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Functional interior point programming applied

to the aircraft path planning problem

Puechmorel, S. and Delahaye, D.

Abstract Multiple aircraft trajectory planning is a central problem in future air traf-

fic management concepts where some part of the separation task, currently assumed

by human controllers, will be delegated to on-board automated systems. Several

approaches have been taken to address it and fall within two categories: meta-

heuristic algorithms or deterministic methods. The framework proposed here mod-

els the planning problem as a optimization program in a space of functions with

constraints obtained by semi-infinite programming. A specially designed innovative

interior point algorithm is used to solve it.

1 Introduction

The path planning problem for multiple robots evolving in a possibly dynamic en-

vironment with obstacles is a very active area of research among the automatics

and robotics communities, and is addressed in many classical references [6, 7]. For

application to aircraft trajectories, nonholonomic constraints have to be considered

since bounds on velocity and curvature are dictated by flight dynamics and aircraft

operations. In such a context, even for two dimensional motion, it is known that an

exact shortest path computation for a single mobile avoiding polyhedral obstacles

is NP-Hard [3]. In order to make the problem tractable, only approximate solutions

are to be sought after. One possible way of dealing with the intrinsic complexity

is to resort to solvers based on metaheuristics. Since the state space exploration

is made on a random fashion, there is no insurance on the quality of the solution

obtained after a finite number of iterations and it is not even possible for some al-

gorithms to prove convergence in a probabilistic sense. However, due to the nature
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of the metaheuristic approach, a wide class of constraints and optimality criteria

can be taken into account. In the field of air traffic management, one can impose

that the solution is built using only maneuvers used by human controllers. Suc-

cessful applications of stochastic optimization algorithms can be found in [4, 5].

The second way of addressing the issue of computational complexity is to allow

sub-optimality of the solution. Turning the original problem into a continuous op-

timization program under constraints allows traditional algorithms to be used and

provides a locally optimal solution. As the NP-hardness of the original formulation

cannot be avoided, global optimality cannot be reached generally, unless some kind

of exhaustive search among all local optima is performed. Hybridization between

the two approaches can be done in order to randomly sample the set of local op-

tima, yielding in turn an improved admissible solution. The algorithm that will be

presented here falls in the second category, and is built using a special geometrical

property of complex configuration spaces. The path planning program is designed in

a functional way, with criterion based on a cost associated to individual trajectories

and constraints expressed using semi-infinite programming. The paper is organized

as follows: in a first section, general results on complex configuration spaces will

be briefly recapped, as they will provide the theoretical framework on which the

interior point formulation will be built. The second section will introduce the op-

timization program associated to the path planning problem, and a relation with a

recently introduced complex harmonic navigation function will be pointed out. Fi-

nally, a possible algorithmic implementation of the solver yielding an approximate

solution to the original problem will be detailed.

2 Complex configuration spaces

Given a set of N mobiles with planar motion, the complex configuration space C N

is defined to be the Cartesian product of n copies of the complex plane C with

the set ∆N =
{

(z1, . . . ,zN) ,∃i 6= j,zi = z j

}

of simultaneous positions removed. Any

path connecting two points in C N is an admissible collision-free planning of N

trajectories. It is easy to show that C N is a path connected space using a sequential

planning argument: let
(

z0
1, . . . ,z

0
N

)

be any initial configuration and let
(

z1
1, . . . ,z

1
N

)

be the desired final situation. Let z1, . . .zN be fixed. Then it exists a path joining z0
1

and z1
1 in C−{z1, . . .zN} since this space is path-connected. The same procedure can

then be applied iteratively to the remaining points. The resulting path is a sequence

of moves along coordinates axis in C n and assumes that only one mobile moves at

a time.

Geometrical insights about C N can be gained from the knowledge of its coho-

mology group, obtained in [2]. It turns out that the generators of this group will be

used to define the constraints in the optimization program constructed later. They

consist of degree one forms:
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ωk,l =
dzk −dzl

zk − zl

, 1 ≤ k ≤ N,1 ≤ l ≤ N,k 6= l

Please note that in the original paper [2] a factor (i2π)−1
appears in the expres-

sion: it is removed here as the real part of ωk,l is of primary interest. Let a C1 path

Γ : [0,1]→ C N be given. Then:

∫

Γ

dωk,l =
∫

[0,1]

Γ ′
k (t)−Γ ′

l (t)

Γk(t)−Γl(t)
dt

with Γj, j = 1 . . .N denoting the j-th component of Γ . Rewriting the right hand side,

it comes:
∫

Γ

dωk,l =
∫

[0,1]

(

Γ ′
k (t)−Γ ′

l (t)
)

(

Γk(t)−Γl(t)
)

|Γk(t)−Γl(t)|
2

dt

Given any two complex numbers z1 = x1 + iy1,z2 = x2 + iy2, the real part of the

product z1z2 is the inner product of the vectors (x1,y1) and (x2,y2) and imaginary

part their determinant. The expression:

(

Γ ′
k (t)−Γ ′

l (t)
)

(

Γk(t)−Γl(t)
)

|Γk(t)−Γl(t)|
2

thus admits an interpretation as an expansion rate (resp. rotation rate) for the vector

dkl(t) = Γk(t)−Γl(t) and in turn the integral:

∫

Γ

dωk,l

will give log(‖dkl(1)‖)− log(‖dkl(0)‖) as its real part and 2πθ for its imaginary

part, with θ the winding number of the path dkl . Considering the plane zk = zl that

is a subset of ∆N , one can interpret ‖dkl(t)‖, for t ∈ [0,1], as twice the distance of

the path t 7→ Γk(t) (resp. t 7→ Γl(t)) to the constraint zk = zl . In the spirit of interior

point algorithms, it is natural to consider − log(‖dkl(t)‖) as a barrier function for

the constraint zk 6= zl , with the major difference that it gives rise to a mapping instead

of a single value.

2.1 Basic assumptions for the path planning problem

As the path planning problem is targeted towards air traffic applications, some re-

strictions on the manœuvers that an aircraft can do are coming from flight dynamics

and passengers comfort. First of all, velocity has to be bounded below and from

above, with a quite narrow interval of efficiency dictated by engines performance.

Second, curvature cannot be made arbitrary high and it is advisable to limit its total

integrated value so as to minimize its detrimental effect on passengers comfort.



4 Puechmorel, S. and Delahaye, D.

It is not intended in this work to consider aircraft in terminal manœuvering areas,

nor the climb and descent phases: as a consequence, the path planning algorithm will

not perform any change in altitude, yielding a problem that conforms to the complex

configuration space modelling. Furthermore, only collision avoidance is considered,

the compliance with separation norms will be addressed in a future work.

Finally, it is assumed that the planner is used in a free flight context where the

aircraft are not bound to predefined routes and at a tactical level with a time horizon

not exceeding 20 minutes. In such a case, one can assume that the level of uncer-

tainty is low enough to allow a deterministic approach to be taken. The effect of

wind will not be included in the model. This may be unrealistic at first glance since

it is one of the most influential factor on aircraft trajectories, but given the ability

of future FMS systems to infer and broadcast the wind experienced along the flight

path, it seems reasonable that the wind field will be known with a sufficient degree

of accuracy to adjust the initial planning.

Perfect knowledge of the aircraft positions within the airspace of interest is as-

sumed, no communication issues are considered.

3 Path planning as a penalized optimization program

To turn the path planning problem into an optimization program amenable to interior

point algorithms, it is needed to define first a usable criterion and second a mean of

getting a tractable set of barrier functions that will be used to penalize the criterion.

A major concern for the last point is the functional nature of the state space: a mean

of turning the continuous time constraints into a vector of real value must be sought

after.

3.1 Applicable criterion on a set of trajectories

For en-route traffic, overall flight cost is the dominant factor that airlines want to

optimize. Since most of the time aircraft are flying near their efficient altitude and

at constant velocity, it can be related to trajectory length or flight time. A second

consideration that can be taken into account is the search for a flight path minimizing

total curvature, as every turns induces an increase in fuel consumption and has a

detrimental effect on passengers comfort.

Based on the previous remarks, a natural choice for the the optimization criterion

is the cumulative length. Let a smooth path Γ : [0,1] → C N in the configuration

space for N planes be given. Its cumulative length is defined as:

L(Γ ) =
N

∑
j=1

∫ 1

0

∥

∥Γ
′
j (t)
∥

∥dt
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In order to take into account possible priorities between aircraft, a weight may

added:

L(Γ ) =
N

∑
j=1

w j

∫ 1

0

∥

∥Γ
′
j (t)
∥

∥dt

with w j ∈ [0,1] and ∑
N
j=1 w j = 1. Let ε be a positive value and H : ]−ε,ε[×[0,1]→

C N a smooth mapping such that for all t ∈ [0,1], H(0, t) = Γ (t) and for all s ∈
]− ε,ε[, H(s,0) = Γ (0), H(s,1) = Γ (1). The derivative:

∂H

∂ s
(0, ·) : [0,1]→ C

n

may be interpreted as a tangent vector at base point Γ in the manifold of smooth

paths of C N [8]. The derivative of L applied to it can be computed from the defini-

tion:

∂L(H(s, ·))

∂ s
|s=0 =

N

∑
j=1

w j

∫ 1

0

〈

∂ 2H j

∂ s∂ t
(0, t),

∂H j

∂ t
(0, t)

〉

∥

∥

∥

∂H j

∂ t
(0, t)

∥

∥

∥

dt

using an integration by parts and, since the endpoints of H are fixed:

∂H

∂ s
(0,0) =

∂H

∂ s
(0,1) = 0

it comes:

∂L(H(s, ·))

∂ s
|s=0 =−

N

∑
j=1

w j

∫ 1

0

〈

∂H j

∂ s
(0, t),κi(t)Ni(t)

〉

dt

where κi is the curvature of the path Γi and Ni its unit normal vector. The expression

obtained is the classical first order variation for the length of a smooth path [8] ,

summed over all components of the path Γ . In the language of manifolds,

∂L(H(s, ·))

∂ s
|s=0

gives the value obtained by applying the form dL to the tangent vector

(

Γ ,
∂H

∂ s
(0, ·)

)

3.2 Turning collision avoidance constraints into semi-infinite

barrier functions

The results on complex configuration spaces presented in the first section make

natural the choice of an integral form of the barrier function [9]. For the constraint
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zi 6= z j it will be defined as:

−
∫ 1

0
log
∥

∥Γi(t)−Γj(t)
∥

∥dt

Please note that such an integral does not necessary take an infinite value if Γi(t0) =
Γj(t0) and thus differs from the finite dimensional setting. However, it turns out that

there is a close relationship between curvatures of the component paths Γi and the

norms
∥

∥Γi(t)−Γj(t)
∥

∥ that can be used to make the barrier functions effective.

Let H : ]−ε,ε[×[0,1]→C N be a smooth mapping satisfying the same properties

than in 3.1. The penalized criterion is:

N

∑
j=1

w j

∫ 1

0

∥

∥Γ
′
j (t)
∥

∥dt − ∑
j 6=k

λ jk

∫ 1

0
log
∥

∥Γj(t)−Γk(t)
∥

∥dt

where the λ jk are strictly positive penalty weights. Let:

Θ(Γ ) jk =
∫ 1

0
log
∥

∥Γj(t)−Γk(t)
∥

∥dt

be the j,k barrier function. The first order variation formula for Θ(Γ ) jk gives:

∂Θ jk(H(s, ·))

∂ s
|s=0 =

∫ 1

0

〈

∂H j

∂ s
(0, t)− ∂Hk

∂ s
(0, t),Γj(t)−Γk(t)

〉

∥

∥Γj(t)−Γk(t)
∥

∥

2
dt

Reordering terms, the variation formula for the complete criterion is:

−
N

∑
j=1

w j

∫ 1

0

〈

∂H j

∂ s
(0, t),κi(t)Ni(t)

〉

dt−

N

∑
j=1

∑
k 6= j

λ jk

∫ 1

0

〈

∂H j

∂ s
(0, t)− ∂Hk

∂ s
(0, t),Γj(t)−Γk(t)

〉

∥

∥Γj(t)−Γk(t)
∥

∥

2
dt

Assuming that the path Γ is minimal with respect to penalized criterion, the first

order necessary optimality conditions yields, for all j = 1 . . .N:

w jκ j(t)N j(t) = ∑
k 6= j

λ jk

Γk(t)−Γj(t))
∥

∥Γj(t)−Γk(t)
∥

∥

2

Some important facts may be derived from the expression above. First of all,

since Ni(t) is of unit norm, it comes:

w j|κ j(t)| ≤ ∑
k 6= j

λ jk
∥

∥Γj(t)−Γk(t)
∥

∥
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So that there is a control on the curvature given by the penalty weights. In the special

case of a path planning problem with only two mobiles, that turns out to be associ-

ated in the frame of air traffic applications with two planes encounters, the relation

becomes an equality:

w j|κ j(t)|=
λ jk

∥

∥Γj(t)−Γk(t)
∥

∥

, j = 1 . . .2, k 6= j

In such a case, bounding the curvature of the paths will in turn bound the minimal

distance separating the two mobiles: it improves over the simple collision avoidance

guarantee by allowing separation norms to be enforced.

The general situation with an arbitrary number of mobiles is not so simple to

deal with. However, from the expression linking κ j(t)N j(t) and the sum of terms

coming from the barrier functions, it is clear that a collision is not possible with two

mobiles if the curvature is bounded (otherwise, the corresponding term will go to

infinity while the remainder will be bounded). Only cases involving encounters with

3 or more mobiles and a special symmetry may violate this fact.

Addressing this issue can be done by noticing that the barrier functions were

derived from the complex mapping log(zi − z j). It is in fact the complex potential

generated by a simple sheet uniform distribution on the plane z j = z j. When en-

counters involving p > 2 mobiles are considered, the forbidden area in C N is an

intersection of p−1 hyperplanes and has an expression:

∆i1,...,ik = {z : zi1 = zi2 = · · ·= zik}

where the sequence i1, 6= i2 . . . , 6= ip is extracted from the complete set of indices

1 . . .N and denotes the mobiles in interaction. The complex potential generated by a

simple sheet distribution on ∆i1,...,ik can be obtained using the procedure described

below. First of all, the projection of a point z in the configuration space onto ∆i1,...,ik
is given by:

Pi1,...,ik(z) =
(

z1, ..,zi1−1,h,zi1+1, ..,zik−1,h,zik+1, ..,zn

)

where h = k−1 ∑
k
j=1 zi j

is the mean value of the components belonging to the for-

bidden set. The complex potential generated by a simple sheet distribution is then:

(

k

∑
j=1

zi j
−h

)2−k

= ‖z−Pz‖2(2−k)

This potential remains harmonic, but not pluriharmonic as the one based on the log.

Taking the integral of ‖z−Pz‖2(2−k) along a path Γ in C N yields the additional

barrier function needed to deal with the encounter situation described by ∆i1,...,ik .

It is clear from the expression of this set that 2N−1 terms will have to be taken

into account in the final penalty term. It can be viewed as a consequence of the

NP-Hardness of the original problem and shows how the intrinsic combinatorics
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of the optimization program will appear indirectly. For practical applications, is it

extremely uncommon to consider encounters involving more than 4 mobiles: on a

the French airspace, it happens only a few times a year. Exceeding 5 occurs only on

simulated traffic. The choice made was thus not to include the extra barrier terms and

to postpone the complete formulation to a future work, where a conflict detection

algorithm will be launched in a pre-processing phase in order to keep only the really

needed high order barrier functions.

4 Interior point solver

The solver is implemented using a very simple procedure that consists in discretiz-

ing the trajectories at points regularly located in the interval [0,1]. The flight path

of aircraft i, i = 1 . . .N is then described as a sequence xi, j = Γi( j/m) where m is

the number of samples on each trajectory. Following the derivations made in [1], a

maximum curvature κmax can be imposed using the relation:

∥

∥xi, j+1 − xi, j−1

∥

∥

∥

∥xi, j − xi, j−1

∥

∥

≥
√

4−κ2
max

∥

∥xi, j − xi, j−1

∥

∥

Under the near constant velocity assumption:

∥

∥xi, j − xi, j−1

∥

∥≈
Li

m

with Li the total length of Γi, and the expression reduces to a lower bound condi-

tion on
∥

∥xi, j+1 − xi, j−1

∥

∥. The integrals involved in the expression of the functional

criterion turn to finite sums, in a way amenable to standard non-linear optimiza-

tion algorithms. The expression of the gradient of the penalized criterion at a single

vertex xi, j may be obtained using the following approximation of the curvature and

normal vector, again assuming constant velocity and putting li = Li/m:

• |κi( j/m)|=
∥

∥xi, j+1 −2xi, j + xi, j−1

∥

∥/li

• Ni( j/m) =
xi, j+1−2xi, j+xi, j−1

‖xi, j+1−2xi, j+xi, j−1‖

The gradient is then, with respect to the i-th trajectory:

wiκi( j/m)Ni( j/m)+∑
k 6=i

λi,k
xi, j − xk, j
∥

∥xi, j − xk, j

∥

∥

2

and summing up all the contribution gives rises to the complete gradient of the

penalized criterion, that is used within a classical finite dimensional optimizer.
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5 Conclusion and future work

A framework based on a functional description of the path planning problem has

been described. Specially designed barrier functions inspired both by complex po-

tential theory and semi-infinite programming allows to turn the original problem

with an infinite number of constraints into a more tractable one, involving only a

finite number of integrals. Bounding the curvature below allows to ensure collision

avoidance. A possible implementation of the algorithms based on sampling trajec-

tories in an even fashion was described. The complete procedure is in an early stage

of development and a large amount of work still has to be performed:

• Pre-process the input traffic so as to identify encounters geometries in order to

be able to use higher order barrier functions without incurring too much compu-

tational complexity.

• Investigate alternative representations of trajectories, especially those based on

expansions on functional basis.

• Perform an extensive benchmark test on both synthetic and real traffic so as to

assess the performance of the algorithm. A special attention must be paid to

sensitivity analysis and robustness assessment against random perturbations.

• Integrate the algorithm within a realistic trafic simulator so as to quantify the

effects of flight path tracking errors.
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