by a thin interface . The basic strategy relies on some ideas developed earlier by J.M. Greenberg and A.Y. Leroux on their work on well balanced schemes. This approach requires introducing a set of partial differential equations at the interface, in order to account for the sudden change of medium. The main features of the interface PDE are investigated. We afterwards propose to compute approximations of solutions with help of an approximate Godunov scheme. A linear interface Riemann solver is introduced, which aims at enforcing the continuity of the two (steady wave-) Riemann invariants. Numerical computations involving shock waves or rarefaction waves are examined and the agreement with the entropy inequality is tracked. Effects of the mesh refinement and the impact of the smoothing of the thin interface are also adressed in the paper.
Domains
Mathematics [math]Origin | Publisher files allowed on an open archive |
---|
Loading...