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Abstract

This paper is an improvment of [BG 05], concerning the Laplace equation

with an oblique boundary condition. When the boundary condition involves

a regular coefficient, we present a weak formulation of the problem and we

prove some existence and uniqueness results of the weak solution. We develop

a finite volume scheme and we prove the convergence of the finite volume

solution to the weak solution, when the mesh size goes to zero. We also present

some partial results for the interesting case of a discontinuous coefficient in

the boundary condition. In particular, we give a finite volume scheme, taking

in consideration the discontinuities of this coefficient. Finally, we obtain some

error estimates (in a convenient norm) of order
√

h (where h is the mesh size),

when the solution u is regular enough.

Key words : oblique derivative, smooth coefficient, piecewise constant

coefficient, unstructured mesh, finite volume, error estimate.

1 Introduction

In this paper, we are interested with the finite volume approximation of the Laplace equa-
tion on an open bounded polygonal connected subset Ω of R

2, with an oblique boundary
condition:

{

−∆u(x) = f(x), x = (x, y) ∈ Ω,
un(x) + (αu)t(x) = g(x), x ∈ ∂Ω,

(1)

with the notations vn = ∇v · n and vt = ∇v · t, where n = (nx,ny)t is the normal vector
to the boundary ∂Ω, outward to Ω, t = (−ny,nx)t (so that t is a tangent vector to ∂Ω).
The vectors n and t are defined everywhere on ∂Ω except in a finite number of points. The
functions f , g and α are given (in Ω for f and on ∂Ω for g and α).

In order to obtain an existence result for (1), a compatiblity condition on f and g is
needed. Indeed, assuming for simplicity that α is a regular function and that u is a regular
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solution to (1), this compatibility condition is easily obtained, taking a constant function as
test function in (1), it reads:

∫

Ω

f(x)dx +

∫

∂Ω

g(x)dγ(x) = 0, (2)

where γ stands for the one dimensional Lebesgue measure on ∂Ω.

Similarly, in order to expect a uniqueness result for (1), we have to add an additional
condition on u. For this additional condition, we will take:

∫

Ω

u(x)dx = 0. (3)

A huge literature is devoted to the Laplace equation with various boundary conditions,
namely Fourier, Neumann and Dirichlet boudary conditions, and to the discretization of such
problems. A few papers are concerned by this quite unusual boundary condition, namely
the oblique boundary condition given in (1). For instance, the Problem (1) , in the case of
α is constant on each line of the boundary of Ω, is considered in [G 85] and [M 74] (more
precise, the operator considered in [M 74] is −∆u + u instead of −∆u). They studied the
regularity of the exact solutions by means of suitable a priori estimates.
The numerical study of oblique derivative boundary value problems is considered, for in-
stance, in [M 02], where the author suggested the standard finite difference scheme of five
points to approximate the solution of a nonlinear oblique derivative boundary value problem
posed on a rectangular domain.
Problem (1) appears, for instance, in a method developped in [B 05] for improving the con-
vergence order of numerical schemes for the classical Dirichlet problem (it can probably also
appear in the modelization of some mechanical problems, but perhaps not directly under
the form (1)). Instead of considering the boundary condition given in (1)), it is also possible
to consider un + αut = g, which leads to the dual problem of (1). With this boundary
condition the compatibilty condition on f and g (in order to obtain an existence result) is
not necessarily (2) and may depends on α. On the contrary, the condition (3) is then quite
natural since, for this problem, any constant function is solution with f = g = 0.

To discretize the problem (1), we introduce an unstructured mesh T defined as in
[EGH 00]. We consider three different cases for the problem (1) (with (3) and assuming
(2)).

In the first case, we assume that α is constant. We obtain a weak formulation and we
present a finite volume scheme. We prove that the finite volume solution converges to the
unique solution of the weak problem, when the mesh size goes to zero. If we assume that
u ∈ C2(Ω), we prove that the error estimate is of order

√
h, where h is the size of T .

In the second case, we assume that α ∈ C1(Ω). Then, we also obtain an existence and
uniqueness result of a weak solution when α satisfies:

min
∂Ω

αt ≥ −δ,

where δ is a positive real number only depending on Ω. We present a finite volume solution
and we prove its convergence to the weak solution of the problem. If we assume that the
solution u belongs to C2(Ω), we give an error estimate of order

√
h.

Finally, we consider the case where α is constant on each line of the boundary ∂Ω. Then
the oblique boundary condition of the problem (1) makes sense on each line of the boundary
∂Ω (and can be written equivalently un + αut = g or un + (αu)t = g on each line of the
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boundary). Such a problem arises when u = vx and v is a smooth function, satisfying the
Laplace equation with a homogeneous boundary condition:

{

−∆v(x) = f̄(x),x ∈ Ω,
v(x) = 0, x ∈ ∂Ω,

(4)

where f = ∂f̄/∂x and g (in (1)) is defined in terms of f and of the components of the
tangential vector t on the boundary ∂Ω. Considering the equation satisfied by vx is useful
for improving the convergence order of numerical schemes for (4), see [A 06] and [B 05]. For
this last case, we present a finite volume scheme, taking in consideration the discontinuities
of α on the corners of Ω, and we prove an error estimate of order

√
h, assuming that u

satisfies the Assumption 6.1 (note that if the solution v of the equation (4) belongs to
C3(Ω), then u = vx satisfies an equation of the form (1), in which α is constant on each line
of the boundary ∂Ω, and u satisfies Assumption 6.1).

2 Preliminaries and functional spaces

Recall that the domain Ω is an open bounded polygonal connected subset of R
2. The

boundary of Ω is denoted by ∂Ω. The norm in the usual Sobolev space H1(Ω) is defined by

‖w‖2
1,Ω = ‖w‖2

0,Ω + ‖ |∇w| ‖2
0,Ω,

where | · | denotes the Euclidean norm in R
2 and ‖ · ‖0,Ω denotes the norm in the space

L2(Ω) (a similar notation will be used for the norm in the space L2(∂Ω)). The space D(Ω)
is the space of infinitely differentiable functions on Ω ( that is to say the restrictions to Ω
of the infinitely differentiable functions defined on R

2) and D(Ω) as the space of infinitely
differentiable functions, with compact support on Ω. We recall that D(Ω) is a dense subspace
of H1(Ω) and that the space H1

0 (Ω) is the closure of D(Ω) in H1
0 (Ω). Thanks to the Lipchitz

continuity of the boundary of Ω, we also have H1
0 (Ω) = {v ∈ H1(Ω) : γ̃(v) = 0}, where γ̃ is

the linear trace operator from H1(Ω) to L2(∂Ω).

Let Γ = ∂Ω. We denote by H
1
2 (Γ) the space of the “traces” on Γ of the elements of

H1(Ω), that is the Range of γ̃. The norm in H
1
2 (Γ) is defined by:

‖w‖ 1
2
,Γ = inf

γ̃(v)=w
‖v‖1,Ω,

If u ∈ H1(Ω) and −∆u = f ∈ L2(Ω) (in the sense of
∫

Ω
∇u · ∇v dx =

∫

Ω
fv dx, for

any v ∈ D(Ω) and then, by density of D(Ω) in H1
0 (Ω), for any v ∈ H1

0 (Ω)), we define the

operator of normal derivative acting on u as the element un of H− 1
2 (Γ) by:

〈un, v〉
H

− 1
2 (Γ),H

1
2 (Γ)

=

∫

Ω

∇u · ∇ṽdx −
∫

Ω

fṽdx, ∀v ∈ H
1
2 (Γ). (5)

If u ∈ H1(Ω), we define the operator of tangential derivative acting on u as the element

ut of H− 1
2 (Γ) by:

〈ut, v〉
H

− 1
2 (Γ),H

1
2 (Γ)

=

∫

Ω

ṽxuydx −
∫

Ω

uxṽydx, ∀v ∈ H
1
2 (Γ). (6)

In (5) and (6), ṽ is an element of H1(Ω) such that γ̃(ṽ) = v. It is quite easy to see that
these operators are well defined (indeed, thanks to a density argument and an integration
by parts, the right-hand-sides of (5) and (6) vanish for any ṽ ∈ H1

0 (Ω), and then they do
not depend on the choice of ṽ provided that γ̃(ṽ) = v). Using integration by parts, it is also
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easy to see that un and ut correspond to the classical derivatives of u, ∇u · n and ∇u · t,
when is u is a regular function.

The definitions of the normal and tangential derivative operators given by (5) and (6)
enable us to give a sense to the boundary condition in (1) when f ∈ L2(Ω), g ∈ L2(∂Ω) (or

g ∈ H− 1
2 (∂Ω)) and when α is a constant function or, more generally, when α is a smooth

function (say α ∈ C1(∂Ω), that is to say the restriction to ∂Ω of a C1 function defined on R
2).

Indeed, these definitions give a weak formulation for the problem (1) when α is constant
(see Theorem 4.2) and when α is a smooth function (see Theorem 5.2).

3 Finite volume meshes

We first describe the assumptions which are needed on the mesh.

Definition 3.1 (Admissible meshes, cf. Eymard et al. [EGH 00]) An admissible finite vol-
ume mesh of Ω, denoted by T , is a finite family of open polygonal convex disjoint subsets
of Ω (the “control volumes”), with positive measures. To this family is associated a family
of disjoint subsets of Ω contained in hyperplanes of R

2, denoted by E (these are the edges of
the control volumes) and a family of points of Ω, P = {xK ,K ∈ T }, satisfying the following
properties (as in Definition 9.1 of [EGH 00]:

• Ω = ∪K∈TK. For any K ∈ T , let ∂K = K \K be the boundary of K. For all K ∈ T ,
m(K) is the two-dimensional Lebesgue measure of K (it is the area of K).

• For all σ ∈ E , there exists a hyperplane E of IR2 and K ∈ T with σ = ∂K ∩ E and
σ is a non empty open subset of E. We then denote by m(σ) the one dimensional
measure of σ and one assumes m(σ) > 0. We assume that, for all K ∈ T , there
exists a subset EK of E such that ∂K = ∪σ∈EK

σ. It then results from the previous
hypotheses that, for all σ ∈ E , either σ ⊂ ∂Ω or there exists (K,L) ∈ T 2 with K 6= L
such that K ∩ L = σ; we denote in the latter case σ = K|L.

• For all K ∈ T , xK ∈ K. Furthermore, for all σ ∈ E such that there exists (K,L) ∈ T 2

with σ = K|L, it is assumed that the straight line (xK ,xL) going through xK and
xL is orthogonal to K|L. For K ∈ T and σ ∈ EK , let DK,σ be the straight line
going through xK and orthogonal to σ. We assume that DK,σ ∩ σ 6= ∅ and we set
{yσ} = DK,σ ∩ σ.

If T is an admissible mesh, we will also use the following notations:

- The mesh size is defined by size(T ) = sup{diam(K),K ∈ T },
- the set of interior (resp. boundary) edges is denoted by Eint (resp. Eext), Eint = {σ ∈
E : σ 6⊂ ∂Ω} (resp. Eext = {σ ∈ E : σ ⊂ ∂Ω}),

- the set of neighbours of K is denoted by N (K), N (K) = {L ∈ T : ∃σ ∈ EK , σ =
K ∩ L},

- if σ = K|L, we denote by dσ or dK|L the Euclidean distance between xK and xL

(which is positive) and dK,σ the distance from xK to σ,

- if σ ∈ EK ∩ Eext, let dσ denote the Euclidean distance between xK and yσ (then,
dσ = dK,σ),

- for any σ ∈ E , the ”transmissibility” through σ is defined by τσ =
m(σ)

dσ

(note that

dσ > 0).

International Journal on Finite Volumes 4
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To discretize the oblique boundary condition (the second equation of the problem (1)),
we need the following definition:

Definition 3.2 Let σ ∈ Eext and n be the normal vector to σ, outward to Ω. Recall that
t = (−ny,nx)t where n = (nx,ny)t. Then σ = (a, b) = {sa+ (1 − s)b, s ∈ (0, 1)} where a, b
are chosen such that |b− a|t = b− a. We denote by σ− (resp. σ+) the element of Eext such
that a is in the closure of σ− (resp. b is in the closure of σ+) and σ− 6= σ (resp. σ+ 6= σ).
We also set σe = b and σb = a (so that |σe − σb|t = σe − σb).

For the discrete solution, we use the following space:

Definition 3.3 (The Finite volume space) For an admissible mesh T , the space X (T ) is
defined by X (T ) = Y(T ) × Z(T ) ⊂ L2(Ω) × L2(∂Ω) where Y(T ) is the set of functions
from Ω to R which are constant over each control volume K ∈ T and Z(T ) be the set of
functions which are constant on each σ ∈ Eext. Thus an element of X (T ) is of the form
(uT , vT ) ⊂ L2(Ω)×L2(∂Ω) where uT (resp. vT ) is constant over each control volume K ∈ T
(resp. constant over each boundary edge σ ∈ Eext).

To analyze the convergence of the finite volume schemes, we use the following semi-norm
on X (T ):

Definition 3.4 (Discrete semi-norm on X (T )) Let (uT , vT ) ∈ X (T ) (X (T ) given by Defi-
nition 3.3), one defines a discrete semi-norm by:

|(uT , vT )|21,X (T ) = |uT |21,T +
∑

K∈T

∑

σ∈EK∩Eext

m(σ)

dσ

(uK − uσ)2, (7)

where

|u|21,T =
∑

σ∈Eint

m(σ)

dσ

(Dσu)
2, (8)

Dσu = |uL − uK |, if σ ∈ Eint, σ = K|L, and uK (resp. uσ) denotes the value taken by uT
(resp. vT ) on the control volume K (resp. on the boundary edge σ).

Remark 1 With the notations of Definition 3.4, let (uT , vT ) ∈ X (T ) such that:

|(uT , vT )|1,X (T ) = 0.

Then, for all σ ∈ Eint, one has uK = uL where σ = K|L (since m(σ)/dσ > 0). Since Ω is
connected, we then deduce that uT is a a constant function. For all σ ∈ Eext, one also has
uK = uσ where σ ∈ EK (since m(σ)/dσ > 0). Then, there exists C ∈ R such that uK = C
for all K ∈ T and uσ = C for all σ ∈ Eext.

To define a finite volume scheme for (1), we consider an admissible mesh T in the sense
of Definition 3.1 and we use the following quantities:

fK =
1

m(K)

∫

K

f(x)dx and gσ =
1

m(σ)

∫

σ

g(x)dγ(x). (9)

In Problem (1), there are an equation on the domain Ω and an equation on the boundary
∂Ω. To get a finite volume scheme, we integrate the first equation on the control volumes
and the second one on the boundary edges. The first integration can be done using the usual
techniques of [EGH 00]. For the second integration, we use the following useful property.
Let a and b be two points in R

2 and (a, b) = {sa+ (1− s)b, s ∈ (0, 1)}. Let f ∈ C1(R2) and
t = b−a

|b−a| . Let ft = ∇f · t (it is the tangential derivative of f on (a, b)). Then:
∫

(a,b)

ft(x)dγ(x) = f(b) − f(a). (10)

International Journal on Finite Volumes 5
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4 The case “α constant”

In this Section, we are interested by Problem (1) when the function α is constant. Then,
Problem (1) can be rewritten, with α ∈ IR, as:

{

−∆u(x) = f(x), x ∈ Ω,
un(x) + αut(x) = g(x), x ∈ ∂Ω,

(11)

Remark 2 The problem (11) can be rewritten as a Neumann Problem (with, if α 6= 0, a non
symmetric operator):

{

−div(A grad u(x)) = f(x),x ∈ Ω,
(A grad u(x)) · n(x) = g(x), x ∈ Γ,

(12)

where the positive definite matrix A is given by:

A =

(

1 α
−α 1

)

But the finite volume scheme we shall present will be derived directly from the equation
(11) and not from (12) (see Section 4.1 below and Sections 10 and 11 in [EGH 00]).

To get the existence of a solution for problem (11), we assume a compatibilty condition
on f and g (see (2)):

Assumption 4.1 (g, f) ∈ L2(∂Ω)×L2(Ω) and
∫

Ω f(x) dx +
∫

∂Ω g(x)d γ(x) = 0, where γ is
one dimensional Lebesgue measure on ∂Ω.

Under this assumption, the following theorem yields existence and uniqueness of a weak
solution to Problem (11) (or (1)) with Condition (3). The proof of this theorem is an easy
consequence of the Lax-Milgram lemma. This proof is given in the more general case of a
smooth function α in Section 5 (see Theorem 5.2)

Theorem 4.2 Let α ∈ R. Under the Assumption 4.1, there exists a unique solution of
(13)-(14):

u ∈ H1(Ω),

∫

Ω

u(x)dx = 0, (13)

∫

Ω

∇u.∇v dx + α

∫

Ω

(vxuy − uxvy) dx =

∫

Ω

fv dx +

∫

∂Ω

gγ̃(v) d γ(x), ∀v ∈ H1(Ω). (14)

Let α ∈ IR, f ∈ L2(Ω) and g ∈ L2(∂Ω). Thanks to the definitions of Section 2, let u be
a function satisfying (13), then, u is a solution of (14) if and only if u satisfies:

• −∆u = f in D′(Ω) (the usual dual space of D(Ω)),

• un + αut = g in H− 1
2 (∂Ω), with, for w ∈ H

1
2 (∂Ω)(⊂ L2(∂Ω)),

〈g, w〉
H

− 1
2 (∂Ω),H

1
2 (∂Ω)

=

∫

∂Ω

g(x)w(x)dγ(x).

International Journal on Finite Volumes 6
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4.1 The finite volume scheme for (11)

Remark 3 For the sake of simplicity, we assume that α > 0 in (11). For α = 0, we get the
classical Neumann problem which is treated in [EGH 00]. The case α < 0 can be treated in
a similar way to the case α > 0.

In order to obtain the numerical scheme we will discretize (11) (or (1)) instead of, for
instance, (12). This choice allows the use of an “admissible mesh” for the Laplace equation
(instead of an “admissible mesh” for the matrix A) and allows the resolution of the discrete
problem using the matrix corresponding to the discretization of the Laplace equation with
a homogeneous Dirichlet boundary condition (see, for instance, [B 05]).

Let (uK)K∈T and (uσ)σ∈Eext
denote the discrete unknowns. The numerical scheme is

defined by the following set of equations:

∑

σ∈EK

FK,σ = m(K)fK , ∀K ∈ T , (15)

where
FK,σ = −τK|L(uL − uK), ∀σ ∈ Eint, if σ = K|L, (16)

FK,σ = −τσ(uσ − uK), ∀σ ∈ Eext such that σ ∈ EK , (17)

and
τσ(uσ − uK) = −α(uσ − uσ−) + m(σ)gσ , ∀σ ∈ EK ∩ Eext, (18)

where σ− is defined in Definition 3.2.
The condition (13) can be discretized by

∑

K∈T

m(K)uK = 0. (19)

Remark 4 The unknowns {uK , K ∈ T } and {uσ, σ ∈ Eext} of the finite volume scheme
are expected to approximate u on the control volumes {K}K∈T through {uK}K∈T , and are
expected to approximate u on {σ}σ∈Eext

(see Definition 3.1) through {uσ}σ∈Eext
.

With the discrete unknowns, namely {uK , K ∈ T } and {uσ, σ ∈ Eext}, it is possible to
define an element of X (T ). If the discrete unknowns satisfy (15)-(19), we will say that this
element of X (T ) is a solution of (15)-(19):

Definition 4.3 An element (uT , vT ) ∈ X (T ) (see Definition 3.3) is a solution of (15)-(19)
if uT (x) = uK for x ∈ K, for all K ∈ T , and vT (x) = uσ for x ∈ σ, for all σ ∈ Eext, where
(uK)K∈T and (uσ)σ∈Eext

satisfy (15)-(19).

4.2 Existence and uniqueness of the discrete solution

We use the techniques of the Proof of Lemma 10.1 in [EGH 00] and the following equality
to prove the existence and uniqueness of the solution of (15)-(19):

∑

σ∈Eext

(uσ − uσ−)uσ =
1

2

∑

σ∈Eext

(uσ − uσ−)2. (20)

Theorem 4.4 Let α ∈ R. Assume that α > 0 (for the other cases, see Remark 3). Let
T be an admissible mesh in the sense of Definition 3.1 and {(fK , gσ), (K,σ) ∈ T × Eext}
defined by (9). Then, under the Assumption 4.1, the system (15)-(19) has a unique solution.

International Journal on Finite Volumes 7
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Let (uT , vT ) ∈ X (T ) be the solution of (15)-(19) in the sense of Definition 4.3. Then, there
exists C1 ∈ R

+, only depending on Ω , such that

(

|(uT , vT )|21,X (T ) +
α

2
|vT |2Z(T )

)
1
2 ≤ C1 (‖f‖0,Ω + ‖g‖0,∂Ω) , (21)

where the semi-norm |(uT , vT )|1,X (T ) is defined in Definition 3.4 and |vT |Z(T ) is the semi-
norm defined by:

|vT |2Z(T ) =
∑

σ∈Eext

(uσ − uσ−)2. (22)

Proof

Step 1. Existence and uniqueness of the solution of (15)-(19).
Let {uK , K ∈ T } and {uσ, σ ∈ Eext} be a solution of (15)-(18). Multiplying both sides

of Equation (15) by uK , summing over K, K ∈ T , using (16)-(18) and (20), we get:

|(uT , vT )|21,X (T ) +
α

2
|vT |2Z(T ) = T

T
1 + T

T
2 , (23)

where
T
T
1 =

∑

σ∈Eext

m(σ)gσuσ and T
T
2 =

∑

K∈T

m(K)fKuK . (24)

Let M1 be the number of elements of T , M2 the number of elements of Eext and M =
M1 + M2. The system (15)-(18) can be viewed as a system of M unknowns (which are
{uK , K ∈ T } and {uσ, σ ∈ Eext}) with M equations. After the choice of an order for the
unknowns and the equations, it can be written as Aw = b, where A is M × M matrix,
w ∈ R

M is the unknown vector and b ∈ R
M is given by the data (namely f and g).

Equality (23) proves that if b = 0 (that is fK = 0 for all K ∈ T and gσ = 0 for all
σ ∈ Eext) then |(uT , vT )|1,X (T ) = 0. Following Remark 1, one deduces that there exists
C ∈ R such that uK = C for all K ∈ T and uσ = C for all σ ∈ Eext. This proves that
the dimension of the null space of A is 1. Therefore, the dimension of the range of A is
M − 1. Since

∑

K∈T m(K)fK +
∑

σ∈Eext
m(σ)gσ = 0 is a necessary condition for (15)-(18)

to have a solution, it is also a sufficient condition. Furthermore, under this condition on f
and g (which is given by Assumption 4.1), since the null space of A is reduced to the set of
constant vectors, the system (15)-(19) has a unique solution.

Step 2. Proof of Estimate (21).
Under Assumption 4.1, let (uT , vT ) ∈ X (T ) be the solution of (15)-(19) in the sense

of Definition 4.3. Using (24), the Cauchy Schwarz inequality and inequalities (10.10) (the
discrete mean Poincaré inequality) and (10.25) (the discrete trace inequality) of [EGH 00]
(combined with equation (19)), we get (using also dσ ≤ diam(Ω)):

|TT
1 | ≤ C2





(

∑

σ∈EK∩Eext

m(σ)

dσ

(uK − uσ)2

)
1
2

+ |uT |1,T



 ‖g‖0,∂Ω, (25)

and
|TT

2 | ≤ C3‖f‖0,Ω|uT |1,Ω, (26)

where C2 and C3 are only depending on Ω.
Combining (23), (25) and (26) yields (21). �

International Journal on Finite Volumes 8
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4.3 The convergence of (uT , vT )

In this section, we prove the convergence of the solution (uT , vT ) of (15)-(19) when the size
of the mesh goes to 0, assuming Assumption 4.1 and the additionnal assumption (34), for
some ζ1 > 0. The proof is mainly based on the ideas developed in [EGH 00] for the Neumann
problem. In all this section, we ssume that α > 0 (for the other cases, see Remark 3), T
is an admissible mesh in the sense of Definition 3.1 and that {(fK , gσ), (K,σ) ∈ T × Eext}
is defined by (9). Assuming Assumption 4.1, the system (15)-(19) has a unique solution
(thanks to Theorem 4.4). We first prove the following Lemma:

Lemma 4.5 Let (uT , vT ) ∈ X (T ) be the solution of (15)-(19) in the sense of Definition 4.3.
Then, there exists C4, only depending on (Ω, f, g), such that

‖vT ‖0,∂Ω ≤ C4. (27)

Proof Thanks to inequalities (10.25) and (10.10) of [EGH 00], (19) and (21), there exists
a constant C5, only depending on Ω, such that

∑

σ∈Eext

m(σ)u2
σ ≤ 2

(

∑

σ∈EK∩Eext

m(σ)u2
K +

∑

σ∈EK∩Eext

m(σ)(uσ − uK)2

)

≤ C5

(

|uT |21,T + |(uT , vT )|21,X (T )

)

≤ C4,

where C4 = 2C5 C
2
1 (‖f‖0,Ω + ‖g‖0,∂Ω)2. �

Since the set Y of the approximations uT is bounded in L2(Ω) (thanks to discrete mean
Poincaré inequality and inequality (21)), we are able now to justify that uT converges to
some u as size(T ) goes to 0.

Uniform boundedness (21) and compactness result of [EGH 00] in case of Neumann
problem yield that the set Y is relatively compact in L2(Ω). In addition, if a sequence uTn

converges to a function u in L2-norm as size(Tn) goes to 0, then u ∈ H1(Ω). Furthermore,
Lemma 4.5 implies that vTn

converges weakly to some v ∈ L2(∂Ω), up to a subsequence.
We start by proving that:

−
∫

Ω

u(x)∆ϕ(x)dx +

∫

∂Ω

ϕn(x)v(x)dγ(x) =

∫

Ω

f(x)ϕ(x) dx

+

∫

∂Ω

g(x)ϕ(x) d γ(x) + α

∫

∂Ω

ϕt(x)v(x)dγ(x), ∀ϕ ∈ C2(Ω).
(28)

To simplify the notations, we set uTn
= uT and vTn

= vT . Let ϕ ∈ C2(Ω) and consider the

function ϕT = (ϕ
(1)
T , ϕ

(2)
T ) ∈ X (T ) (see Definition 3.3) defined by ϕ

(1)
T (x) = ϕK = ϕ(xK),

for x ∈ K and for any control volume K, and ϕ
(2)
T (x) = ϕσ = ϕ(yσ) for x ∈ σ, for any

σ ∈ Eext (see Definition 3.1). Multiplying both sides of equation (15) by ϕK , summing over
K ∈ T and reordering the terms yields

−
∑

K∈T

uK

∑

L∈N (K)

τL|K(ϕL − ϕK) =

∫

Ω

f(x)ϕ
(1)
T (x)dx +

∑

σ∈EK∩Eext

m(σ)
uσ − uK

dσ

ϕK . (29)

Using the consistency of the flux and the fact that ϕ is smooth one has (cf. [EGH 00], page
813):

∑

L∈N (K)

τL|K(ϕL − ϕK) =

∫

K

∆ϕ(x) dx −
∫

∂Ω∩∂K

ϕn(x)dγ(x) +
∑

L∈N (K)

RK,L(ϕ), (30)
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with RK,L = −RL,K , for all L ∈ N (K) and K ∈ T , and |RK,L| ≤ C6 m(K|L) size(T ),
where C6 only depends on ϕ. This with (29) and (18) implies:

−
∫

Ω

uT (x)∆ϕ(x)dx +

∫

∂Ω

ϕn(x)vT (x)dγ(x) + ¯̄r =

∫

Ω

f(x)ϕ
(1)
T (x) dx

+

∫

∂Ω

g(x)ϕ
(2)
T (x)dγ(x) − α

∑

σ∈Eext

(uσ − uσ−)ϕσ

− α
∑

σ∈EK∩Eext

(uσ − uσ−)(ϕK − ϕσ)

+
∑

σ∈EK∩Eext

m(σ)(ϕK − ϕσ)gσ, (31)

where ¯̄r = r(ϕ, T ) + s(ϕ, T ), with r(ϕ, T ) = −∑K∈T uK

∑

L∈N (K)RK,L and s is given by

s(ϕ, T ) =
∑

σ∈EK∩Eext

(uK − uσ)

∫

σ

ϕn(x)dγ(x) (32)

In order to pass to the limit in (31) as size(T ) goes to 0, we need some estimates. Reordering
the sum in r(ϕ, T ) and using (21), we obtain

|r(ϕ, T )| ≤ C7 size(T ), (33)

where C7 is a real positive number only depending on Ω, f, g and ϕ.
On the other hand, if the mesh T satisfies, for some ζ1 > 0:

dσ ≤ ζ1 m(σ), ∀σ ∈ Eext, (34)

then, by using Cauchy Schwarz inequality, the uniform boundedness (21) and the regularity
of ϕ, there exist C8 only depending on (Ω, α, ζ1, f, g), C9 only depending on (Ω, f, g), C10

only depending on Ω and C11 only depending on (Ω, α, f, g) such that

|
∑

σ∈EK∩Eext

(uσ − uσ−)(ϕK − ϕσ)| ≤ C8

√

size(T )|ϕ|1,∞,Ω, (35)

|s(ϕ, T )| ≤ C9

√

size(T )‖ϕ‖2,Ω, (36)

|
∑

σ∈EK∩Eext

m(σ)(ϕK − ϕσ)gσ | ≤ C10 size(T )‖g‖0,∂Ω‖ϕ‖1,∞,Ω, (37)

|
∑

σ∈Eext

(ϕ(yσ) − ϕ(σb))(uσ − uσ−)| ≤ C11

√

size(T )‖ϕ‖1,∞,Ω, (38)

where σ = (σb, σe) (see Definition 3.2). Using inequalities (33), (35)-(38) and formula (10),
the equation (31) can be rewritten as

−
∫

Ω

uT (x)∆ϕ(x)dx +

∫

∂Ω

ϕn(x)vT (x)dγ(x) = T3(ϕ, T ), ∀ϕ ∈ C2(Ω), (39)

where

T3(ϕ, T ) =

∫

Ω

fϕ
(1)
T dx +

∫

∂Ω

gϕ
(2)
T dγ(x) + α

∫

∂Ω

ϕt vT dγ(x) + T4(ϕ, T ), (40)

and
|T4(ϕ, T )| ≤ C12

√

size(T ), (41)

where C12 depends on (Ω, α, ζ1, f, g, ϕ). Writing (39) with T = Tn, using (41) and passing
to the limit as n tends to infinity yield (28).

To prove now that u satifies (14), we need the following Lemma which is proven in
[EGH 00]:
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Lemma 4.6 ([EGH 00]) Let d ≥ 1 and Ω be a bounded polygonal open set of R
d. Let

u ∈ H1(Ω), f ∈ L2(Ω) and v ∈ L2(∂Ω). We assume that

−
∫

Ω

u(x)∆ϕ(x) dx +

∫

∂Ω

(∇ϕ · n)(x)v(x) dγ(x) =

∫

Ω

f(x)ϕ(x) dx, (42)

for every ϕ ∈ C2(Ω) such that ϕ = 0 on ∂Ω. Then γ̃(u) = v a.e. on ∂Ω, where γ̃(u) is
the classical trace operator from H1(Ω) to L2(∂Ω). (One also has necessarily −∆u = f in
D′(Ω).)

Choosing ϕ = 0 on ∂Ω in the equation (28) and using Lemma 4.6, we get γ̃(u) = v a.e.
on ∂Ω. Then, an integration by parts in (28) implies that, for any ϕ ∈ D(Ω), we have

∫

Ω

∇u(x) · ∇ϕ(x)dx =

∫

Ω

f(x)ϕ(x) dx +

∫

∂Ω

g(x)ϕ(x)dγ(x)

+ α

∫

∂Ω

ϕt(x)γ̃(u)(x)dγ(x). (43)

Using again an integration by parts and ϕt = −ϕxny + ϕynx, we obtain

∫

Ω

∇u(x) · ∇ϕ(x)dx + α

∫

Ω

(ϕx(x)uy(x) − ϕy(x)ux(x))dx =

∫

Ω

f(x)ϕ(x) dx

+

∫

∂Ω

g(x)ϕ(x)dγ(x), ∀ϕ ∈ D(Ω). (44)

Thanks to the density D(Ω) in H1(Ω), the formulation (44) is equivalent to (14).
We have proven that the sequence uTn

converges to a solution u ∈ H1(Ω) of (14) in
L2(Ω), up to a subsequence. On the other hand, when the mesh size vanishes in (19), we
get (13). Finally, Since the solution u of (13)-(14) is unique, the whole family uT converges
to the solution u ∈ H1(Ω) of (13)-(14) in L2(Ω) and the whole family vT converges to γ̃(u)
for the weak topology of L2(∂Ω) as size(T ) goes to 0. Now, we prove:

||(uT , vT )||2? →
∫

Ω

|∇u|2(x)dx, (45)

where ||(·, ·)||? is the semi-norm defined by

||(uT , vT )||2? = |(uT , vT )|21,X (T ) +
α

2
|vT |2Z(T ), (46)

and the semi-norm |(·, ·)|1,X (T ) (resp. | · |Z(T )) is defined in (7) (resp. (22)). Taking v = u
in (14) leads to

∫

Ω

|∇u|2(x)dx =

∫

Ω

f(x)u(x)dx +

∫

∂Ω

g(x)γ̃(u)dγ(x). (47)

As size(T ) goes to 0 in (23), we get

||(uT , vT )||2? →
∫

Ω

f(x)u(x)dx +

∫

∂Ω

g(x)γ̃(u)(x)dγ(x). (48)

Combining (47) and (48) yields (45).

We have proven the following Theorem:
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Theorem 4.7 (Convergence result when α is constant) Let α ∈ R, α > 0 (for the
other cases, see Remark 3), and ζ1 > 0. Assume Assumption 4.1. Let T be an admissible
mesh in the sense of Definition 3.1, satisfying the condition (34), and {(fK , gσ), (K,σ) ∈
T × Eext} be defined by (9). Let (uT , vT ) ∈ X (T ) be the unique solution of (15)-(19) in
the sense of Definition 4.3 (see Theorem 4.4) and let u ∈ H1(Ω) be the unique solution of
(13)-(14). Then:

uT → u in L2(Ω) as size(T ) → 0, (49)

||(uT , vT )||2? →
∫

Ω

|∇u|2(x)dx, as size(T ) → 0, (50)

vT → γ̃(u) in L2(∂Ω) for the weak topology as the size(T ) → 0, (51)

where ||(·, ·)||2? is defined by (46) and γ̃ is the classical trace operator from H1(Ω) to L2(∂Ω).

4.4 Error estimate

In Section 4.3, we proved the convergence of (uT , vT ) to the solution u of (13)-(14) (which
belongs to H1(Ω)). Our aim in this section is to give a convergence order. To do so, we
assume that a solution u of (13)-(14) belongs to C2(Ω). The idea we want to present is
mainly based on the idea of the Proof of Theorem 10.1 of [EGH 00] for Neumann Problem.
Under the hypotheses of Section 4.3, let (uT , vT ) ∈ X (T ) be the solution of (15)-(19) and
consider CT ∈ R such that

∑

K∈T

m(K)ū(xK) = 0, (52)

where ū = u+CT . For each (K,σ) ∈ T × Eext, let eK = ū(xK)− uK and eσ = ū(yσ) − uσ,
where uK (resp. uσ) is the value of uT (resp. vT ) on K (resp. σ) (recall that yσ is
defined in Definition 3.1). We consider (eT , ēT ) ∈ X (T ) defined by (eT , ēT ) = (eK , eσ), on
(K,σ) ∈ T × Eext. One defines:

RK,σ =
ū(xL) − ū(xK)

dK|L
− 1

m(σ)

∫

σ

∇ū(x) · nK,σ(x) dγ(x), ∀σ ∈ Eint and σ = K|L, (53)

and

RK,σ =
ū(yσ) − ū(xK)

dσ

− 1

m(σ)

∫

σ

∇ū(x) · nK,σ(x) dγ(x), ∀σ ∈ EK ∩ Eext. (54)

Thus, for u ∈ C2(Ω)

|RK,σ | ≤ C13 size(T ), ∀σ ∈ EK and for any K ∈ T , (55)

where C13 only depends on u. Since −∆ū = f , integrating this equation over any control
volume K ∈ T yields:

−
∫

∂K

∇ū(x) · nK dγ(x) =

∫

K

f(x)dx. (56)

(Recall that nK is the normal to the boundary ∂K, outward to K.) Combining now (53),
(54) and (56) we obtain

−
∑

σ∈EK

σ=K|L

τK|L(ū(xL) − ū(xK)) −
∑

σ∈EK∩Eext

τσ(ū(yσ) − ū(xK))

= m(K)fK −
∑

σ∈EK

m(σ)RK,σ , ∀K ∈ T . (57)
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On the other hand (since ∇ū(x) · n(x) + α∇ū(x) · t(x) = g(x), x ∈ ∂Ω):

∫

σ

∇ū(x) · n(x) dγ(x) + α

∫

σ

∇ū(x) · t(x)dγ(x) = m(σ)gσ , ∀σ ∈ Eext, (58)

(Recall that fK and gσ are defined in (9).) Using (54), formula (10) and (58), we get

τσ(ū(yσ) − ū(xK)) + α(ū(σe) − ū(σb)) = m(σ)gσ + m(σ)RK,σ , ∀σ ∈ Eext ∩ EK , (59)

where σ = (σb, σe), with m(σ)t = σe − σb (see Definition 3.2). This yields

τσ(ū(yσ) − ū(xK)) + α(ū(yσ) − ū(yσ−)) + rσ − rσ− = m(σ)gσ + m(σ)RK,σ , (60)

where
rσ = α{ū(σe) − ū(yσ)}. (61)

We have the estimate
|rσ | ≤ C14 size(T ), (62)

where C14 only depends on (u, α).
Substracting (15) from (57) and (18) from (60), we get

−
∑

σ∈EK

σ=K|L

τσ(eL − eK) −
∑

σ∈EK∩Eext

τσ(eσ − eK) = −
∑

σ∈EK

m(σ)RK,σ , ∀K ∈ T (63)

and
τσ(eσ − eK) = −α(eσ − eσ−) − rσ + rσ− + m(σ)RK,σ , ∀σ ∈ EK ∩ Eext. (64)

Furthermore, substracting (19) from (52) to get

∫

Ω

eT (x)dx = 0. (65)

Multiplying both sides of equation (63) by eK , K ∈ T , summing over K,K ∈ T and using
equalities (64) and (20), we get

|(eT , ēT )|21,X (T ) +
α

2
|ēT |2Z(T ) = T

T
5 + T

T
6 , (66)

where
T
T
5 = −

∑

K∈T

∑

σ∈EK

m(σ)RK,σeK , (67)

and
T
T
6 =

∑

σ∈Eext

(−rσ + rσ− )eσ +
∑

σ∈EK∩Eext

m(σ)RK,σeσ . (68)

We begin with the term T
T
5 , reordering the sum, using the fact that RK,σ = −RL,σ, for all

σ ∈ Eint and σ = K|L, and Inequality (55), we get

|TT
5 | = |

∑

σ∈Eint

σ=K|L

m(σ)RK,σ(eL − eK) +
∑

σ∈EK∩Eext

m(σ)RK,σeK |

≤ C15 size(T )

(

|eT |1,T +
∑

σ∈EK∩Eext

m(σ)|eK |
)

≤ C15 size(T )

(

|(eT , ēT )|1,X (T ) +
∑

σ∈EK∩Eext

m(σ)|eK |
)

, (69)
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where C15 only depends on (u,Ω). In order to estimate the second term on the r.h.s. (right
hand side) of (69), we consider the discrete trace γ(eT ) of eT (see [EGH 00], page 807)
which is defined by γ(eT ) = eK a.e. (for the one-dimensional Lebesgue measure) on σ, if
σ ∈ Eext ∩ EK . Using Cauchy-Schwarz inequality and inequalities (10.10) and (10.25) of
[EGH 00] with the fact that eT satisfies (65), we get:

∑

σ∈EK∩Eext

m(σ)|eK | ≤ C16 ‖γ(eT )‖L2(∂Ω)

≤ C17

(

|eT |1,T + ‖eT ‖L2(Ω)

)

≤ C18 |eT |1,T , (70)

where C16, C17 and C18 are only depending on Ω. With (69), this yields:

|TT
5 | ≤ C19 size(T )

(

|(eT , ēT )|21,X (T ) +
α

2
|ēT |2Z(T )

)
1
2

, (71)

where C19 = C15(1 + C18).

To estimate T
T
6 , we have to assume that the mesh T satisfies, for some ζ2 > 0:

m(σ) ≥ ζ2 size(T ), ∀σ ∈ Eext. (72)

Remark 5 The condition (72) implies the condition (34) with ζ1 = 2
ζ2

.

Using inequalities (55) and (62) and using the the assumption (72), we get

|TT
6 | ≤ |

∑

σ∈Eext

(−rσ + rσ− )eσ| + |
∑

σ∈Eext

m(σ)RK,σ eσ|

≤ |
∑

σ∈Eext

rσ(eσ+ − eσ)| + C20 size(T )

(

∑

σ∈Eext

m(σ)e2σ

)
1
2

≤ C14 size(T )

(

∑

σ∈Eext

1

)
1
2

|ēT |Z(T ) + C20 size(T )

(

∑

σ∈Eext

m(σ)e2σ

)
1
2

≤ C21

√

size(T )|ēT |Z(T ) + C20 size(T )

(

∑

σ∈Eext

m(σ)e2σ

)
1
2

, (73)

where C20 depends on (u,Ω) and C21 depends on (u,Ω, ζ2, α). To estimate the second term
on the r.h.s. of (73), we use the triangular inequality and inequalities (10.10) and (10.25) of
[EGH 00] with the fact that eT satisfies (65) (and that dσ < diam(Ω)). We get:

(

∑

σ∈Eext

m(σ)e2σ

)
1
2

≤
(

∑

σ∈Eext

m(σ)(eσ − eK)2

)
1
2

+

(

∑

σ∈Eext

m(σ)e2K

)
1
2

≤ C22|(eT , ēT )|1,X (T ), (74)

where C22 only depends on Ω. Combining inequalities (73) and (74) gives:

|TT
6 | ≤ C23

√

size(T )
(

|(eT , ēT )|21,X (T ) +
α

2
|ēT |2Z(T )

)
1
2

, (75)

where C23 only depends on (u,Ω, ζ2, α). Equality (66) with inequalities (71), (75) implies:

(

|(eT , ēT )|21,X (T ) +
α

2
|ēT |2Z(T )

)
1
2 ≤ C24

√

size(T ), (76)

International Journal on Finite Volumes 14



Finite volume schemes for oblique derivative problems

where C24 only depends on (u,Ω, ζ2, α). Inequality (76) together with (65) and the discrete
mean Poincaré inequality (10.10) of [EGH 00] yields:

‖eT ‖2
L2(Ω) ≤ C25 size(T ), (77)

where C25 only depends on (u,Ω, ζ2, α).

In order to obtain an error estimate between u and uT (instead of ū and uT ), we first
give an estimate on CT . Using the fact that

∫

Ω
u(x) dx = 0 (Equation (13)) and Equation

(52), we get

m(Ω)CT =

∫

Ω

{u(x) − ū(x)}dx =
∑

K∈T

∫

K

ū(x)dx

=
∑

K∈T

∫

K

{ū(xK) + ∇u(ψ(x)) · (x − xK)}dx =
∑

K∈T

∫

K

∇u(ψ(x)) · (x − xK) dx,

and then:
m(Ω)|CT | ≤ C26 size(T )

∑

K∈T

m(K) ≤ C27 size(T ), (78)

where C26 = ‖ |∇u| ‖L∞(Ω), C27 = C26 m(Ω) and ψ(x) is a some point between the points x

and xK . Furthermore, we have

∑

K∈T

∫

K

{u(xK) − u(x)}2 dx ≤ (C26)
2 (size(T ))

2
∑

K∈T

m(K)

= (C26)
2 m(Ω) (size(T ))

2
. (79)

Using triangular Inequality and Error Estimate (77) combined with inqualities (78) and
(79), we get the following error estimate in L2(Ω)-norm:

‖uT − u‖2
L2(Ω) =

∑

K∈T

∫

K

{uK − u(x)}2 dx

≤ 3‖eT ‖2
L2(Ω) + 3 m(Ω)C2

T + 3
∑

K∈T

∫

K

{u(xK) − u(x)}2 dx

≤ C28 size(T ), (80)

where C28 depends only on (u,Ω, ζ2, α).

We now turn to get an error estimate in a discrete H1
0 (Ω) norm. For each (K,σ) ∈

T × Eext, let (erealK , erealσ ) = (u(xK) − uK , u(yσ) − uσ) and consider (erealT , ērealT ) ∈ X (T )
defined by (erealT , ērealT ) = (erealK , erealσ ), on (K,σ) ∈ T × Eext. We remark that (because
ū = u+ CT )

|(erealT , ērealT )|21,X (T ) +
α

2
|ērealT |2Z(T ) = |(eT , ēT )|21,X (T ) +

α

2
|ēT |2Z(T ). (81)

With (76), this implies

(

|(erealT , ērealT )|21,X (T ) +
α

2
|ērealT |2Z(T )

)
1
2 ≤ C24

√

size(T ). (82)

We have proven the following Error Estimate:

Theorem 4.8 (C2-Error Estimate when α is constant) Let α ∈ R, α > 0 (for the
other cases, see Remark 3), and ζ2 > 0. Assume Assumption 4.1. Let T be an admissible
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mesh in the sense of Definition 3.1, satisfying the condition (72), and {(fK , gσ), (K,σ) ∈
T × Eext} be defined by (9). Let (uT , vT ) ∈ X (T ) be the unique solution of (15)-(19) in
the sense of Definition 4.3 (see Theorem 4.4) and let u be the unique solution of (13)-(14).
Assume that u ∈ C2(Ω). Then, there exist (C28, C24) only depending on (u,Ω, ζ2, α) such
that:

‖uT − u‖2
L2(Ω) ≤ C28 size(T ), (83)

and
(

|(erealT , ērealT )|21,X (T ) +
α

2
|ērealT |2Z(T )

)
1
2 ≤ C24

√

size(T ), (84)

where (erealT , ērealT ) ∈ X (T ) (see Definitions 3.3 and 3.4) is defined by (erealT , ērealT ) = (u(xK)−
uK , u(yσ) − uσ), on (K,σ) ∈ T × Eext.

Under the hypotheses of Theorem 4.8, one deduces from (84) the following estimate for
the L2 norm of the flux:

∑

σ∈Eint

σ=K|L
m(σ)dσ

(

uL−uK

dσ
− 1

m(σ)

∫

σ
∇u(x) · nK,σ dγ(x)

)2

+
∑

σ∈EK∩Eext
m(σ)dσ

(

uσ−uK

dσ
− 1

m(σ)

∫

σ
∇u(x) · nK,σ dγ(x)

)2

≤ (C24)
2 size(T ).

(85)

5 The case “α smooth”

This section is a generalization of Section 4. We now consider Problem (1) when α is a
smooth function, namely α ∈ C1(Ω). Problem (1) reads:

{

−∆u(x) = f(x), x ∈ Ω,
un(x) + (αu)t(x) = g(x), x ∈ ∂Ω.

(86)

In order to get (for some functions α, see Theorem 5.2), the existence of a solution for
Problem (86), we assume that:

Assumption 5.1

(i) (f, g) ∈ L2(Ω) × L2(∂Ω) and
∫

Ω f(x) dx +
∫

∂Ω g(x)d γ(x) = 0.

(ii) α ∈ C1(Ω).

Theorem 5.2 Under the Assumption 5.1, let Cα = min∂Ω αt. Then there exists δ < 0, only
depending on Ω, such that if α satisfies the condition Cα ≥ δ, then there exists a unique
solution to (87)-(88):

u ∈ H1(Ω),

∫

Ω

u(x)dx = 0, (87)

b(u, v) = F (v), ∀v ∈ H1(Ω), (88)

where

b(u, v) =

∫

Ω

∇u(x) · ∇v(x)dx +

∫

Ω

{(αu)y(x)vx(x) − (αu)x(x)vy(x)}dx, (89)

and

F (v) =

∫

Ω

f(x)v(x) dx +

∫

∂Ω

g(x)v(x)d γ(x). (90)
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Remark 6 Problem (87)-(88) appears to be a weak formulation of Problem (86) (with the
additionnal assumption

∫

Ω u(x)dx = 0, in order to obtain also a uniqueness result) since for
αu and v regualr enough (say, for instance, αu ∈ H2(Ω) and v ∈ H1(Ω)) one has:

∫

∂Ω

(αu)t(x)v(x) d γ(x) =

∫

Ω

{(αu)y(x)vx(x) − (αu)x(x)vy(x)}dx.

Proof To prove the existence and uniqueness of the solution of (87)-(88), we apply the
classical Lax-Milgram lemma. Thanks to Assumption 5.1, It is clear that b(·, ·) and F (·) are
continuous on H1(Ω) ×H1(Ω) and H1(Ω) respectively.

In order to prove the coercivity of b (under an additionnal assumption on αt), let u ∈
H1(Ω). Using u2 ∈ W 1,1(Ω) and α ∈ C1(Ω), one obtains:

b(u, u) =

∫

Ω

|∇u|2(x) dx +

∫

Ω

{(αu)y(x)ux(x) − (αu)x(x)uy(x)}dx

=

∫

Ω

|∇u|2(x) dx +
1

2

∫

Ω

{αy(x)(u2)x(x) − αx(x)(u2)y(x)}dx

=

∫

Ω

|∇u|2(x) dx +
1

2

∫

∂Ω

αt(x)u2(x)d γ(x). (91)

Then, with Cα = min∂Ω αt (note that Cα ≤ 0 since the mean value of αt on ∂Ω is 0):

b(u, u) ≥ |u|21,Ω +
Cα

2

∫

∂Ω

u2(x) dγ(x).

This gives, using the continuity of the trace operator from H1(Ω) to L2(∂Ω),

b(u, u) ≥ |u|21,Ω +
Cα C29

2
|u|21,Ω +

Cα C29

2
‖u‖2

0,Ω, (92)

where C29 is a positive number only depending on Ω. Let

H = {v ∈ H1(Ω),

∫

Ω

v(x) dx = 0}.

Inequality (92) with the mean Poincaré inequality implies:

b(u, u) ≥ |u|21,Ω +
Cα C29

2
|u|21,Ω +

Cα C30 C29

2
|u|21,Ω, ∀u ∈ H,

where C30 is a positive number only depending on Ω. The previous inequality can be written
as:

b(u, u) ≥ (1 + C31Cα)|u|21,Ω, ∀u ∈ H,
where

C31 =
(1 + C30)C29

2
. (93)

Thus for

Cα > − 1

C31
= δ,

the bilinear form b(·, ·) becomes coercive on H. Then, by the Lax-Milgram lemma , there
exists a unique u ∈ H such that

b(u, v) = F (v), ∀v ∈ H. (94)
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Consider now v ∈ H1(Ω) and C ∈ R such that

∫

Ω

v̄(x)dx = 0,

where v̄ = v + C.
Since b(u,C) = 0; using the item (i) of Assumption 5.1 and (94), we get

b(u, v) = F (v), ∀ v ∈ H1(Ω), (95)

which completes the Proof. �

5.1 The finite volume scheme for (86)

To present the finite volume scheme for (86) and to analyze its convergence, we need some
more notations and an aditionnal semi-norm (we also use the semi-norm of Definition 3.4).

Definition 5.3 Let α ∈ C1(Ω). For σ ∈ Eext, the notations σe, σb, uσ+ and uσ− are given
in Definition 3.2 (in particular, σ = (σb, σe), with m(σ)t = σe − σb). We set:

uσ,+ = uσ and uσ,− = uσ+ if α(σe) ≥ 0,
uσ,+ = uσ+ and uσ,− = uσ if α(σe) < 0.

Let Z(T ) be the space of functions which are constant on each σ ∈ Eext (see Definition 3.3).
We define the following semi-norm on Z(T ):

|vT |2α,Z(T ) =
∑

σ∈Eext

|α(σe)|(uσ,+ − uσ,−)2.

Remark 7 Since {uσ,+, uσ,−} = {uσ, uσ+}, for all σ ∈ Eext, the semi-norm | · |α,Z(T ) can be
written as:

|vT |2α,Z(T ) =
∑

σ∈Eext

|α(σe)|(uσ+ − uσ)2.

Remark 8 Let σ = (σb, σe) ∈ Eext. The value uσ,+ is the upstream (w.r.t. the sign of
α(σe)) value of u at point σe. In order to get the stability of the scheme, it will be used to
discretize the tangential term (αu)t (see equation (97)). Such an upstream choice is classical
to discretize the convection term of elliptic problems in two or three Dimensions (see, for
instance, [EGH 00] pages 766 and 767).

Let (uK)K∈T and (uσ)σ∈Eext
denote the discrete unknowns. The numerical scheme for

the discretization of (86) is given by the following set of equations:

∑

EK

FK,σ = m(K)fK , ∀K ∈ T , (96)

where FK,σ is defined in (16)-(17)),

τσ(uσ − uK) = −α(σe)uσ,+ + α(σb)uσ−,+ + m(σ)gσ , ∀σ ∈ EK ∩ Eext, (97)

where the notation uσ,+ is defined in Definition 5.3 and σ = (σb, σe) with m(σ)t = σe − σb

(note also that σb = (σ−)e), and, for the discretization of the equation (87),

∑

K∈T

m(K)uK = 0. (98)
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5.2 Existence and uniqueness of the finite volume solution

In this Section, we prove the existence and the uniqueness of the solution to (96)-(98), under
a condition on α as in Theorem 5.2. A first method to prove this existence and uniqueness
result is to use the Lax-Milgram lemma (as in Theorem 5.2). We present here another
method, similar to that given for proving Theorem 4.4, but slightly more complicated since
the constant vectors are not solutions of the homogeneous system associated to (96)-(97)
(with FK,σ given by (16)-(17)).

Assume Assumption 5.1 and let T be an admissible mesh in the sense of Definition
3.1. Let M1 be the number of elements of T , M2 the number of elements of Eext and
M = M1 + M2. The system (96)-(98) (with FK,σ given by (16)-(17)) can be viewed as a
system of M unknowns (which are {uK , K ∈ T } and {uσ, σ ∈ Eext}) with M +1 equations.
After the choice of an order for the unknowns and the equations, it can be written as Aw = b,
where A is (M + 1) ×M matrix, w ∈ R

M is the unknown vector and b ∈ R
M+1 is given by

the data (namely f and g). We first prove that the null space of this matrix A is reduced
to the null vector.

Indeed, let {uK}K and {uσ}σ be a solution of (96)-(98) (with (16)-(17)) with (fK , gσ) =
(0, 0) for all (K,σ) ∈ T × Eext. Multiplying both sides of equation (96) by uK , K ∈ T ,
summing over K ∈ T and using equation (97) yields

|(uT , vT )|21,X (T ) +
∑

σ∈Eext

{α(σe)uσ,+ − α(σb)uσ−,+}uσ = 0, (99)

where (uT , vT ) ∈ X (T ) (see Definition 3.3) and uT (x) = uK , for x ∈ K, and vT (x) = uσ,
for x ∈ σ, for all (K,σ) ∈ K ×Eext. The second term on the l.h.s. of (99) can be written as
follows

∑

σ∈Eext

{α(σe)uσ,+ − α(σb)uσ−,+}uσ =
∑

σ∈Eext

|α(σe)|{uσ,+ − uσ,−}uσ,+. (100)

(recall that uσ,− is defined in Definition 5.3.) This gives that (similar techniques are used
in [EGH 00], page 769)

∑

σ∈Eext
{α(σe)uσ,+ − α(σb)uσ−,+}uσ =

1
2

(
∑

σ∈Eext
|α(σe)|{(uσ,+ − uσ,−)2 + u2

σ,+ − u2
σ,−}

)

.
(101)

The second term on the r.h.s. of equality (101) can be written as

∑

σ∈Eext

|α(σe)|{u2
σ,+ − u2

σ,−} =

∫

∂Ω

αt(x)v2
T (x)dγ(x). (102)

Combining now (99)-(102), we get

|(uT , vT )|21,X (T ) +
1

2
|vT |2α,Z(T ) +

1

2

∫

∂Ω

αt(x)v2
T (x)dγ(x) = 0. (103)

We prove now that, using (98) and under some condition on Cα = min{αt(x), x ∈ ∂Ω}
(this condition is similar to that of Theorem 5.2), the l.h.s. of (103) vanishes if and only if
uK = uσ = 0, for all (K,σ) ∈ T × Eext. Indeed, using Inequality (a + b)2 ≤ 2a2 + 2b2, we
have:

∫

∂Ω

αt(x)v2
T (x)dγ(x) ≥ 2Cα

(

∑

σ∈EK∩Eext

m(σ)(uσ − uK)2 +
∑

σ∈EK∩Eext

m(σ)u2
K

)

. (104)
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Combining inequalities (10.10) and (10.25) of [EGH 00] with Equation (98) implies that

∑

σ∈Eext

m(σ)u2
K ≤ C32|uT |21,T , (105)

where C32 is a constant only depending on Ω. Equality (103) with inequalities (104) and
(105) implies

(1 + Cα C32)|uT |21,T +
∑

σ∈EK∩Eext

m(σ)

dσ

(1 + dσCα)(uK − uσ)2 +
1

2
|vT |2α,Z(T ) ≤ 0. (106)

Let δ = min{−1/C32,−1/diam(Ω)} and assume Cα > δ (note that necessarily Cα ≤ 0).
Then, all the terms on the left hand side of (106) are positive (since, in particular, dσ ≤
diam(Ω) for all σ ∈ Eext). This gives that there exists C ∈ R such that uK = C for all
K ∈ T and uσ = C for all σ ∈ Eext (as in Remark 1). Finally, thanks to (98), one deduces
C = 0. This proves that the null space of the matrix A is reduced to the null vector.

Remark 9 Indeed, assuming only Cα > −1/C32, if size(T ) is small enough (more precisely,
if size(T ) < −1/Cα), all the terms on the left hand side of (106) are positive. Then, we can
also conclude that the null space of the matrix A is reduced to the null vector. Therefore,
as in Theorem 5.4 below, assuming Assumption 5.1, we have existence and uniqueness of
the solution of (96)-(98) (with (16)-(17)), when T be an admissible mesh in the sense of
Definition 3.1.

Since the dimension of the null space of A is 0, the dimension of the range of A is M .
But the range of A is included in R

M+1 and the following condition is necessary for (96)-(98)
(with (16)-(17)) to have a solution:

∑

K∈T

m(K)fK +
∑

σ∈Eext

m(σ)gσ = 0. (107)

Then, Condition (107) is also a sufficient condition for (96)-(98) (with (16)-(17)) to have
a solution. Finally, under Condition (107) (which is a consequence of Assumption 5.1) the
system (96)-(98) (with (16)-(17)) has a unique solution. (By the way, the same result of
existence and uniqueness remains true if the right hand side of Equation (98) is replaced by
any real value.)

This proves the following Theorem:

Theorem 5.4 Assume Assumption 5.1 and let Cα = min∂Ω αt. Let T be an admissible
mesh in the sense of Definition 3.1. Then, There exists δ < 0, only depending on Ω, such
that if Cα > δ the system (96)-(98) (with (16)-(17)), where {(fK , gσ) : (K,σ) ∈ T ×Eext} is
given by (9), has a unique solution.

Theorem 5.4 allows us to introduce the following Definition.

Definition 5.5 An element (uT , vT ) ∈ X (T ) (see Definition 3.3) is the solution of (96)-(98)
if uT (x) = uK for x ∈ K, for all K ∈ T , and vT (x) = uσ for x ∈ σ, for all σ ∈ Eext, where
(uK)K∈T , (uσ)σ∈Eext

is the solution of (96)-(98) (with (16)-(17)).
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5.3 Estimate on the solution (uT , vT )

Under the same hypotheses than in Theorem 5.4, let (uT , vT ) ∈ X (T ) be the unique solution
of (96)-(98) (see Definition 5.5). We give in this Subsection, a bound for (uT , vT ). This will
allow us to prove that uT converges to u ∈ H1(Ω) in L2(Ω)-norm.

By multiplying both sides of (96) by uK and using the techniques of Section 5.2, we get:

(1+Cα C32)|uT |21,T +
∑

σ∈EK∩Eext

m(σ)

dσ

(1+dσCα)(uK−uσ)2+
1

2
|vT |2α,Z(T ) ≤ T

T
1 +T

T
2 , (108)

where T
T
1 and T

T
2 are defined as in (24). Inequalities (25) and (26) (of the case α is constant)

remain valid here. Thus, the following Theorem holds

Theorem 5.6 Assume Assumption 5.1 and let Cα = min∂Ω αt. Let T be an admissible
mesh in the sense of Definition 3.1. Then, There exists δ < 0, only depending on Ω, such
that if Cα > δ the system (96)-(98) (with (16)-(17)), where {(fK , gσ) : (K,σ) ∈ T ×Eext} is
given by (9), has a unique solution. Furthermore, one has:

|(uT , vT )|1,X (T ) + |vT |α,Z(T ) ≤ C33{‖f‖0,Ω + ‖g‖0,∂Ω}, (109)

where C33 is only depending on Ω and α (the semi-norms |(·, ·)|1,X (T ) and | · |α,Z(T )) are
defined in Definition 3.4 and Definition 5.3).

5.4 The convergence of (uT , vT )

In this section, we assume Assumption 5.1 and Cα = min∂Ω αt > δ, where δ is given by
Theorem 5.6. For an an admissible mesh T in the sense of Definition 3.1, let (uT , vT ) be
the unique solution (uT , vT ) of (96)-(98) (with (16)-(17)). The objective is to prove the
convergence of (uT , vT ) to the solution of (87)-(88) as the mesh size goes to zero. The proof
follows that of the case “α constant”. We begin with the following Lemma which proof is
similar to that of Lemma 4.5.

Lemma 5.7 Under the hypotheses of Theorem 5.6, let (uT , vT ) ∈ X (T ) be the solution of
(96)-(98) in the sense of Definition 5.5. Then the following estimate holds

‖vT ‖0,∂Ω ≤ C34, (110)

where C34 depends only on (Ω, α, f, g).

Since the set Y of the approximations uT is bounded in the L2(Ω) (thanks to the discrete
mean Poincaré inequality and Inequality (109)), we are able now to justify that uT converges
to some u as size(T ) goes to zero. Uniform boundedness (109) and compactness result of
[EGH 00] in case of Neumann problem yields that the set Y is relatively compact in L2(Ω).
In addition to this, if a sequence uTn

(n ∈ N) converges to a function u in L2-norm as
size(Tn) goes to 0, then u ∈ H1(Ω). Furthermore, Lemma 5.7 implies that vTn

converges
weakly to some v ∈ L2(∂Ω), up to a subsequence. We start by proving:

−
∫

Ω

u(x)∆ϕ(x)dx +

∫

∂Ω

ϕn(x)v(x)dγ(x) =

∫

Ω

f(x)ϕ(x) dx (111)

+

∫

∂Ω

g(x)ϕ(x) d γ(x) +

∫

∂Ω

ϕt(x)α(x)v(x)dγ(x), ∀ϕ ∈ C2(Ω).

To simplify the notations, we set uTn
= uT and vTn

= vT .

Let ϕ ∈ C2(Ω) and consider the function ϕT = (ϕ
(1)
T , ϕ

(2)
T ) ∈ X (T ) (see Definition 3.3)
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defined by ϕ
(1)
T (x) = ϕK = ϕ(xK), for x ∈ K and for any control volume K, and ϕ

(2)
T (x) =

ϕσ = ϕ(yσ) for x ∈ σ, for any σ ∈ Eext. Multiplying both sides of equation (96) by ϕK and
using (97) combined with the techniques used for α constant, we get

−
∫

Ω

uT (x)∆ϕ(x)dx +

∫

∂Ω

ϕn(x)vT (x)dγ(x) + ¯̄r =

∫

Ω

f(x)ϕ
(1)
T (x) dx

+

∫

∂Ω

g(x)ϕ
(2)
T (x)dγ(x) −

∑

σ∈Eext

(α(σe)uσ,+ − α(σb)uσ−,+)ϕσ

−
∑

σ∈EK∩Eext

(α(σe)uσ,+ − α(σb)uσ−,+)(ϕK − ϕσ)

+
∑

σ∈EK∩Eext

m(σ)(ϕK − ϕσ)gσ, (112)

where ¯̄r, r(ϕ, T ) and s are defined as for α constant, i.e. as in (29)-(32). We remark that
the r.h.s. of (112) differs from the r.h.s. of (31) only by the third and fourth term.

We first prove that the fourth term on the r.h.s. of (112) goes to zero, as size(T ) → 0.
Let ϕK,σ = ϕK − ϕσ and write

∑

σ∈EK∩Eext

(α(σe)uσ,+ − α(σb)uσ−,+)ϕK,σ = T
T
7 + T

T
8 + T

T
9 + T

T
10, (113)

where

T
T
7 =

∑

σ∈EK∩Eext

α(σe)(uσ,+ − uσ,−)ϕK,σ and T
T
8 =

∑

σ∈EK∩Eext

α(σe)uσ,−ϕK,σ ,

and

T
T
9 = −

∑

σ∈EK∩Eext

α(σb)(uσ−,+ − uσ−,−)ϕK,σ and T
T
10 = −

∑

σ∈EK∩Eext

α(σb)uσ−,−ϕK,σ .

To estimate T
T
7 and T

T
9 , we assume that the mesh T satisfies, for some (ζ3, ζ4) ∈ (IR+

? )2,
the following condition:

ζ3 m(σ) ≤ m(σ+) ≤ ζ4 m(σ), ∀σ ∈ Eext, (114)

where σ+ is defined in Definition 3.2. Thanks to Estimate (109), the fact that |ϕK,σ | ≤
size(T )‖|∇ϕ|‖L∞(Ω) and under the Assumption that the mesh T satisfies, for some (ζ1, ζ3, ζ4)

∈ (IR+
? )3, the conditions (34) and (114), we have the following estimates:

|TT
7 | ≤ C35

√

size(T ) and |TT
9 | ≤ C36

√

size(T ), (115)

where C35 depends on (Ω, ζ1, f, g, ϕ, α) and C36 depends on (Ω, ζ1, ζ4, f, g, ϕ, α). It remains
to estimate T

T
8 + T

T
10. Indeed

T
T
8 +T

T
10 =

∑

σ∈EK∩Eext

(α(σe)−α(σb))uσ,−ϕK,σ +
∑

σ∈EK∩Eext

α(σb)(uσ,−−uσ−,−)ϕK,σ . (116)

Thanks to Lemma 5.7 and using |ϕK,σ | ≤ size(T )‖ |∇ϕ| ‖L∞(Ω) and |α(σe) − α(σb)| ≤
m((σ)‖ |∇α| ‖L∞(∂Ω), the first term on the r.h.s. of (116) can be bounded as:

|
∑

σ∈EK∩Eext

(α(σe) − α(σb))uσ,−ϕK,σ | ≤ C37 size(T ), (117)
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where C37 depends on (Ω, ζ3, f, g, ϕ, α). To estimate the second term on r.h.s. of (116), we
consider the following sets:

Z1 = {σ ∈ Eext : α(σe) ≥ 0 and α(σb) ≥ 0}, (118)

Z2 = {σ ∈ Eext : α(σe) ≥ 0 and α(σb) ≤ 0}, (119)

Z3 = {σ ∈ Eext : α(σe) ≤ 0 and α(σb) ≤ 0}. (120)

We have:
∑

σ∈EK∩Eext

α(σb)(uσ,− − uσ−,−)ϕK,σ =
∑

EK∩Z1

(α(σb) − α(σe))(uσ+ − uσ)ϕK,σ

+
∑

EK∩Z1

α(σe)(uσ+ − uσ)ϕK,σ

+
∑

EK∩Z2

α(σb)(uσ+ − uσ)ϕK,σ

+
∑

EK∩Z2

α(σb)(uσ − uσ−)ϕK,σ

+
∑

EK∩Z3

α(σb)(uσ − uσ−)ϕK,σ (121)

The first term on the r.h.s. of (121) can be bounded using triangular Inequality, the as-
sumption (114) and Lemma 5.7:

|
∑

Z1

(α(σb) − α(σe))(uσ+ − uσ)ϕK,σ | ≤ C38 size(T ), (122)

where C38 depends on (α, ϕ,Ω, f, g, ζ3). Noting that {uσ,+, uσ,−} = {uσ+ , uσ} and

|
∑

Z1∩EK

α(σe)(uσ+ − uσ)ϕK,σ | ≤
∑

σ∈EK∩Eext

|α(σe)(uσ+ − uσ)ϕK,σ | ,

the first estimate of (115) can be applied here to get:

|
∑

Z1∩EK

α(σe)(uσ+ − uσ)ϕK,σ | ≤ C35

√

size(T ). (123)

The techniques used to bound the first and the second term on r.h.s. of (121) can be used
to obtain the same bound for the third, fourth and fifth term on the r.h.s. of (121). Thus:

|
∑

σ∈EK∩Eext

α(σb)(uσ,− − uσ−,−)ϕK,σ | ≤ C39

√

size(T ), (124)

where C39 depends on (Ω, ζ3, ζ1, ζ4, f, g, ϕ, α). This, with (117), (116), implies

|TT
8 + T

T
10| ≤ C40

√

size(T ), (125)

where C40 depends on (Ω, ζ3, ζ1, ζ4, f, g, ϕ, α). Combining now (113), (115) and (125), we
get the following estimate for the fourth term on the r.h.s. of (112):

|
∑

σ∈EK∩Eext

(α(σe)uσ,+ − α(σb)uσ−,+)ϕK,σ | ≤ C41

√

size(T ), (126)

where C41 depends on (Ω, ζ3, ζ1, ζ4, f, g, ϕ, α).
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We now turn to estimate the third term on the r.h.s. of (112). Reordering the sum and
using formula (10), we get (recall that ϕσ = ϕ(yσ)):

∑

σ∈Eext

(α(σe)uσ,+ − α(σb)uσ−,+)ϕσ =
∑

σ∈Eext

α(σe)uσ,+(ϕσ − ϕσ+)

=
∑

σ∈Eext

α(σe)uσ,+(ϕ(yσ) − ϕ(σb))

−
∑

σ∈Eext

α(σe)uσ,+(ϕ(yσ+) − ϕ(σe))

−
∑

σ∈Eext

α(σe)uσ,+(ϕ(σe) − ϕ(σb))

=
∑

σ∈Eext

{ϕ(yσ) − ϕ(σb)}(α(σe)uσ,+ − α(σb)uσ−,+)

−
∫

∂Ω

ϕt(x)αT (x)v+
T (x) dγ(x), (127)

where (αT , v
+
T ) ∈ (Z(T ))2 is defined by (αT (x), v+

T (x)) = (α(σe), uσ,+) for x ∈ σ, for all
σ ∈ Eext. As it is done to obtain the estimate (126), we can obtain the same estimate for
the first term on the r.h.s. of (127):

|
∑

σ∈Eext

{ϕ(yσ) − ϕ(σb)}(α(σe)uσ,+ − α(σb)uσ−,+)| ≤ C42

√

size(T ), (128)

where C42 depends on (Ω, ζ3, f, g, ζ4, ϕ, α). We now turn to the second term on the r.h.s. of
(127):

∫

∂Ω

ϕt(x)αT (x)v+
T (x) dγ(x) =

∫

∂Ω

ϕt(x)αT (x)(v+
T − vT )(x) dγ(x)

+

∫

∂Ω

ϕt(x)αT (x)vT (x) dγ(x). (129)

Since ‖αT − α‖L∞(Ω) → 0 and ‖vT − v‖L2(∂Ω) → 0, as size(T ) → 0, then:

∫

∂Ω

ϕt(x)αT (x)vT (x) dγ(x) →
∫

∂Ω

ϕt(x)α(x)v(x) dγ(x), as size(T ) → 0. (130)

We now prove that the first term on the r.h.s. of (129) goes to zero. Indeed, using (109)
and the fact that {|uσ,+ − uσ|} = {0, |uσ+ − uσ|} = {0, |uσ,+ − uσ,−|}, we get

|
∫

∂Ω

ϕt(x)αT (x)(v+
T − vT )(x) dγ(x)| ≤ C43

√

size(T ), (131)

where C43 depends on (Ω, f, g, ϕ, α). Let size(T ) tends to zero in (129). Using (130) and
(131), we get:

∫

∂Ω

ϕt(x)αT (x)v+
T (x) dγ(x) →

∫

∂Ω

ϕt(x)α(x)v(x) dγ(x), as size(T ) → 0. (132)

This, with (127) and (128), implies

∑

σ∈Eext

(α(σe)uσ,+ − α(σb)uσ−,+)ϕσ → −
∫

∂Ω

ϕt(x)α(x)v(x) dγ(x), as size(T ) → 0. (133)
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Writing (112) with T = Tn, passing to the limit as n tends to infinity (we assume that
size(Tn) → 0, as n → ∞) and using (37), (126) and (133), we get equation (111). Using
Lemma 4.6, we get γ̃(u) = v a.e. on ∂Ω. This with an integration by part in (111) implies
that, for any ϕ ∈ D(Ω), we have:

∫

Ω

∇u(x) · ∇ϕ(x)dx =

∫

Ω

f(x)ϕ(x) dx +

∫

∂Ω

g(x)ϕ(x) d γ(x)

+

∫

∂Ω

ϕt(x)α(x)γ̃(u)(x)dγ(x), ∀ϕ ∈ C2(Ω).

This, with formula (5), gives:

∫

Ω

∇u(x) · ∇ϕ(x)dx +

∫

Ω

(ϕx(x)(αu)y(x) − ϕy(x)(αu)x(x))dx

=

∫

Ω

f(x)ϕ(x) dx +

∫

∂Ω

g(x)ϕ(x)dγ(x), ∀ϕ ∈ D(Ω).
(134)

Thanks to the density D(Ω) in H1(Ω), the formulation (134) is equivalent to (88). Letting
size(T ) tends to zero in (98) and using the fact that uT tends to u in the L2(Ω)-norm, we
get (87). Since the solution u of (87)-(88) is unique, the whole family uT converges to the
solution u ∈ H1(Ω) of (87)-(88) in L2(Ω) and the whole family vT converges to γ̃(u) for the
weak topology of L2(∂Ω), as size(T ) goes to 0.

We now obtain a similar result to that of (45). Multiplying both sides of equation (96)
by uK , K ∈ T , summing over K ∈ T , using equation (97) and techniques of (100)-(102)
yields

‖(uT , vT )‖2
? =

∑

K∈T

m(K)fKuK +
∑

σ∈EK∩Eext

m(σ)gσuK , (135)

where ‖(·, ·)‖? is the semi-norm defined by

‖(uT , vT )‖2
? = |(uT , vT )|21,X (T ) +

1

2
|vT |2α,Z(T ) +

1

2

∫

∂Ω

αt(x)v2
T (x)dγ(x), (136)

where |(·, ·)|21,X (T ) (resp. | · |2
α,Z(T )) is defined in Definition 3.4 (resp. 5.3)

Remark 10 We saw in Section 5.2 that the r.h.s. of (136) is nonnegative, thanks to the
condition Cα > δ given in Theorem 5.6 (this condition is assumed in all the present section).

On the other hand, if we replace v with u in (88), we get:

|u|21,Ω +
1

2

∫

∂Ω

αt(x)u2(x)dγ(x) =

∫

Ω

f(x)u(x) dx +

∫

∂Ω

g(x)γ̃(u)(x) dγ(x). (137)

Letting size(T ) tends to zero in the r.h.s. of (135), we get:

‖(uT , vT )‖2
? →

∫

Ω

f(x)u(x) dx +

∫

∂Ω

g(x)γ̃(u)(x) dγ(x), (138)

this, with (137), implies:

‖(uT , vT )‖2
? → |u|21,Ω +

1

2

∫

∂Ω

αt(x)u2(x)dγ(x) as size(T ) → 0. (139)

Up to now, we obtained the convergence of the approximate solution (uT , vT ) when the
solution u of (87)-(88) only satisfies u ∈ H1(Ω). Assume now that the weak solution u of
(87)-(88) satisfies u ∈ C2(Ω). Using the same techniques as in the Sections 4.4, 5.2 and 5.3
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(with the same notations), there exists δ < 0 only depending on Ω (δ is as in Theorem 5.6)
and there exists C44, only depending on (α,Ω), such that for Cα > δ we have:

|(eT , ēT )|21,X (T ) + |ēT |2α,Z(T ) ≤ C44{|
∑

K∈T

∑

σ∈EK

m(σ)RK,σeK | + |
∑

σ∈EK∩Eext

m(σ)RK,σeσ|

+ |
∑

σ∈Eext

(rσ − rσ− )eσ|}, (140)

where
rσ = α(σe)u(σe) − α(σe)u(yσ,+), (141)

and RK,σ is defined by (53)-(54) and (eT , ēT ) ∈ X (T ) is defined by (eT , ēT ) = (u(xK) −
uK , u(yσ,+) − uσ,+) (recall that yσ,+ = yσ (resp. yσ+) if α(σe) ≥ 0 (resp. α(σe) < 0)).

Since u ∈ C2(Ω), then:
|rσ | ≤ C45 size(T ), (142)

where C45 depends on (α, u). If, we assume that the condition (72) is fulfilled for some
positive number ζ2 (this implies that the conditions (34) and (114) are fulfilled). Then,
Inequality (140), with (55) and (142), implies:

|(eT , ēT )|21,X (T ) + |ēT |2α,Z(T ) ≤ C46 size(T ), (143)

where C46 depends on (α,Ω, ζ2, u). Now, we use the techniques of Section 4.4 and Error
Estimate (143) to obtain the following error estimate in L2(Ω)-norm:

‖eT ‖2
L2(Ω) ≤ C47 size(T ), (144)

where C47 depends on (α,Ω, ζ2, u). The following Theorem summarizes the results of the
oblique derivative problem with a sufficiently smooth function α.

Theorem 5.8 (Convergence and error estimate for smooth α) Assume Assump-
tion 5.1 and let Cα = min∂Ω αt. Let T be an admissible mesh in the sense of Definition
3.1 and let {(fK , gσ) : (K,σ) ∈ T × Eext} be given by (9). Then, There exists δ < 0, only
depending on Ω, such that if Cα > δ one has:

1. Problem (87)-(88) has a unique solution u ∈ H1(Ω),

2. System (96)-(98) has a unique solution (uT , vT ) ∈ X (T ) in the sense of Definition 5.5.

If in addition, the conditions (114) and (34) are fulfilled for some (ζ1, ζ3, ζ4) ∈ (R?
+)3. Then:

uT → u in L2(Ω), as size(T ) → 0, (145)

‖(uT , vT )‖2
? → |u|21,Ω +

1

2

∫

∂Ω

αt(x)u2(x)dγ(x) , as size(T ) → 0, (146)

and
vT → γ̃(u) in L2(∂Ω) for the weak topology, as size(T ) → 0, (147)

where the semi-norm ‖(·, ·)‖? is defined in (136) and γ̃ is the classical trace operator from
H1(Ω) to L2(∂Ω). Assume furthermore that:

3. The weak solution of (87)-(88) satisfies u ∈ C2(Ω).

4. The condition (72) is fulfilled for some positive number ζ2 (this implies that the con-
ditions (34) and (114) are fulfilled).
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Then the following error estimates hold:

‖eT ‖2
L2(Ω) ≤ C47 size(T ), (148)

|(eT , ēT )|21,X (T ) + |ēT |2α,Z(T ) ≤ C46 size(T ), (149)

where (C46, C47) depend on (α,Ω, ζ2, u); and (eT , ēT ) ∈ X (T ) is defined by (eT , ēT ) =
(u(xK) − uK , u(yσ,+) − uσ,+), on (K,σ) ∈ T × Eext.

Under the hypotheses of Theorem 5.8, Error Estimate (149) yields the following error
estimate:

∑

σ∈Eint

σ=K|L

m(σ)dσ

(

uL − uK

dσ

− 1

m(σ)

∫

σ

∇u(x) · nK,σ dγ(x)

)2

+
∑

σ∈EK∩Eext

m(σ)dσ

(

uσ − uK

dσ

− 1

m(σ)

∫

σ

∇u(x) · nK,σ dγ(x)

)2

≤ C46 size(T ). (150)

6 Error estimate when α is piecewise constant

In this Section, we consider the case where α is constant on each line of the boundary ∂Ω.
The boundary oblique derivative problem we want to present arises, in some cases, from
the Laplace equation with Dirichlet boundary conditions (see Remark 12 and [B 05]). We
will assume the existence of “sufficiently smooth” solution, that is a function which satisfies
(151) and the hypotheses of Assumption 6.1 (equation (151) and Assumption 6.1 will be
given below). Then, the uniqueness of such a solution will be deduced from the fact that it
is the unique limit of approximate solutions given by a finite volume scheme (see Theorem
6.6). This uniqueness can also be proved, as performed in the second item of Remark 13,
by computing the integral

∫

Ω ∆uu dx, where u is a ”smooth” solution. The existence of a
weak solution u ∈ H1(Ω) along with a weak formulation for (151), is given in [G 85, Lemma
4.4.4.2]. In some particular cases on α and under the assumption that u ∈ W 1

p (Ω) with
p > 1, uniqueness results for u are also presented in [G 85], see for instance [G 85, Lemma
4.4.4.3].

6.1 The problem to be solved

We consider the following case of Problem (1):

{

−∆u(x) = f(x), on Ω
un(x) + (αu)t(x) = g(x) on Γ = ∂Ω,

(151)

where α is constant on each “line” of the boundary ∂Ω. To be more precise, we call
{Γj , j = 1, ..., N} (recall that Γj denotes the closure of Γj) the lines constituting ∂Ω. For
each j ∈ {1, . . . , N}, one has Γj = (Sj−1,Sj), where |Sj − Sj−1|tj = Sj − Sj−1, tj =
(−(nj)y, (nj)x)t and nj = ((nj)x, (nj)y)t is the normal vector to Γj , outward Ω (this is
similar to the definition of σe and σb in Definition 3.2). One also has SN = S0. The function
α is constant on each Γj . Let αj be the value of α on Γj .

In order to get an error estimate, we need the following Assumption:

Assumption 6.1 We assume that there exists a function u ∈ C2(Ω) satisfying the first
equation of (151) for all x ∈ Ω, the second equation of (151) for all x ∈ Γj and j ∈ {1, . . . , N}
and such that:
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1.

∫

Ω

u(x) dx = 0,

2. u takes the same value on the corners of Ω, i.e. u(Sj−1) = u(Sj) for all j ∈ {1, ..., N},
where S0 = SN .

Remark 11 A consequence of Assumption 6.1 is f ∈ C(Ω), g ∈ C1(Γj), for all j ∈ {1, ..., N},
and

∫

Ω

f(x) dx +

∫

∂Ω

g(x)d γ(x) = 0. (152)

Remark 12 Such problems which satisfy Assumption 6.1 arise, for example, when u = vx

and v is the solution of the following Dirichlet problem:

{

−∆v(x) = f̄(x), on Ω
v(x) = 0, x ∈ ∂Ω,

(153)

We can see that the derivative vx w.r.t. x of the solution v of (153), provided that v ∈ C3(Ω),
satisfies an equation like (151) in which the data (f, g, α) are defined by:

(f, g, α) = (f̄x,−nxf,
ny

nx

) (154)

where (−ny,nx)t are the components of the tangential vector t (recall that the compo-
nents of the normal vector n, outward Ω, are (nx,ny)t). We can see that u = vx satisfies
Assumption 6.1.

Remark 13 (Assumption 6.1 and uniqueness)

1. In the case of problem (151) with only the first item of Assumption 6.1 (without
second item of Assumption 6.1), we have no uniqueness, in general, as it is shown by
the following particular case of problem (151):
Let Ω = (0, 1)2, (f, g) = (0, 0) and α be given by:

α =















−1, on (0, 1) × {0},
1, on {1} × (0, 1),
−1, on (0, 1) × {1},
1, on {0} × (0, 1).

(155)

We can see that the functions {x− y, 0} are two solutions for the problem (151) and
they also satisfy the first item of Assumption 6.1 (note that the function x − y does
not satisfy the second item of Assumption 6.1) .

2. The uniqueness of a solution which satisfies problem (151) and Assumption 6.1 can
also be proved by computing the integral

∫

Ω
∆uu dx, see for instance, proof of [G 85,

Lemma 4.4.4.3]. Let u be a solution for the problem (151) with (f, g) = (0, 0). Mul-
tiplying both sides of the first equation of (151) by u, using an integration by parts,
and using second equation of (151) and (10), we get:

∫

Ω

|∇u|2dx − 1

2

N
∑

j=1

αj (u(Sj+1) − u(Sj))
2 = 0, (156)

this with Assumption 6.1 implies that u = 0.
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6.2 The finite volume scheme for (151)

Remark 14 When there exists j0 ∈ {1, ...N} such that αj0 = 0, the finite volume scheme on
the line Γj0 can be handled as in Neumann problem in [EGH 00].

We assume, for the sake of simplicity, that

αj 6= 0, ∀j ∈ {1, ..., N}. (157)

Therefore, the following sets are considered

S+ = {Γj : αj > 0} and S− = {Γj : αj < 0}. (158)

We need the following Definition:

Definition 6.2 (Definition of the beginning and the end mesh points on each line Γj) Let
T be an admissible mesh in the sense of Definition 3.1. For each j ∈ {1, ..., N}, we define
the beginning mesh point (resp. end mesh point) of the line Γj , and we denote it by y

j
beg

(resp. y
j
end), the point yσ such that yσ ∈ Γj and yσ− 6∈ Γj (resp. yσ ∈ Γj and yσ+ 6∈ Γj)

(note that Γj is oriented in the positive direction, see Definition 3.2). We denote then by

σj
beg (resp. σj

end) the edge σ ∈ Eext which satisfies y
j
beg ∈ σ (resp. y

j
end ∈ σ).

To analyze the convergence of the finite volume approximation, we need to use the semi-
norm of Definition 3.4 and the following semi-norm:

Definition 6.3 (A semi-norm on Z(T )) Let vT ∈ Z(T ) (see Definition 3.3) and let uσ be
the value of vT on σ, for all σ ∈ Eext. We define the following semi-norm on Z(T ):

|vT |2(αj),Z(T ) =
1

2

∑

Γj∈S+

αj



(uj
beg − uj

end)
2 +

∑

(yσ ,y
σ− )∈(Γj)2

(uσ − uσ−)2





− 1

2

∑

Γj∈S−

αj



(uj
end − uj

beg)
2 +

∑

(yσ ,y
σ+ )∈(Γj)2

(uσ+ − uσ)2



 , (159)

where uj
beg (resp. uj

end) denotes the value taken by vT on σj
beg (resp. σj

end) (see Definition
6.2) (recall that the notations uσ− and uσ+ are defined in Definition 3.2).

Let T be an admissible mesh in the sense of Definition 3.1 and let (uK)K∈T , (uσ)σ∈Eext

denote the discrete unknowns. The numerical scheme is defined by the following set of
equations (recall that {(fK , gσ), (K,σ) ∈ T × Eext} is given by (9)):

∑

EK

FK,σ = m(K)fK , ∀K ∈ T , (160)

where FK,σ is defined by (16)-(17), and, on each Γj ∈ S+,

τσ(uσ −uK) = −αj(uσ −uσ−)+m(σ)gσ , ∀σ ∈ EK ∩Eext such that (yσ ,yσ−) ∈ (Γj)
2, (161)

τσ(uj
beg − uK) = −αj(u

j
beg − uj

end) + m(σj
beg)gσ

j

beg

, (162)

and, for each Γj ∈ S−,

τσ(uσ −uK) = −αj(uσ+ −uσ)+m(σ)gσ , ∀σ ∈ EK ∩Eext such that (yσ ,yσ+) ∈ (Γj)
2, (163)
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τσ(uj
end − uK) = −αj(u

j
beg − uj

end) + m(σj
end)g

σ
j

end

. (164)

The equation

∫

Ω

u(x) dx = 0 can be discretized in the following way:

∑

K∈T

m(K)uK = 0. (165)

Remark 15 (Discrete compatibilty condition) Summing equation (160) over K ∈ T , we get:

∑

K∈T

∑

σ∈EK

FK,σ =
∑

K∈T

m(K)fK , (166)

this, with equations (161)-(164), implies:

−
∑

σ∈Eext

m (σ)gσ =
∑

K∈T

m(K)fK . (167)

Thus, if there exists a finite volume solution for (160)-(164), then {fK ,K ∈ T } and
{gσ, σ ∈ Eext} should be related by the following discrete compatibility condition:

∑

K∈T

m(K)fK +
∑

σ∈Eext

m (σ)gσ = 0 (168)

Note that this condition is ensured thanks to the compatiblity condition (152) (see Re-
mark 11) .

6.3 Existence and uniqueness of the finite volume solution

To prove the existence and uniqueness of the solution of (160)-(165), we need the following
Lemma:

Lemma 6.4 The following equalities hold, for any j ∈ {1, ..., N}

(uj
beg − uj

end)u
j
beg +

∑

(yσ,y
σ− )∈(Γj)2

(uσ − uσ−)uσ =
1

2
(uj

beg − uj
end)

2

+
1

2

∑

(yσ ,y
σ− )∈(Γj)2

(uσ − uσ−)2,(169)

and

(uj
beg − uj

end)u
j
end +

∑

(yσ,y
σ+ )∈(Γj)2

(uσ+ − uσ)uσ = −1

2
(uj

beg − uj
end)

2

− 1

2

∑

(yσ,y
σ+ )∈(Γj)2

(uσ+ − uσ)2.(170)

Let us justify the existence and uniqueness of the solution of (160)-(165). The Proof is
mainly the same one of Theorem 4.4.
Let M1 be the number of elements of T , M2 the number of elements of Eext and M =
M1 +M2. The system (160)-(165) can be viewed as a system of M unknowns (which are
{uK , K ∈ T } and {uσ, σ ∈ Eext}) with M equations. After the choice of an order for the
unknowns and the equations, it can be written as Aw = b, where A is M × M matrix,
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w ∈ R
M is the unknown vector and b ∈ R

M is given by the data (namely f and g).
Assume that b = 0 (that is fK = 0 for all K ∈ T and gσ = 0 for all σ ∈ Eext). Multyplying
both sides of equation (160) by uK , using the fact that {S+,S−} is a partition of ∂Ω and
using (161)-(164) and Lemma 6.4, we get:

|(uT , vT )|21,X (T ) + |vT |2(αj),Z(T ) = 0, (171)

where | · |(αj ),Z(T ) is defined in Definition 6.3.
Following Remark 1, one deduces that there exists C ∈ R such that uK = C for all K ∈ T
and uσ = C for all σ ∈ Eext. This proves that the dimension of the null space of A is 1.
Therefore, the dimension of the range of A is M − 1. Since the equality (168) (see Remark
15) is a necessary condition for (160)-(165) to have a solution, it is also a sufficient condition.
Furthermore, under this condition on f and g (which is given by (152), see Remarks 11 and
15), since the null space of A is reduced to the set of constant vectors, the system (160)-(165)
has a unique solution.

This well posedness of the algebraic system (160)-(165) allows us to introduce the fol-
lowing Definition which is similar to that when α is constant or a smooth function.

Definition 6.5 An element (uT , vT ) ∈ X (T ) (see Definition 3.3) is a solution of (160)-(165)
if uT (x) = uK for x ∈ K, for all K ∈ T , and vT (x) = uσ for x ∈ σ, for all σ ∈ Eext, where
(uK)K∈T , (uσ)σ∈Eext

is the solution of (160)-(165).

6.4 Error estimate

In this Section, we show, under the Assumption 6.1, that uT converges to the solution u
of (151) given by Assumption 6.1. Futhermore, the order of convergence is

√

size(T ). To
prove this result, we follow the same steps as in Section 4.4. Let CT ∈ R be such that

∑

K∈T

m(K)ū(xK) = 0, (172)

where ū = u+ CT .
For each (K,σ) ∈ T ×Eext, let eK = ū(xK)−uK and eσ = ū(yσ)−uσ , where uK (resp. uσ)
is the value of uT (resp. vT ) on K (resp. σ) (recall that yσ is defined in Definition 3.1).
We consider (eT , ēT ) ∈ X (T ) defined by (eT , ēT ) = (eK , eσ), on (K,σ) ∈ T × Eext.
One defines RK,σ as in (53)-(54) and then (thanks to Assumption 6.1, first item) the estimate
(55) holds.
Since −∆ū = f , then (56)-(59) remain valid here.
Using (58) to get, on Γj ∈ S+ and for σ ∈ Eext such that (yσ,yσ−) ∈ (Γj)

2, we have (note
that, we will denote σ = (σb, σe) in the positive orientation, see Definition 3.2)

τσ(ū(yσ) − ū(xK)) + αj(ū(yσ) − ū(yσ−)) + rj,+
σ − rj,+

σ− = m(σ)gσ + m(σ)RK,σ , (173)

where
rj,+
σ = αj (ū(σe) − ū(yσ)) , (174)

and (the case yσ ∈ Γj and yσ− 6∈ Γj)

τσ

(

ū(yj
beg) − ū(xK)

)

+ αj

(

ū(yj
beg) − ū(yj

end)
)

+ αj

(

ū(σe) − ū(yj
beg)

)

−αj

(

ū(σb) − ū(yj
end)

)

= m(σj
beg)gσ

j

beg

+ m(σj
beg)RK,σ

j

beg

(175)

(note that, for the sake of simplicity of the notations in (175), we denoted σj
beg = (σb, σe))

and on Γj ∈ S− and for σ ∈ Eext such that (yσ ,yσ+) ∈ (Γj)
2, we have
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τσ(ū(yσ) − ū(xK)) + αj(ū(yσ+) − ū(yσ)) + rj,−
σ+ − rj,−

σ = m(σ)gσ + m(σ)RK,σ , (176)

where
rj,−
σ = αj (ū(σb) − ū(yσ)) , (177)

and (the case yσ ∈ Γj and yσ+ 6∈ Γj)

τσ

(

ū(yj
end) − ū(xK)

)

+ αj

(

ū(yj
beg) − ū(yj

end)
)

+ αj

(

ū(σe) − ū(yj
beg)

)

−αj

(

ū(σb) − ū(yj
end)

)

= m(σj
end)g

σ
j

end

+ m(σj
end)R

K,σ
j

end

(178)

(note that, for the sake of simplicity of the notations in (178), we denoted σj
beg = (σb, σe)).

The expansions rj,−
σ and rj,+

σ can be bounded as

|rj,−
σ | ≤ C48 size(T ) and |rj,+

σ | ≤ C48 size(T ), (179)

where C48 = max
j=1,...,N

|αj | ‖ |∇u| ‖L∞(Ω); and in (175) and (178), we have similar esti-

mates, namely (using the second item of Assumption 6.1):

|αj(ū(σb) − ū(yj
end))| = |αj(ū(Sj)− ū(yj

end))| ≤ C48 size(T ), where (σb, σe) = σj
beg, (180)

|αj(ū(σe) − ū(yj
beg))| = |αj(ū(Sj−1) − ū(yj

beg))| ≤ C48 size(T ), where (σb, σe) = σj
end.
(181)

(note that S0 = SN and {Sj : j = 1, ..., N} is the set of the corners of Ω).
The equation (63) (in the case of α constant) remain valid here; this means that

−
∑

σ∈EK

σ=K|L

τσ(eL − eK) −
∑

σ∈EK∩Eext

τσ(eσ − eK) = −
∑

σ∈EK

m(σ)RK,σ , ∀K ∈ T . (182)

Substracting now equation (161) from (173) and (162) from (175), we get, for (yσ ,yσ−) ∈
(Γj)

2, where Γj ∈ S+

τσ(eσ − eK) + αj(eσ − eσ−) + rj,+
σ − rj,+

σ− = m(σ)RK,σ , (183)

and, for the case yσ ∈ Γj and yσ− 6∈ Γj

τσ

(

ej
beg − eK

)

+ αj

(

ej
beg − ej

end

)

+ αj

(

ū(σe) − ū(yj
beg)

)

− αj

(

ū(σb) − ū(yj
end)

)

= m(σj
beg)RK,σ

j

beg

. (184)

We also have similar equalities for Γj ∈ S−; indeed substracting equation (163) from
(176) and (164) from (178), we get, for (yσ ,yσ+) ∈ (Γj)

2

τσ(eσ − eK) + αj(eσ+ − eσ) + rj,−
σ+ − rj,−

σ = m(σ)RK,σ , (185)

and, for the case yσ ∈ Γj and yσ+ 6∈ Γj

τσ

(

ej
end − eK

)

+ αj

(

ej
beg − ej

end

)

+ αj

(

ū(σe) − ū(yj
end)

)

− αj

(

ū(σb) − ū(yj
beg)

)

= m(σj
end)R

K,σ
j

end

. (186)
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Furthermore
∫

Ω

eT (x)dx = 0. (187)

Multiplying both sides of the equation (182) by eK ,K ∈ T , summing over K,K ∈ T ,
using equalities (183)-(186) and Lemma 6.4, we get (recall that |(·, ·)|1,X (T ) and | · |(αj ),Z(T )

are defined in Definitions 3.4 and 6.3, respectively)

|(eT , ēT )|21,X (T ) + |ēT |2(αj),Z(T ) = T
T
5 + T

T
11, (188)

where T
T
5 is defined by (67) and

T
T
11 =

∑

Γj∈S+

{−αj(ū(σe) − ū(yj
beg)) + αj(ū(σb) − ū(yj

end))}e
j
beg

+
∑

Γj∈S+

∑

(yσ ,y
σ− )∈(Γj)2

(−rj,+
σ + rj,+

σ− )eσ

+
∑

Γj∈S−

{−αj(ū(σe) − ū(yj
beg)) + αj(ū(σb) − ū(yj

end)}e
j
end

+
∑

Γj∈S−

∑

(yσ ,y
σ+ )∈(Γj)2

(−rj,−
σ+ + rj,−

σ )eσ

+
∑

σ∈EK∩Eext

m(σ)RK,σeσ . (189)

Reordering the sum, using the fact that ū takes the same value on the corners Sj (con-
sequence of the second item of Assumption 6.1), assuming that the mesh T satisfies the
condition (72) and using (179), (180) and (181), we get

|TT
11| ≤ C49

√

size(T )
(

|(eT , ēT )|21,X (T ) + |ēT |2(αj),Z(T )

)
1
2

, (190)

where C49 depends on (α, ζ2, u,Ω).
This with (188), (69)-(70) and techniques of Section 4.4 yields the following Error Estimate
result:

Theorem 6.6 (Error estimate when α is piecewise constant) Assume Assumption
6.1 (which gives the discrete compatibility condition (168)). Let T be an admissible mesh
in the sense of Definition 3.1 and {(fK , gσ), (K,σ) ∈ T ×Eext} be defined by (9). Then, the
system (160)-(165) has a unique solution, (uT , vT ) ∈ X (T ), in the sense of Definition 6.5.
Let u be the solution given by Assumption 6.1 (we can see that u = vx, where v is the solu-
tion of the Dirichlet equation (153), satisfies an equation of the form (151) and Assumption
6.1, see Remark 12). Then, there exist (C50, C51), only depending on (α, ζ2, u,Ω), such that:

(

|(eT , ēT )|21,X (T ) + |ēT |2(αj),Z(T )

)
1
2 ≤ C50

√

size(T ), (191)

and
‖eT ‖L2(Ω) ≤ C51

√

size(T ), (192)

where (eT , ēT ) ∈ X (T ) is defined by (eT , ēT ) = (eK , eσ), on (K,σ), for all (K,σ) ∈ T ×Eext.
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The Error Estimate (191) gives the following approximation for the fluxes

∫

σ

∇u(x) ·
nK,σ, σ ∈ EK , for all K ∈ T :

∑

σ=K|L

m(σ)dσ

(

uL − uK

dσ

− 1

m(σ)

∫

σ

∇u(x) · nK,σ dγ(x)

)2

+
∑

σ∈EK∩Eext

m(σ)dσ

(

uσ − uK

dσ

− 1

m(σ)

∫

σ

∇u(x) · nK,σ dγ(x)

)2

≤ (C50)
2 size(T ). (193)

Remark 16 (Estimate (192) and Assumption 6.1)

1. The Error Estimate (192) implies the uniqueness of the solution which satisfies (151)
and Assumption 6.1.

2. As a consequence of the first items of the Remarks 16 and 13, that, in general, the
finite volume solution of the system (160)-(165) does not converge to u (in the sense
of the Error Estimate (192)), when u ∈ C2(Ω) satisfies (151) and only the first item
of Assumption 6.1 (without the second item of this Assumption). This includes, for
instance, the particular case of the first item of the Remark 13. For this particular
case, the finite volume solution (uT , vT ) = (0, 0) converges to 0 (which satisfies the
Assumption 6.1), in the sense of (192), and not to x − y (recall that x − y does not
satisfy the second item of the Assumption 6.1).

The authors would like to thank the referees for many useful comments and interesting
suggestions. Some corrections on the paper were made at the time of a postdoctoral position
of the first author in Weierstrass Institute for Applied Analysis and Stochastics in Berlin.
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