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Convergence of a streamline method for hyperbolic

problems

Bilal ATFEH

CMI, 39, rue F. Joliot Curie, 13453 Marseille Cedex 13
atfeh@cmi.univ-mrs.fr

Abstract

In this paper we study the convergence of a streamline method for an hyperbolic

problem. Our motivation for this method arises from the problem of simulating

multi-phase flow in porous media.

In fact, the streamline method has been applied successfully to reservoir

simulation. There is however no study of the convergence of this method. We

prove the convergence in a simplified case. In particular, we assume that the

velocity depends only on the space variable.
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1 Introduction

In this work, we study the convergence of the streamline method applied to the following
hyperbolic problem:

dyu + div(f(u) V) = 0,
where f is an increasing function.

Our motivation for using this method arises from the problem of modelling multi-phase flow
in porous media. In fact, u can be interpreted as the saturation of one phase (water, oil or

gaz) and then V is the total velocity which depends on time, saturation and the pressure
—
P. Usually V is computed with Darcy’s law, and satisfies the following elliptic problem:

div(V (u, t, P)) = 0.

Flow simulation in porous media is often studied using either a finite difference method
([3]), a finite element method ([9]) or a finite volume method ([11], [12],[14]). Recent studies
have however shown the efficiency of the streamline method, in particular in the reduction
of the computing time, see [1], [5], [6] and [7].

The original idea of this method consists in tracing lines in the domain (streamlines
compared to the total velocity) then to transform the equation satisfied by w into a 1-d
equation along these curves, using only the fact that div(V) =0 (see [5], [2])-

Numerical tests have showed a possible extension of this method to basin modeling [1],
even in this case div(X_;) # 0, because of compaction (see [17] and [18]).

Concerning the mathematical analysis, there are no results on this method such as con-
vergence, stability. This work thus constitutes a first step towards a more complete study
of this method.

The model we treat here is simpler than the physical model, the main differences can be
sumed up in the following points:

1. The lelocity depends only on the space variable x. We however put no condition on
div(V).

2. The velocity 7 is supposed to be regular as well as the solution u of the problem.

1.1 Problem setting

Let Q be an open polyhedral bounded subset of R? (d = 2 or 3), denote by 9 its boundary.
Let I =(0,T) be an interval of Ry (T > 0).

Let Q= QxS =00xI,Q=0xTandT_ = {(w,t) €x:V(2).7 () 50},and 7 be
the outward unit normal accross 0f2.

We consider the following problem:

Syu(z, t) + div(f(u(z, )V (z)) = 0 , Y(z,t) €Q
(P) = w(z,0) = wup(z) , Ve
u(r,t) = g(rt) , V(rt)eD_.

In (P), the scalar valued function u is the unknown, whereas the other quantities are given
data of the problem. They are assumed to satisfy the following hypotheses (D):

(D1) f € C2(R,R), satisfies: f > 0.

International Journal on Finite Volumes 3
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(02) V € C*(R?, RY), satisfies:

div(V) € C{(, R), (1)
WeR, , Ve, n< |V (o) 2)
one sets § = |||Y_/>|||Loo(g) (B < oo since Q is bounded).

(D3) The functions ug and g are given data and are supposed to be rather regular (of class
C?).

To study this kind of problem, one introduces the concept of entropy solution, which
enables a uniqueness result ([8], [13]). Indeed the entropy solution represents the physical
solution among weak solutions. We now recall the definition of weak entropy solution.

Definition 1.1 Weak entropy solution
Let u € L*™(Q). The function u is said to be a weak entropy solution to the problem (P) if
it satisfies the following entropy inequalities: for all K € R, and for all 9 € D, ¢ > 0,

/Q (Ju(@, t) - K|9:d(, t) + | Flulz, 1) — F(8)|V (2).¥ $(x, t))dz dt
(3)
+ / luo(z) — K|(x, 0)dz — / 1£(g(r,0)) = F(R)|$(r, )V (r). T (r)dy(r)dt > O.
Q >

Where D = {¢p € C°(R¢ xRy ,R), ¢ =00n S—3X_}, and dvy is the (d—1) Lebesgue measure
on Of).

With this definition, we have the following result:

Theorem 1.2 ([4]) There ezists a unique weak entropy solution w € L' N BV(Q) to the
problem (P).

Remark 1 The definition of the weak entropy solution given above accounts for the fact

that the function f is increasing. For the general case the reader can refer to ([19]).

In the following, we suppose that u € C%(Q). Indeed, in order to determine the equation
verified by u on the streamline, it is essential for u to be of class C'. Furthermore, we take
u of class C? in order to have an error estimate of order h (see part 5.1).

1.2 Definitions: streamline, time of flight

For the convenience of the reader, we recall the following definitions:

Definition 1.3 Streamlines are integral curves of the vector field ‘7, defined as tangent to
=

V' at each point.

A streamline C can be interpreted as the t_r)ajectory of a particle moving along C with a
velocity which, at every poiny p of C, equals V (p).

Definition 1.4 Time of flight (TOF)

Let C be a streamline, and let us fiz a point po € C. For all points p of C, the TOF between

po and p, denoted by T(po,p), is the time required for a particle (which is moving along C,
—

with a velocity equal to V') to go from py to p. Furthermore, we can show that 7(po,p) is
unique (as a solution of a Cauchy problem).

International Journal on Finite Volumes 4
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Eased on the definition of the TOF, we can define a parametrization ¢ of C, depending
on V and py, as follow:

qg:IcCcR — Q
(4)

T — p=gq(r), with: 7(po,p) =T

In fact, q solves the following Cauchy problem: find (I C R,q : I — Q), maximal solution
of:

& o
A = Vi), 5

q(0) = Po-
Since V € C%(Q), we know that (5) admits a unique maximal solution, furthermore ¢ €
C3(Ic, ).
In the following, we call py the initial point of C, and I¢ the interval of definition

of C, and each streamline will be characterized by its initial point, its interval of definition
and q.

1.3 Equation satisfied by u on a streamline
Let C be a streamline traced in €, and p € Q its initial point. Supposing that C = {q(7) :
7€ Is CR}
We define a new function uc by:
ue(r,t) = u(q(r),t) , V(r,t) € Ie x I. (6)

The derivative of u¢ with respect to t is given by

6tuC (Tv t) = atu(q(T)v t))
By derivating uc with respect to 7, we obtain

— — - —

a‘ruC(Tv t)) = vu(q(7—>a t) ) 67—(](7') = VUV(Q(T>7 t)

These relations yield:

o fluc(rit) = (uc(r, 1) Vu-V(g(r).1) ~
= div (f(ula(r), 1)V (@(r)) ~ Fluc(r. )div(V (a(r))

Since u is the solution to the problem (P), then uc solves the following problem
atuC(Ta t) + an(uC(Tv t)) + f(uC(Ta t))dlv(‘_/)(Q(T))) = 07 V(Ta t) € IC x 1. (7)

Remark 2 If dz’v(V) =0 on Q, then uc solves a 1-d equation along the streamline C.

Solving equation (7) along each streamline is the so-called streamline method.

2 Discrete problem

This section is devoted to introduces the mesh notations that will be used in the sequel

International Journal on Finite Volumes 5
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2.1 The mesh on 2

Let M be a mesh over Q. For all control volume K of M, we denote by:
1. m(K) the d-dimensional measure of K,
2. N(K) the set of control volumes neighbour of K in M,
3. ok the common edge between K and L € N(K),
4. A the set of edges of M,
A={okr, K€ M, Le N(L)}, (8)
A the set of the edges included in 952, and Ay the set of edges included in ¥_.
5. m(o) the (d — 1)-dimensional Lebesgue measure of the edge o.
We suppose that M satisfies:

e For two distinct control volumes K and L in M, either m(KNL)=0,or KNL=7
for some o € A.

e For each o0 € A, ¢ is contained in a hyperplane of R?.
e 90 = Uyea,0.
o If o € Ay, then either 7 C A5, or 7 C Ay — AjJ.

We also define the size of the mesh by h = sup {diam(K)}. Using the definition of h one
KeM

has
VK € M, m(K) < Ch?, (9)

with C' = 2¢m(B(0,1)), B(0, 1) the unit ball of R?.
A mesh satisfing these properties is called a regular mesh on Q.

2.2 Local mesh on a streamline

In this subsection, we assume M to be a regular mesh over (2.

Let N € N*. Given N points p' € 9Q_, (i.e. X_/).W(pl) < 0), from each point p! we trace
a streamline [. We denote by £ the set of all streamlines traced in Q.
For each [ € L, [ will be characterized by a triplet (p', I}, ¢'), where:

1. p' € 99 is the initial point of

2. I; is of finite measure in R. More preciesely, we suppose Elat:
there exists a constant Cq v € R} depending on Q2 and V', such that

VieLl, |Ii| < Co,y. (10)
3. ¢ : I, =10,7,,.] = Qis a solution of:
d i
q 2o
—_— = I
dr (T> V(q (T>) ) VT € s

International Journal on Finite Volumes 6
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A mesh over a streamline will indicate a mesh over its interval of definition, more precisely,
for each [ € £, a subdivision I'" = (7})o<i<m, of I, is given, and one denotes:

Al = L —rho<i<M -1,
Al = max{AL 0<i< M —1}.

Al is the size of the mesh over . We suppose that the given mesh on I satisfies the following
condition:

3t €[0,1),Y0<i< My —1: oAl < AL (11)
We denote also by ¢ = ¢(7}) and h. the length of glg},, on [, given by:
w=[,, [PEar
["'z‘lvTil+1)

It is clear that h} < AlA. One also notes that h; = sup(h?).
J

We also introduce the following notations which we shall use to go from the mesh M to
the set of streamlines.

Let (K,l) € M x L. We denote by:
o Ix={le L, INK # 0}, the set of streamlines which meet K (see Fig-1).
o J,={K € M, [ € Ig}, the set of control volumes which meet .
o Iy ={0<j<M—1,{¢d(r),7 €rh7l1)} CK} (cf remark 3 below).

For each control volume K, we define the notion of “time of flight” (ax) in K, as follow:

ag = Z AZK,

lelyk

A= > AL

J€IK 1

where

The following assumptions are made (HML):

(HML1) For each control volume K € M: ax > 0, in other words
VK € M, Ix #0.

Therefore, each control volume contains part of a streamline.

(HML2) 30 < Cing < Cmae < 00 , such that:
VieL,Vj€{0,..., M —1}: cingh < AL < A" < cpagh.
(HML3) For h < 1, we suppose that: dexyrpc € R} such that :
N¢ < enppe/h®,

in general N, is proportional to the number of edges in A3 .

(HML4) For each streamline [ € £, (IN.A) C (¢}); .

International Journal on Finite Volumes 7
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Remark 3 o The assumption (HML1) is easy to realize. In fact, we define H = {K €
M, ak =0} ={K e M,KNL =0}. For all K € H we trace a streamline IX such

that: le € K, and now define
£t = £l JUkent™),
so that (HML1) is satisfied with the new set of streamlines L.

o The assumption (HML4) at the points of intersection between the streamlines and the
set of the edges of the mesh M gives us:

Y(l,5) € L x{0,...; M; =1}, K € M : {¢'(7),7 € [Té,T§+1)} CK.

Furthermore, in numerical computation this assumption is checked automatically (see

[10], [16], [15] and [1]).

Ix = {h,l, I3}

Fig 1. Streamline path throught grid cell K Fig 2. Numerical computation of Ak,

3 Mapping between streamlines and mesh M

In this part we give definitions of spaces which will be used in the following. £, will be the
space of the functions defined on 2, and for each streamline [, £ will be the space of the
functions defined on this line. To facilitate the computation of error estimates, we introduce
the space £, which is the product of spaces &;.

3.1 Definition of functional spaces &, £, et €y
For each | € L, we define & as the set of piecewise constant functions on [ with respect to
the mesh given on I:
M —1
& = {p:1— R such that : I(¢;)o<jcar, € RM 1 pogl(r) = Z (pjl[T]l_’TJz_H)(T)}.
3=0

Where 1p1 1 (1) =1if 7 € [r},7}y1) and O elsewhere.

For each ¢ € &, we define:
M;—1

ol = > Al (12)
7=0

International Journal on Finite Volumes 8
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This defines a norm on & which can be compared with the L! norm on .

Remark 4 The choice of Aé- in the definition of the norm instead of h; is made for two

reasons:

1. As the velocity is regular, the two definitions are mathematically equivalent (c.f. lemma

3.1 afterwards)

2. In numerical computation it is much easier to evaluate A% than h; (see [1], [5] and

[15]).

Lemma 3.1 Let ¢ € &. Then
el < Bllell:.

Recall that B is defined by 8 = |||Y_/')|||Loc(9).

Proof: On one hand, by definition of &, there exists (¢;)o<;<n, such that:

)(T)-

t
j+1

Vrel: wpo ql(T) = ij]'[rjl.,r
J

One thus has

~
/l bt = [lood@NIT @@l dar
1

Ml—l
= ) leslny
3=0
On the other hand, one has:
VieL; Vje{0,... M, —1} : by < BAL,

and the result follows.

Remark 5 We can identify & with the piecewise constant functions on I;.

spaces are real vector spaces of dimension equal to M.
We also define on the set of all streamlines £ the following space:
£ ={® = (¢ )ocicn,, ¢’ € &}

We provide &, with the norm ||.||z, defined by

Ve = (¢') € &g, 112l = D lI¢'[ln
leL

(13)

In fact both

(14)

We also define on 2 the set £, of piecewise constant functions with respect to the mesh

M, i.e.,

Em={p: 2= Rop() = Z vxlK(x), pr € R}
KeM

For ¢ € Epq, one defines the norm ||.|| o, by:

lellave =D axlekl,

KeM

where ax is the time of flight in the control volume K, ax =Y ,c; Ak.

This norm depends on the mesh M and also on the set £. It is equivalent to the usual L'

norm on &4, more precisely, one has

International Journal on Finite Volumes
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Lemma 3.2 Let ¢ € Ep and suppose that the assumption (HML) is satisfied. Then the

following holds:
29m(B(0,1))hd 1
[ tolas « ZHECDIE (15)

wnf

where B(0,1) is the unit ball of RY.

Proof: On one hand, given the assumption on mesh (HML2) and relation (9), one has

B cmfm(K)
K > in > [}
VK eM,ax >c fh_2dm(B(O71))hd_1

yielding

24m(B(0, 1)) k¢~
VK € M, m(K) < 2 io’ DA .

On the other hand:

/Q pldr = 3 /K plde = 3 m(K)lox]

KeM KeM
2¢m(B(0,1))hd1 24m(B(0,1))hd~1
< - > axlex|= - ol at,
in f KeM inf
which completes the proof. |

3.2 Maps between £, and &,

In this part we give maps between £, and £,. With these maps, we will be able to construct
a function in £, from a given function in £, and vice versa. This step is very important
in this method, in particular when the velocity depends on time. One should however note
that we loose the conservativity with this method. For more details see remark 6 and [1].

Definition 3.3 For any function ¥ € Exp we associate a function L(y) € E¢ to ¥ defined
by
Vi€ L, L($)s = vk, if j €Ik, (16)

and, conversely, if ® = (¢'); € £, we define a function M(®) € Exq by

VK e M, M(@)x = > wi | > (AL/AL)wE ], (17)
lelx J€IK 1
where Al
w = =&, (18)
(6774

Proposition 3.4 The maps M and L are linear, continous and 1-Lipschitz. Moreover we

have:
Ve elpm, MoL(®)=9, (19)
Vo €lm, [|1®lm = IL(D)]lc (20)
VO €&, [M(T)|m < 1]z (21)

Remark 6 For the physical problem we are interested in, we need to have one constant
value for each control volume for w (u is the saturation) to be able to compute velocity at
the next step, i.e., to solve the pressure equation (see [12], [17]). For this reason we make
this passage between Ex and Enq, and thus we cannot be satisfied with a numerical solution
defined on the streamlines (see [1]).

International Journal on Finite Volumes ].0
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3.3 Projections of C}(Q,R) into £ and &,

To be able to obtain error estimates between the numerical solution obtained by the stream-
line method and the exact solution of the problem, we introduce in this part the definitions
of projections of a function belonging to C'(©2, R) into the spaces £, and £y, and we give
some lemmas which will be used to show convergence (c.f. part 5.1).

Definition 3.5 For all function 6 € C*(Q, R) we define

o Pu(0) € Ep given by
VK € M, (Par(8))x = —— / 0(2)dz, (22)
mg K

o Pr(0) = (6")icc € Ec given by

1
VIELNVOSj< M —1: 6= N 6(q'(7))dr. (23)
3 JIrhi)

j+1

Lemma 3.6 Let § € C'(Q,R), one defines Pp(6) and P-(6) as (22-23). Then
— —
there exists cy > 0 depending only on |VO||L~), V and Q, such that

IP£(6) — L(Pt(0))llc < coNeh.
Proof: Let !l € L. Let u = (Pz(0)); and v = (L(PA(#)));- Thanks to the definition of the

norm on [ we have
lu—vlli= > Alju; — v,

0<j<M; -1

Let j € {0, ..., M; — 1}. There exists only one control volume K € M, such that {¢'(7),7 €
[th,7h41)} € K. Then we have

1 1 A
wy= i [ O, v, - & / 6(¢'(r))dr,

which yields |u; — v;| < ||€0||Lm(9)h‘ Since 6 belongs to C*, this gives us :
— —
lu—oli< S AUTOl i@k < [EIIT6l )b
0<j<M;—1

Using relation (10), we see that |[;| < Cq,y for all I € £, where Cq,y is a constant in R}

which depends on 2 ind the velocity X_;
Now, let cg = Cq,v|| V0| L~(q). According to above we deduce:

IP£(0) = LPAM(6))llc = D 1P ()i = (L(Paa(0))illi < coNeh,
leL

which gives the result. |

Lemma 3.7 Let § € C1(Q,R). We define Pa(0) and P.(0) as in (22-23). For all v =
(v!); € E we have

IPa(0) = M ()l a < IL(Pra(0) = Pr(B)llc + IP£(B) — |z

International Journal on Finite Volumes ].].
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Proof: By proposition (3.4) we have
M o L(Ps(6)) = Pae(6):
Using relation (21) we deduce

IPA(8) = M (v)][ a1 [ M (L(Ppe(6)) = v) [l a1

< @O - vc.

We add and substract P.(6) to obtain the desired result. |
— —
In the following, we write by D = Py (div(V')) and Dy = [|div(V)|| L= (q)-

4 A streamline algorithm

We first give the numerical scheme along a streamline, then we present the algorithm of the
streamline method.
4.1 Numerical solution on a streamline

Let [ € £ be a streamline (I = (p', I}, ¢')), and u the solution of problem (P). The equation
satisfied by u reduces on [ to the following problem (c.f. 1.3):

Ayu(7,t) + Or f (wy(7,¢)) + f(wi(r, t))div(‘_}(ql(T)) =0,Y¥(r,t) e ; x (0,T). (24)
Equation (24) is completed by the following relations:
u(7,0) = uo(q'(7)),

w(0,t) = g(p', 1),

where u; is defined in (6). To simplify the notations we will note thereafter v = u;.
Our goal is to compute an approximate solution of equation (24) on I; x [0,T). To that
propose a discretization (o*)g<;<nt of [0,7T) is given by:

. T
Vi€ {0,..,N'}, o* =i x k' with k' = N
The initial data (at ¢® = 0) on [ is given by vg = (L(Pa(uo)))i,i-¢.,

1 . -
vo(T) = wo,x = m(E) /Kuo(x)da:, if ¢'(7) € K.

The numerical solution is obtained using the following numerical scheme:

; S kl S S S
V(j,8) € {0,.., M; —1} x {0,.., N =1}, oSt! — o2 (fs1—f5) - K f;D;,

J J Aé
‘ 25
Vi € {0,.., M; — 1}, v} = (L(PM(UO»)é‘a (25)
Vs € {0,..,N' — 1}, v, =g(p',0%),

where g is a given data of problem (P) (c.f. also assumptions (D)), v; is expected to be an
approximation of v on [7}, 7}, ,) x [0*,0°T1), £ = f(v}) is the approximation of f(v(;,0°)).
k' is the time step on [, k' satisfies the following condition (CFL):

International Journal on Finite Volumes ].2
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al

7T
where o! is defined by the relation ( 1).

Finally, D; = Dk = m(K) Sy div(V ( )dz if {q(1),7 € [1;,7j31)} C K. v?P! will be
defined by

0 <k, <k such that : k! Al < k' <k}, Al (26)

VP (r,0) = 0], if (1,0) € 17, 7j41) X 0,0 ).

In order to obtain error estimates for the streamline method, one defines w' on I; x
[0,T] as the solution of the same numerical scheme (25) but with the initial data equal to

(P (u(-,0))): -

Lemma 4.1 Let v*PP! | w! be defined by scheme (25). We suppose that the condition (26)
on the time step is satisfied. Then:

llw!(T) = w*PPH(T) ||y < eI N D=t (0) — wePP(0) .

Proof: To simplify the writing, one poses w = w' and v = vl For all (j,s) €
{-1,..,M; — 1} x {0,..N'}, one defines

Ll s L
U = wj —vj,
with w*® ; = v*; = g(p',o*). One also defines:

fws) = F(5)

F = w = if w3 # vj,
1
I (w3) else.

Considering f* > 0, one has Fi > 0and F; < 01 oo
Since w and v verify the same scheme (25), one deduces:

V(j,s) € {1,.., M; — 1} x {0, .N' =1}, ALUSH = (AL — k' F})Us + K'F; \U; — k'D;F;U;.

k! is selected such that k'||f'[|,~ < Al for all j (CFL), then one has (A} — k'F?) > 0. We
then obtain

V(j,s) € {0,.., Mi—1}x{0, .N'=1}, AL US| < (A —K'F})|Us |+k'F;_ |[Us | +k' AL Do F |U .

Summing with respect to j in the preceding relation one obtains

Ml—l Ml—l Ml 1 Ml 1
oAU < (A4 Ef lL=Doo) Y ALUS|— K Z Fe|US| + K Z F U
7=0 7=0
M;—1 M;—-1 —2
= (1+K|flz~D) Y AbjUs| - & Z Fe|US| + K Z Fe|US|
- =
M;—1
= (+E[f l~Doo) > ALUE| =K' Fyy, 4 |Usy, 4
=0
]\141—1
< Q+ENf =Do) Y AUz
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By induction on s, we find:

1 i 1
1Tl < @+ K F NIz Doo) ¥ 1U° ]I,

z
7

Note that (14+&'|f ||z Do)V = (1+&||f || = Dos ) ¥ < el 22 DeT)  The result follows.
|

The following gives an error estimate between v, the solution of problem (24), and w'.

Lemma 4.2 Let v be the solution of problem (24) and w' defined by the scheme (25) with
w(.,0) = (Pz(u(.,0)));. We suppose that v € C2(I; x T) and that assumptions (HML) and the
condition (26) on the time step are satisfied. Then there exists a constant c,y € R, which
depends on f, u (and its derivative of order 1 and 2), and g such that:

l0( T) =0 (T)llL1() < cophu (27)
Proof: The proof of this lemma will be given in appendix A. |

Remark 7 In lemma 4.2 we use the assumption that u (u is the solution of the problem
and v = uy,) is of class C2?, to obtain an error estimate of order h;.

4.2 Algorithm

The algorithm to construct an approximate solution of the problem (P) by the streamline
method is as follows:

1. one traces streamlines,

2. one computes u*?P(0) = Paq(ug) € Enm,

3. for all [ € £, one computes (v2PP4(T)),

4. one determines v*PP(T) = (v*?PH(T))ier € &,

5. one calculates u®PP(T) = M (ve?P(T)) € Epm , ( see relation 17).

5 Main result

The objective of this part is to show some properties of the streamline method. One will
denote by (H) the following assumptions:

(H1) The data of problem (P) satisfies assumption (D).
(H2) The mesh M on  is supposed to be regular.
(H3) Relation (10) is satisfied.

(H4)

‘H4) Assumptions (HML) between the mesh M and the set of the meshs over each streamline
are satisfied.

(H5) Over each streamline, condition (CFL) on the time step is satisfied.
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5.1 A convergence result

Let u be the exact solution of problem (P), assumed to be of class C2 on Q. For t € [0,T)
one defines P (u)(t) = Paq(u(.,t)) € Epq as in relation (22) and Pg(u)(t) = Pr(u(., b)) € &
as in (23).

Lemma 5.1 Letu be the solution of problem (P) and u*PP the approzimate solution obtained
by the streamline method. We suppose that u € C*(Q) and that assumptions (H) are satisfied.
Then one has:

1P as(u) = wP)(T) |l < C x Neh,

— — —
where Ci € Ry depends on ||V zul|L<x(0,1)), 9> f> w0, T , V (also div(V')) and Q.

Remark 8 Lemma 5.1, gives us an estimate of the norm ||.||am but not a result of conver-
gence. In particular, if d = 2 (see assumption HML3) one has Ny < 5 with ¢ € R}, which
only gives

|(Pr(u) = uwP)(T)||m < C.
Proof: Define

A(t) = [IPam(u)(E) = w2 ()]
B(t) = [[Pe(u)(t) = L(Pae(u)(®)lle,
Ct) = [Pe(u)(t) — v @)z

By lemma (3.7), and using u*P?(T') = M (v*?)(T') one finds

AT) = [Pr(u)(T) = M(@**P)(T)||lm

IA

IP£(u)(T) = LPaa(u)(D)l + [[Pe(u)(T) = v*P(T)||.

B(T) + C(T).

Introducing W = (w');e. (defined in 4.1) one obtains
C(T) < (Pe(u) = WHYD)le + |(W = v*P)(T)| .- (28)
By lemma (4.1) one can write:
I =0T < el 1= LTI (W — 0277) (0) .
According to the definition of W and v®PP one has:
W) = P(u)0);
v?(0) = L(Pm(u))(0).
One therefore obtains
W —0)(T)| < 7 12 P=D(B L (u) — LB () (0)]c = €I T2 P=T) B(0).

Estimation of B(t):
According to lemma (3.6) there exists a constant ¢, € R , which depends on ||€zu||Lx,(§x(0,T))
V and Q , such that

Vt € [0,T], B(t) < cuNzh. (29)
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Estimation of ||(Pz(u) — W)(T)||z:

By lemma (4.2) there exists a constant c; € R} which depends on ||?u0||Loc(Q) , g ,7, U
and f, such that

I(Pe(w) = W)T)lle <ea ) hu. (30)
el
Assumption (HML2) gives
Vie L, hi < BA' < ¢mazfh (31)

By replacing (31) in (30) one obtains
I|(P£(U) - W)(T)llﬁ < C2cmazﬁNLh‘ (32)

By using relations (29) and (32), one finally finds

AT) < B(T)+ el 1=D<T)B(0) + cyepanSNLA
< (Cu + cue(”fl lpee DocT) 4 CQCmaz/B) N;h.
Hence the result with C, = (cu + cue(”f’”L‘>c DeeT) 4 czcmazﬂ). [ |

Theorem 5.2 Let u be the solution of problem (P). Let u®? be the approzimate solution
of problem (P) obtained by the streamline method. One assumes that u € C%(Q) and that
assumptions (H) are satisfied. Then, there exists a constant ¢ € R such that:

/ |u(z, T) — uw*P(z,T)|dz < ch,
Q

where ¢ depends on ug, g, f, i_/), w and on the mesh defined on Q (i.e. Cmaz, CNLDC;---)

Proof: Let Py (u)(T) € Ep, as defined in (22). Then

[ @)= Dl < [ fute, T)=Pastu)o T)ldo+ [ [Baatw), 7= (o, T
Q Q Q
(33)
— -
However, since u € C1(f, R), there exists a constant cyq € R} which depends on ||V u(., T)|| = (q),
such that

/Q (2, T) — Pag(u)(z, T)|d < carh. (34)

One notes that

d—1

/Q IPp(u)(@, T) — u®P (2, T)|dz < d IPpa (u)(T) = w*P(T) - (35)

Cinf
By using (HML3) and the result of lemma 5.1, relation (35) becomes (one assumes that h < 1)
/ P pt(u)(z, T) — u®?(z, T)|dz < C.h (36)
Q
(36) and (34) in (33) give

/ |u(z, T) — u*P(z,T)|dz < ch,
Q

with ¢ = (¢ins X evLpo(Cm + CofCmazB)) + Crm. .
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6 Numerical tests

We present two numericals tests of the streamline method. For these tests, we present a
comparison with the exact solution.

6.1 Test 1

Let @ =(1,2) C R and I = [0, 5]. We use the following input data:

e the velocity is given by -
Ve eQ, V(z)=1/x,

e the initial data at t =0
Ve €Q, ug(z) =z xe 2,

e the boundary condition (at point z =1) :
vt eI, g(1,t) = ee'.
With these data, the solution of problem (P) is:
VeeQ, tel, uxt)=xe et
In this case, it is sufficient to trace only one streamline. After computation, one finds:

V7 €10,3/2], ¢(t) =27+ 1 and ¢(0) =1,

which gives )
v(r,t) = u(q(r),t) = V21 + 17772,

The table below shows the error in the L' norm (Er = ||u(.,T) — u*??(T)|| 1(0))-

log(Er(h))—log(Er(ho))
ho| Er B OET o

hy=0.0025 | 0.97873 -

0.0010 | 0.38966 1.0051
0.0020 | 0.07774 1.0028
0.0010 | 0.03886 1.0023
0.0002 | 0.00777 1.0016
0.0001 | 0.00388 1.0014

6.2 Test 2

One considers = (1,11) x (0,10) C R?, I = [0,1) the time interval and the other data of
the test are:

o the velocity is given by:
— =
V(z,y) €2,V (z,y) = (2,y),
— —
and V satisfies V(z,y) € Q, div(V (z,y)) = 2.
e the initial data at t = 0:

‘v’(x,y) €0 ,’LL()(.Z',@/) = .Z'y€7,
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o for the boundary condition at 92, one assumes that:
g(l”r, Yr, t) = wryrei4t+7 7V(xr7 Yr, t) eX_.

With these data, the exact solution of problem (P) is given by:
Y(z,y,t) € Q = Q x I ,u(z,y,t) = zye 47,
At t =T, the L' and L? norms of u in 2 are
(. Tl pray = 5.02138, [|u(., T)||p2(q) = 6.69518.

In this test one takes a Cartesian grid on 2 made up of squares.
The table below shows the error in the L' norm, and (Fig-3) shows the set of streamlines
traced in .

lo (ET(h))—lo (E"r(h ))
h'| Er Toe0h) Tog (o)

ho=0.04710 | 0.06379 -

0.03536 | 0.04307 1.3661
0.01768 | 0.01797 1.2917
0.00884 | 0.00793 1.2461
0.00707 | 0.00612 1.2359
0.00442 | 0.00365 1.2092

One notes that the method behaves well and that one has a very good precision of the
approximate solution with respect to the exact solution.

The set of streamlines

1
0.8
0.6
0.4
0.2

SR

0 0.2 0.4 0.6 0.8 1
Fig 3. The mesh M with the set of streamlines traced in Q, Test 2
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7 Conclusion and perspective:

To conclude, in the present paper the convergence of the streamline method has been proved
for C? solutions of problem (P), and numerical tests have been provided which confirm such

theoretical results.

In perspective, it would be interesting to extend such convergence result to the case of a
function w which belongs to BV.
The final goal of this research line would be to analyze the case where the velocity also
depends on time.

19
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A Proof of lemma 4.2

To simplify the notation we remove the index [, keeping in mind the fact that the parameters

given hereafter depend on the streamline .
—

d
Recall that [ is given by | = (p, ¢, I) such that ¢(0) = p and ﬁ(T) = 1_/'>(q(7)), a subdivision

I' = (73)o<i<m of I is given and T satisfies the condition (11).
The goal of this part is to give an error estimate between the approximate solution w defined
by scheme (25) and the exact solution v (v € C?(I x I)).

From the exact solution v of equation (24) we define v, by

vp(7,t) = v, if (1,t) €)1y, Tpii + 1] [t”,t”“), (37)
with (v1); ,, defined by
VO<i<M,0<n<N, v =v(1ip1,t")- (38)
To complete the definition of vy, one adds the following data:

Vn € {0,..., N}, v = vp(0,¢") = v(0,t") = g(p,t").

Lemma A.1 Let (v}');, defined by relation (38). Then, for all i € {0,...,M} and n €

{0,...,N — 1} one has
n n k n n
vt = — = (f(v}) = f(oly)) — kD f(v]) + CF.
Furthermore, under assumption (HML2) of part 2.2 and relation (26) on k, there exists a
—

constant C° € Ry which depends on f, g, ug, v, Cing and V such that
V(i,n) € {0,..., M — 1} x {0, ..., N — 1}, |CP| < C°AZ

Proof: Forallie€ {0,..,M — 1}, n € {0,...,N — 1} one defines

g+l Tit1
/ / Opv(T, t)drdt. (39)

Since v satifies equation (24) one has:

An = / /+ (f ov)(r.1) + Fulr, 0)div(V (g(r) ) drdt.

S T e P

However, the function t € Z — fow(.,t) is of classe C2 on Z, by Taylor’s formula, one then
has (for « € {i,i+ 1} and i > 0 and t € 7)

/ + Fo(r, 1)div(V (q(r)))drt.

t

f((7a, 1)) = f(0(7a, 7)) + (¢ = t")0:(f © v)(7a, ") +/ (t = )% (f 0 v)(Ta, 0)do.  (40)

t‘n
For the case : = 0 one has, for allt € 7
t

f(o(0,1)) = f(9(q(0), ")) + (£ = ") (f © 9)(¢(0), ") + /t(t—U)f’ft(fog)(Q(O)vU)dJ- (41)

n
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By integrating the relation (40) between t™ and t"*! one finds

Ap = —k(f(v(rig1, ") = fo(7, 7)) — kAD: f(v}') + RT + RD}

K3

= —k(f(]) = f(vl1)) — KAD:f(v7) + RT] + RDT,

where:
RT? = 20 0 )i, t7) = BU(F o) (e t™)
_/:"“ (/tt (t — )07 (f o v)(Tiy1,0) — F(f o v)(m;, a)]da> dt
RD7 / o / " b o, ) div(V (q(r)))drdt + kAD: (o)
/ / H) = F)Di + f(o(r,t)(div(V) - Dy)) drat

One notes that

Tig1 ptn Tt
AP = / / dyo(r, t)dtdr
T; t™

= /TH—1 [v(r,t" ) — o(T, t")]dr.

i

Taylor’s formula applied to the function 7 — v(7,t*), yields

(43)

VT € [T, Tig1), v(1,t%) = 0(Tig1,t%) + (T — Tig1)0-0(Ti41,t%) + / (1 — )32, v(o,t%)do,

Tit1

where o € {n,n + 1}.

By integrating the relation above between 7; and 7,41 for @ = n, n + 1, and substracting

the two expressions, one obtains

A = Aj(v(Tig1, t"T) — v(Tigr, t))

= At —o}) + RHY,

7

where:
A2

RH} = A (a 1}(7'z+17tn+ ) aTU(TH'l’tn))

Ti+1
/ / (1 = 0)[0%, v(o, t"1) = 82 v(o,t™)]|dodz.
Ti+1

Making relations (42) and (45) equal one finds

WSi<MOSn<N, o= o~ (@) - FO0)) - kD)

7

1
++(RT! = RH} + RD}),

i

where v™; = v(0,t™) = ¢g(¢(0),t™) for all n € {0,...,N}.

(45)
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Estimate of RT* + RH}

Define C1 = [|02,(f 0v)||z=, Cs = |07 v||p=, C3 = [|07,(f 0v)||z=, and Cy = [|07, f 0 v[| L.
Sincefandvarelnc2 one has C; < o0, Cy < 00, U3 < o0 and Cy < 0.

Let (i,n) € {0,...., M —1} x {0, ..., N —1}. One starts by giving an estimate of RT*. By the
mean value theorem there exists a; € (7;,T;41) such that:

O(f ov)(Tig1,t™) — Ou(f o v)(74,t") = A;0-0:(f o v)(ay, t™).

This yields
10s(f o v)Tiy1,t") — Ou(f o v)(7i, t")| < AiCh.
Note that

tn+1

| / / DOL(f 00)(Tip1,0) — O2(f 0 0)(7i, 0))dodt] <

tn+1

C3k?
t = 0)|0G(f 0 0)(Tit1,0) = O (f o v)(ri, 0)|dodt < ——,
which finally gives
n 201 303
|RT"| < Ak +k (48)
A similar computation yields
C C
[RHT| < APk— + A= L (49)
According to the assumptions made on the grid and the time step k one has
VO<i< M, k<A; <A,
o Cs > 9
RT!| +|RH} < A,-( o
AT+ IR AP~ 3T~
Co C’
o fi 9
20F 0~
: 0,1 _ Ci Cs Ca Ca : .
Defining C' <2||f'||ioo + BRI + 2( 7 | oo T ) one finds the following result:
1
¥(i,n) € {0,..; M =1} x{0,..N =1}, —(|RT| +|RH|) < Co A2 (50)

Estimate of RD}

Since f ov € C%(I x T,R) one then has:

V(7)€ [, Tigr] X B 87, [F(0(7,8) = F(0(Tig1, ") < IV £ 0 0llpe /AT + B2,

However k < W’Aﬁ (c.f- part 4.1, relation 26). This gives

V(7,t) € [, rin] X [t7 "], | F(0(7,8) = fo(Tigr, ™)) < 4 [1+( IV foull <A

1
1 Nz~
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One notes that div(V) € CY(N,R) (since Ve C%(Q,R%)). Then one obtains
— — —
VK € M,Vo € K, |div(V (2)) — Dxc| < |9 (div7)[| s,

where Dy = ﬁ I div(Y_/z(a:))dx and h is the mesh step on M.
Using assumptions (HML2) (c.f. part 2.2) one obtains

L= = . = = . = A;
V7 € [ri, T, |div(V (g(7)) = Dif < [V (div(V))l[zh < [V (div(V))llze — .
According to what preceedes, one deduces
1
¥(i,n) € {0,.., M =1} x {0,..N =1}, —[RD}| < CO2A2, (51)
- —
where C%2 depends on Vdiv, Vfou, ||fov| L~ and ciny.
Define C° = C%! 4+ C%2. Then one obtains
1
VO<i<M,0<n<N : K(|RT}| + |RH?| + |RD?|) < C°A?,

which concludes the proof of the lemma. |

Lemma A.2 Under assumptions (HLM2) and (26) on the time step. There exists a constant
C' € R% such that
||w - ’I}h(., T)”Ll(l) < CIA,

where C1 depends on vy, g, f, V and on the mesh on I (in particular on k., defined in
relation (26)).

Proof: For all n € {0,..., N} one defines

B = 3 Al -l = [ 1w =)
0<i<M I
By following the same method used in the proof of lemma 4.1 one finds:

E™ < (1+k|f ||Le~Doo)E™" + CO|1|A2,

where C? is the same constant found in lemma A.1.
By induction on n one finds

EN < (14Kl f le~Do)NE* + COII | Y (1 +Ellf [lz=Doo)’ | A2 (52)
0<j<N

In addition one has

k= % (14 k||f || =D ) < ellf Iz DT,

Using relation (26) one deduces

EN < el Do) (B0 4 O[Tk, A) . (53)
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Estimate of E°:
At t =0, w) = + [T+ o (T)dT et v = vo(7;j41). Since vy is of class C* on I one deduces

= A; Jry
VO < j < M, [w) =9 < Cod,,

where Cy is a positive constant that depends on vé‘ By summing over 5 one obtains

E° < Gy|I|A. (54)
Now using relation (54) in (53) one finds

EN <C'A,
where €1 = el = D=T) (Cy + CO|I|ky,). The result follows. n
Proof of lemma 4.2:

Let v be the exact solution of equation (24), w the solution of numerical scheme. One defines
v, by relations (37) and (38). One has:

/I|U(T,T) —w(n, T))dr < /1 lo(r, T) — vn(r, T)dr + /1 fon(r, T) — w(r, T)|dr.
Since v is C?, there exists a constant C? € R%, depending on ||8;v(.,T)||z~ such that
/1|’U(T, T) — vu(7, T)|dT < C2A.
By using the relation above and the result of lemma A.2 one finds
/1 lo(r, T) — w(r, T)|dr < (C* + CY)A,

which gives the result.
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