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ABOUT THE CONVOLUTION OF DISTRIBUTIONS ON GROUPOIDS

JEAN-MARIE LESCURE , DOMINIQUE MANCHON, STÉPHANE VASSOUT (1)

Abstract. We review the properties of transversality of distributions with respect to submersions.

This allows us to construct a convolution product for a large class of distributions on Lie groupoids.

We get a unital involutive algebra E
′
r,s(G,Ω1/2) enlarging the convolution algebra C∞

c (G,Ω1/2)

associated with any Lie groupoid G. We prove that G-operators are convolution operators by

transversal distributions. We also investigate the microlocal aspects of the convolution product.

We give conditions on wave front sets sufficient to compute the convolution product and we show

that the wave front set of the convolution product of two distributions is essentially the product of

their wave front sets in the symplectic groupoid T ∗G of Coste-Dazord-Weinstein. This also leads

to a subalgebra E
′
a(G,Ω1/2) of E ′

r,s(G,Ω1/2) which contains for instance the algebra of pseudodif-

ferential G-operators and a class of Fourier integral G-operators which will be the central theme of

a forthcoming paper.

1. Introduction

The motivation of this paper is twofold. Firstly, we wish to study the convolution of distributions

on a Lie groupoid and its relationship with the action of the so-called G-operators. Secondly, we

would like to set up a neat framework in order to investigate in a future work the notions of

Lagrangian distributions and Fourier integral operators on a groupoid.

The notion of C∞ longitudinal family of distributions in the framework of groupoids appears in

[16, 18, 23] in order to define right invariant pseudodifferential operators. Also, in the works of

Monthubert [14], these families are considered from the point of view of distributions on the whole

groupoid, so that the action of the corresponding pseudodifferential operators on C∞ functions

is given by a convolution product. Here, we carry on this idea by exploring the correspondence

between C∞ longitudinal families of distributions and single distributions on the whole underlying

manifold of the groupoid and by studying the convolution product of distributions on groupoids.

This is achieved at two levels.

The first level is based on the notion of transversality of distributions with respect to a submersion

π : M → B [1]. It appears that the space D′
π(M) of such distributions is isomorphic to the space

of C∞ family of distributions in the fibers of π. Also, in the spirit of the Schwartz kernel Theorem

suitably stated on the total space of a submersion, the space D′
π(M) coincides with the space

of continuous C∞(B)-linear maps between a suitable subspace C∞
fc−π(M) of C∞ functions on M

and C∞(B). Furthermore, operations such as push-forwards and fibered-products of distributions

behave well on transversal distributions and these operations allow to define the convolution product

of distributions on groupoids, as soon as these distributions satisfy some transversality assumptions

with respect to source or target maps. Distributions on a groupoid which are transversal both to

the source and target maps are called bi- transversal and they give rise to an involutive unital

algebra E ′
r,s(G,Ω

1/2) for the convolution product. Then, one has the necessary tools to prove that

G-operators on a groupoid are in 1 to 1 correspondence with transversal distributions acting by

1The first and third authors are supported by ANR Grant ANR-14-CE25-0012-01 SINGSTAR
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convolution and that bi-transversal distributions are in 1 to 1 correspondence with adjointable

G-operators.

The second level is a microlocal refinement of the first one and consists in using the wave front set

of distributions. A basic observation, due to Coste, Dazord and Weinstein [4], is that the cotangent

manifold T ∗G of any Lie groupoid G carries a non trivial structure of symplectic groupoid over

the dual of the Lie algebroid A∗G, this structure being intimately related to the multiplication

of G and then to the convolution on C∞
c (G,Ω1/2). This groupoid combined with the classical

calculus of wave front sets developped by Hörmander brings in natural conditions on wave front

sets of distributions on a groupoid allowing to define their convolution product and to compute the

corresponding wave front set using the law of T ∗G. The main consequence of this approach is that

the space of compactly supported admissible distributions:

E ′
a(G,Ω

1/2) = {u ∈ E ′(G,Ω1/2) ; WF(u)∩ ker sΓ = WF(u)∩ ker rΓ = ∅},

where sΓ, rΓ denotes the source and target maps of T ∗G⇉ A∗G, is a unital involutive sub-algebra

of (E ′
r,s(G,Ω

1/2), ∗) and that

WF(u ∗ v) ⊂ WF(u) ∗WF(v), ∀u, v ∈ E ′
a(G,Ω

1/2),

where ∗ is the multiplication in the Coste-Dazord-Weinstein groupoid T ∗G. We would like to

add that the corresponding formula of Hormander for the wave front set of composition of kernels

[9, 10] makes the above formula quite predictable. Indeed, given a manifold X, the composition

of kernels corresponds to convolution in the pair groupoid X × X and the composition law that

Hörmander defines on T ∗(X ×X) to compute wave front sets of composition of kernels is precisely

the multiplication map of the Coste-Dazord-Weinstein symplectic groupoid T ∗(X ×X).

The distributions belonging to E ′
a(G,Ω

1/2) are said to have a bi-transversal wave front set. Ac-

tually, this second approach of the convolution product of distributions, based on the groupoid

T ∗G and Hörmander’s techniques, works under assumptions on the wave front sets of distributions

weaker than bi-transversality, and we shall briefly develop this point too. However, the algebra

E ′
a(G,Ω

1/2) is already large enough for the applications that we have in mind. For instance, pseu-

dodifferential G-operators are admissible:

Ψc(G) ⊂ E ′
a(G,Ω

1/2).

More importantly, if Λ ⊂ T ∗G \ 0 is a homogeneous Lagrangian submanifold of T ∗G which is

also bi-transversal as a subset of T ∗G, then Lagrangian distributions [11] subordinated to Λ are

admissible:

I∗(G,Λ,Ω1/2) ⊂ E ′
a(G,Ω

1/2)

and in particular they give rise to G-operators. This will be the starting point of a second paper.

The present paper is organized as follows. In section 2, we revisit the Schwartz kernel Theorem

in the framework of submersions. Then the notion of distributions transversal with respect to

a submersion is recalled, we give some examples and we study natural operations available on

them. In section 3, we apply the results of section 2 to the case of groupoids. We then define

the convolution product of transversal distributions and obtain the unital algebra E ′
r,s(G,Ω

1/2)

of bi-transversal distributions. In section 4, we link the notion of G-operators with the one of

transversal distributions and we obtain a 1 to 1 correspondence between the space of adjointable

compactly supported G-operators and E ′
r,s(G,Ω

1/2). In section 5, we use both the Hörmander’s

results about wave front sets of distributions and the symplectic groupoid structure on T ∗G to
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identify an important subalgebra of E ′
r,s(G,Ω

1/2), namely E ′
a(G,Ω

1/2) the subspace of distributions

with bi-transversal wave front sets, onto which wave front sets behave particulary well with respect

to the convolution product.

Finally, we recall in Section 6 the definition of the Coste-Dazord-Weinstein groupoid [4] and add

some explanations and comments.

The authors would like to mention that the subject of convolution of transversal distributions is

also studied in an independent work by E. Van Erp and R. Yuncken [22].

Aknowledgements

We are happy to thank Claire Debord, Georges Skandalis and Robert Yuncken for many enlightening

discussions. Also, the present version of our article has greatly benefited from the remarks addressed

by two anonymous referees and we would like to warmly thank them.

2. Distributions, submersions, transversality

2.1. Schwartz kernel Theorem for submersions. To handle distributions on groupoids, it is

useful to study distributions in the total space of a submersion. The notion of transversality we

shall recall is borrowed from [1] and it extends the condition of semi-regularity given in [21, p.532].

For any manifold M and real number α, the bundle of α-densities is denoted by Ωα
M . The

space D′(M,Ωα
M ) (resp. E ′(M,Ωα

M )) is the topological dual of the space C∞
c (M,Ω1−α

M ) (resp.

C∞(M,Ω1−α
M )). With the convention chosen, we have canonical topological embeddings

C∞(M,Ωα) →֒ D′(M,Ωα)

and we abbreviate D′(M) = D′(M,Ω0
M ), ΩM = Ω1

M .

Distributions spaces are provided with the strong topology. The space of continuous linear

maps between two locally convex vector spaces E,F is denoted by L(E,F ) and provided with the

topology of uniform convergence on bounded subsets. If E,F are modules over an algebra A, the

subspace of continuous A-linear maps between E and F is denoted by LA(E,F ) and considered as

a topological subspace of L(E,F ).
We are going to reformulate the Schwartz kernel Theorem for distributions in the total space of

a submersion π : M −→ B between C∞-manifolds. To do this, we begin with the product case

π = pr1 : X × Y −→ X where X ⊂ RnX and Y ⊂ RnY denote open subsets.

The Schwartz kernel Theorem then asserts that the map

(1) D′(X × Y ) ∋ u 7−→
(
f 7−→ uf (x) =

∫

Y
u(x, y)f(y)dy

)
∈ L(C∞

c (Y ),D′(X))

where the integral is understood in the distribution sense, is a topological isomorphism. This can be

seen as a push-forward operation along the fibers of π and to state this for an arbitrary submersion

π :M −→ B between C∞-manifolds, we introduce the space

(2) C∞
fc−π(M) = {f ∈ C∞(M) ; π : supp(f) → B is proper }.

This is the LF-space associated with the sequence of Frechet spaces {f ∈ C∞(M) ; supp(f) ⊂
Fn} = C∞

0 (Fn) where (Fn) is an exhausting sequence of closed subsets of M such that π : Fn → B

is proper.

The injections C∞
c →֒ C∞

fc−π →֒ C∞ are continuous and C∞
c is dense in C∞

fc−π. When B is

compact, we have C∞
fc−π = C∞

c . Vector bundles over M can be added and we do not repeat the

definitions. Then for any f ∈ C∞
fc−π(M,ΩM ), one can associate a distribution π∗(uf) on B defined
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for any g ∈ C∞
c (B,ΩB) by

(3) 〈π∗(uf), g〉 = 〈uf, g ◦ π〉 = 〈u, f.g ◦ π〉.

One can view naturally C∞
fc−π(M,ΩM ) as a C∞(B)-module by using π : for f ∈ C∞

fc−π(M,ΩM ) and

g ∈ C∞
c (B,ΩB), one defines f.g on M by f.g(m) = f(m)g(π(m)) and the condition on the support

is obvious.

We have

Theorem 1 (Schwartz kernel Theorem for submersions). The map

π∗ : D′(M) −→ LC∞(B)(C
∞
fc−π(M,ΩM ),D′(B,ΩB))

u 7−→ π∗(u·)

is a topological isomorphism.

Proof. Let C be a bounded subset of C∞
fc−π(M,ΩM ) and D be a bounded subset of C∞

c (B). Then

C.D = {f.g ; f ∈ C, g ∈ D} is a bounded subset of C∞
c (M,ΩM ). The continuity of π∗ follows.

Conversely, we define I : LC∞(B)(C
∞
fc−π(M,ΩM ),D′(B,ΩB)) → D′(M) by

(4) 〈I(T ), f〉 = 〈T (f), ψ〉 f ∈ C∞
c (M,ΩM ), ψ ∈ C∞

c (B), fψ = f.

The definition of I(T ) as a linear form on C∞
c (M,ΩM ) is consistant for T being C∞(B)-linear,

the left hand side does not depend on the choice of ψ such that fψ = f . Moreover, if E is a

bounded subset of C∞
c (M,ΩM ) then there exists a compact subset K ⊂M such that f ∈ E implies

supp(f) ⊂ K. Fixing ψ ∈ C∞
c (B) such that ψ = 1 onto K yields that I(T ) is a distribution for

any T and the continuity of the map I. The relations π∗ ◦ I = Id and I ◦ π∗ = Id are obvious. �

Remark 2. Playing with supports, we also get

E ′(M) ≃ LC∞(B)(C
∞(M,ΩM ), E ′(B,ΩB)) and D′

fc−π(M) ≃ LC∞(B)(C
∞(M,ΩM ),D′(B,ΩB)).

Here D′
fc−π(M) is the topological dual of the LF-space {f ∈ C∞(M,ΩM ) ; π(supp(f)) is compact}.

2.2. Transversal distributions.

Definition 1. ([1] Androulidakis-Skandalis). A distribution u ∈ D′(M) is transversal to π if

π∗(u.f) ∈ C∞(B,ΩB) for any f ∈ C∞
fc−π(M,ΩM ). We note D′

π(M) the space of π-transversal

distributions. We also set

E ′
π(M) = D′

π(M) ∩ E ′(M) and P ′
π(M) = D′

π(M) ∩D′
fc−π(M)

Observe that if u is π-transversal, it follows from the closed graph theorem for LF-spaces [12,

Cor 1.2.20, p. 22] that π∗(u·) ∈ L(C∞
fc−π(M,ΩM ), C∞(B,ΩB)). This gives

Proposition 3. Denoting by π∗ the isomorphism in Theorem 1, we have

(5) π∗(D′
π(M)) = LC∞(B)(C

∞
fc−π(M,ΩM ), C∞(B,ΩB)).

Remark 4. Similarly,

(6) π∗(E ′
π(M)) = LC∞(B)(C

∞(M,ΩM ), C∞
c (B,ΩB)),

(7) π∗(P ′
π(M)) = LC∞(B)(C

∞(M,ΩM ), C∞(B,ΩB)).
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In all cases, the inverse of the map π∗ is given by

(8) 〈π−1
∗ (T ), f〉 =

∫

B
T (f) , f ∈ C∞

c (M,ΩM ).

When π : X × Y → X, (x, y) → x, the π-transversal distributions are exaclty the distributions

semi-regular with respect to x, in the former terminology of [21, p.532].

Actually, transversal distributions are nothing else but C∞ families of distributions in the fibers

of π. In the product case π : X×Y → X, (x, y) 7→ x, we are talking about the space C∞(X,D′(Y ))

C∞ functions onX taking values in the topological vector space D′(Y ) [21]. Since D′(Y ) is a Montel

space, the classical argument using Banach-Steinhaus Theorem shows the useful equivalence

(9) un −→ u in C∞(X,D′(Y )) ⇔ ∀f ∈ C∞
c (Y ), 〈un, f〉 −→ 〈u, f〉 in C∞(X).

This space is generalized as follows for general submersions.

Definition 2. A family u = (ux)x∈B of distributions in the fibers of π is C∞ if for any local

trivialization of π

U ⊂M, X ⊂ B, κ : U
≃−→ X × Y, π|U = πX ◦ κ,

we have κ∗(u|U ) ∈ C∞(X,D′(Y )). The space of C∞ families is noted C∞
π (B,D′(M)). The spaces

C∞
π,cpct(B, E ′(M)) and C∞

π (B,D′
fc−π(M)) are defined accordingly.

Using a covering of M by local trivializations and a partition of unity, we use the topology

of C∞(X,D′(Y )) to build on C∞
π (B,D′(M)) a complete Hausdorff locally convex vector space

structure. Concretely, this topology is given by the semi-norms generated by the following ones

expressed in local coordinates

(10) pk,B,K(u) = sup
x∈K,g∈B

∑

|α|≤k

|〈∂αxu(x), g(x, ·)〉|

where k is any integer, K any compact subset included in a local chart of B and B any bounded

subset of C∞
fc−π(M,ΩM ). Also, (9) becomes

(11) un −→ u in C∞
π (B,D′(M)) ⇔ ∀f ∈ C∞

fc−π(M,ΩM ), 〈un, f〉 −→ 〈u, f〉 in C∞(B,ΩB).

Then

Proposition 5. Using on D′
π(M) the topology given by (5), the map

C∞
π (B,D′(M))

J−→ D′
π(M)(12)

u 7−→ (f 7→
∫

B
〈ux, f(x, ·)〉)

is a topological isomorphism.

Proof. Using the identification D′
π(M) ≃ π∗(D′

π(M)), the map J is given by

J(u)(f)(x) = 〈ux, f(x, ·)〉, u ∈ C∞
π (B,D′(M)), f ∈ C∞

fc−π(M,ΩM ), x ∈ B.

Conversely, let us define π∗(D′
π(M))

E−→ C∞
π (B,D′(M)) by

(13) 〈E(T )x, f〉 = T (f̃)(x)

where f ∈ C∞
c (π−1(x),ΩM |π−1(x)) and f̃ ∈ C∞

c (M,ΩM ) is any C∞ extension of f . It is easy

to check that E = J−1 and that the topology given by the semi-norms (10) on C∞
π (B,D′(M))

coincides with the one given by uniform convergence on bounded subsets for the space π∗(D′
π(M))

through the bijection J . �
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Remark 6. We similarly get

C∞
π,cpct(B, E ′(M)) ≃ E ′

π(M) and C∞
π (B,D′

fc−π(M)) ≃ P ′
π(M).

If vector bundles E over M and F over B are given, we obtain canonical embeddings

(14) D′
π(M,E) →֒ D′

π(M,E ⊗End(π∗F )) ≃ LC∞(B)(C
∞
fc−π(M,ΩM ⊗E∗ ⊗π∗F ), C∞(B,ΩB ⊗F ))

and

(15) C∞
π (B,D′(M,E) →֒ C∞

π (B,D′(M,E ⊗ End(π∗F ))) ≃ D′
π(M,E ⊗ End(π∗F )).

2.3. Examples of transversal distributions.

Obviously, if π : M → M is the identity map then D′
π(M) = C∞(M) and if π maps M to a

point then D′
π(M) = D′(M).

The wave front set ([10, Chapter 8]) is a powerful tool to analyse the singularities of a distribution.

It can be thought of as the set of directed points in T ∗M \ 0, around which the Fourier transform

is not rapidly decreasing. Using wave front set is a convenient way to check the transversality of

distributions with respect to a given submersion π : M → B, and it thus gives access to more

interesting examples. Indeed,

Proposition 7. Let W ⊂ T ∗M \ 0 be a closed cone and D′
W (M) = {u ∈ D′(M) ; WF(u) ⊂ W}.

If W ∩ (ker dπ)⊥ = ∅, then
D′

W (M) ⊂ D′
π(M).

Proof. We apply the formula (3.6) p. 328 of [8]:

WF(π∗(u.f)) ⊂ (dπ)∗(WF(u.f)) ⊂ (dπ)∗(WF(u)) = {(x, ξ) ; x = π(m) , (m, tdπm(ξ)) ∈ WF(u)}.

Since (ker dπ)⊥ = {(m, ζ) ; ζ ∈ Im(tdπm)}, we obtain WF(π∗(u.f)) = ∅, and thus π∗(u.f) is

smooth. �

For instance, consider a section of π, that is a submanifold X ⊂ M such that π : X → B

is a diffeomorphism onto an open subset of B. Let ω ∈ Ω(X) be any C∞ density and define

lω ∈ D′(M,ΩM ) by

(16) 〈lω, f〉 =
∫

X
fω.

Then lω ∈ D′
π(M,ΩM ), for WF(lω) ⊂ N∗(X) (see [10, Example 8.2.5]) and N∗(X) ∩ (ker dπ)⊥ =

X × {0}. Alternatively, it is easy to check that π∗(lω.f) is given by the C∞ density π∗(ωf |X). Of

course, for any differential operator P onM , we still have Plω ∈ D′
π(M,ΩM ), for WF(Pu) ⊂ WF(u)

for any distribution u. Actually, this gives all instances of transversal distributions supported within

a section. Indeed, let u ∈ E ′
π(M,ΩM ) such that supp(u) ⊂ X. It is no restriction to work in a local

trivialization, that is to assume π : M = X × Rn → X, (x, y) 7→ x and identify X ≃ X × {0}. By

[10, Theorem 2.3.5], we have

(17) 〈u, φ〉 =
∑

|α|≤k

〈uα, (∂αy φ)(·, 0)〉, ∀φ ∈ C∞
c (X × Rn)

where k is the order of u and uα ∈ D′(X) has order k − |α|. It follows that

(18) C∞(X) ∋ π∗(fu) =
∑

|α|≤k

(∂αy f)(·, 0).uα, ∀f ∈ C∞(X × Rn).

Selecting f = yα shows that uα is C∞. We have proved
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Proposition 8. Let u ∈ E ′(M,ΩM ) such that supp(u) ⊂ X, X being a section of π. Then

u ∈ E ′
π(M,ΩM ) if and only if u is a finite sum of distributions obtained by differentiation along the

fibers of π of distributions of the kind (16).

Remark 9. u ∈ D′
π(M) does not imply WF(u)∩ ker dπ⊥ = ∅. Indeed, consider π : R × R →

R, (x, y) 7→ x and define u ∈ C∞(R,D′(R)) by

(19) 〈u, φ〉(x) =
√
2π

∫
χ(η)|η|e−η2x2/2φ̂(−η)dη

where χ is C∞, χ(η) = 1 if |η| ≥ 1 and χ(η) = 0 if |η| ≤ 1/2. Since û(ξ, η) = χ(η)e−ξ2/(2η2) we

conclude WF(u)∩(ker dπ)⊥ 6= ∅ ([10, Section 8.1]).

It is not obvious to us how to characterize transversal distributions whose wave front set avoids

(ker dπ)⊥. We give in the following lemma a sufficient condition.

Lemma 10. Let v ∈ D′
πX

(X ×Y ) and assume that there exists constants d ∈ N and δ ∈ [0, 1) such

that for any compact subset K of Y and multi-index β ∈ NnX , one can find a constant CKβ such

that

(20) |〈∂βvx, f〉| ≤ CKβ‖f‖K,d+δ|β|, ∀f ∈ C∞
c (Y ), x ∈ X.

Here, we have set ‖f‖K,d+δ|β| =
∑

|α|≤d+δ|β| supK |∂αf |. Then we have WF(v) ⊂ (ker dπY )
⊥.

In particular, WF(v)∩(ker dπX)⊥ = ∅.

Remark 11. Distributions in Proposition 8 satisfy the assumption of the lemma with δ = 0.

Proof of the lemma. Let us fix (x0, y0, ξ0, η0) 6∈ (ker dπY )
⊥, that is, ξ0 6= 0 and assume that

|(ξ0, η0)| = 1. We work below in a conic neighborhood Γ of (x0, y0, ξ0, η0) such that for all

(x, y, ξ, η) ∈ Γ with |(ξ, η)| = 1, we have |ξj| ≥ |ξ0j |/2 for some fixed j such that ξ0j 6= 0.

Let (x, y, ξ, η) ∈ Γ be such that |(ξ, η)| = 1 and ϕ(x, y) be supported in a compact neighborhood

K × L of (x0, y0) in X × Y . Denoting ϕx = ϕ(x, ·), we have for any N > 0

|〈v, ϕe−it〈(·,·),(ξ,η)〉〉| = |
∫

〈vx , ϕxe
−it〈(x,·) , (ξ,η)〉〉dx| = |

∫
ϕ̂xvx(tη)e

−it〈x , ξ〉dx|

≤ C.


 ∑

|α|≤N

sup
x∈L

|∂αx ϕ̂xvx(tη)||ξ||α|−2N


 t−N by [10, Theorem 7.7.1].(21)

Moreover, since v : x 7→ vx is C∞, we have

∂Nxj
ϕ̂xvx(tη) = ∂Nxj

〈ϕxvx, e
−it〈· , η〉〉 = 〈∂Nxj

ϕxvx, e
−it〈· , η〉〉 = ̂∂Nxj

ϕxvx(tη).

We note Kǫ = {y+ z; y ∈ K, |z| < ǫ} for any ǫ > 0 and let χǫ ∈ C∞
c (Kǫ) be such that χǫ = 1 on

Kǫ/2. If H(η) denotes the supporting function of K [10, 4.3.1], we get using the assumption (20)

and the proof of the Paley-Wiener-Schwartz Theorem in [10, 7.3.1]

| ̂∂Nxj
ϕxvx(η)| = |∂Nxj

ϕxvx(χǫe
−i〈· , η〉)| ≤ CKǫN

∑

|β|≤d+δN

sup |∂β(χǫe
−i〈· , η〉)|

≤ CKǫN .C.e
H(0).

∑

|β|≤d+δN

ǫ−β(1 + |η|)d+δN−|β|.

With ǫ = 1/(1 + |η|) and using the inequalities CKǫN ≤ CKǫ′N if ǫ < ǫ′, we obtain

(22) | ̂∂Nxj
ϕxvx(η)| ≤ CK1N .C.(1 + |η|)d+δN ≤ C ′

KN(1 + |η|)d+δN .
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Using uniform estimates |ξ| ≥ c1 > 0 and (1+ |tη|) ≤ c2t for (ξ, η) ∈ Γ, |(ξ, η)| = 1 and the estimate

(22) applied to (21), we get

|〈v, ϕe−it〈(·,·),(ξ,η)〉〉| ≤ C.td+(δ−1)N .

since δ − 1 < 0, we conclude that (x0, y0, ξ0, η0) 6∈ WF(v). �

2.4. Operations on transversal distributions.

One has obviously, following the definitions.

Proposition 12. Let E be a C∞ vector bundle overM , C a submanifold of B and πC : π−1(C) → C

the restriction of the submersion π :M → B. The restriction of distributions

RestC : D′
π(M,E) −→ D′

πC
(π−1(C), E|π−1(C))

is well defined and continuous.

Proposition 13. Let ρ : Z →M and π :M → B be surjective submersions. Let E be a C∞ vector

bundle over M . The pull back of distributions restricts to a continuous map

ρ∗ : D′
π(M,E) −→ D′

π◦ρ(Z, ρ
∗E).

Proof. Since ρ is a submersion, the map

ρ∗ : C∞
fc−π◦ρ(Z,ΩZ ⊗ ρ∗E∗) −→ C∞

fc−π(M,ΩM ⊗ E∗)

f 7−→ (m 7→
∫
ρ−1(m) f)

is well defined and continuous. Since ρ∗(u) = u ◦ ρ∗, the proposition follows. �

Let πi :Mi −→ B, i = 1, 2 be two submersions and define

π :M1 ×
π
M2 = {(m1,m2) ∈M1 ×M2 ; π1(m1) = π2(m2)} ∋ (m1,m2) 7−→ π1(m1).

Writing pri(m1,m2) = mi, we get a commutative square of submersions

(23) M1 ×
π
M2

pr2
//

pr1

��

M2

π2

��

M1
π1

// B

Proposition 14. The pull-back pr∗1 : D′(M1) −→ D′(M1 ×
π
M2) restricts to a continuous map

(24) pr∗1 : D′
π1
(M1) −→ D′

pr2
(M1 ×

π
M2).

Proof. We identify transversal distributions with C∞ families and we can work locally, that is we

assume that πj : X×Yj → X, withX,Y1, Y2 open subsets in euclidean spaces. If u ∈ C∞(X,D′(Y1))

then pr1
∗(u) is given by the family

X × Y2 ∋ (x, y2) 7−→ ux ∈ D′(Y1).

The statement follows.

�
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Remark 15. (1) The assertion of the previous proposition holds for commutative square of

surjective submersions

(25) M
pr2

//

pr1
��

M2

π2

��

M1
π1

// B

such that any point of M , ker dπ1 ◦ pr1 = ker dpr1 +ker dpr2 or, equivalently, such that

pr1 : pr2
−1(m2) → π−1

1 (b), b = π2(m2), is a submersion for any m2 ∈M2.

(2) One can also prove in the same way that the restriction pr∗1 : P ′
π1
(M1) −→ P ′

pr2
(M) is

continuous, observing that pr∗1 restricts to D′
fc−π1

(X × Y1) −→ D′
fc−pr2

(X × Y1 × Y2).

Then one can, as above, extend this result to more general commutative squares, provided

the additional condition that the map M →M1 ×
π
M2,m 7→ (pr1(m),pr2(m)) has compact

fibers.

When a finite set I of submersions is given on M , we introduce

(26) D′
I(M) =

⋂

ρ∈I

D′
ρ(M) ⊂ D′(M).

The space D′
I(M,E) is given the topology generated by the union of the topologies induced by each

D′
ρ(M), ρ ∈ I. We adopt similar convention for the spaces E ′

I(M) and D′
c−I(M). The previous

proposition is now used to define fibered product of distributions.

Proposition 16. We keep the setting of Proposition 14 and we consider extra submersions ρ :

M1 −→ A, σ :M2 −→ C.

M1 ×
π
M2 M2 C

M1 B

A

pr2

pr1 π π2

σ

π1

ρ

The fibered product of C∞ functions (f1, f2) 7−→ f1 ⊗ f2|M1×
π
M2 extends uniquely to separately

continuous bilinear maps

(27)
D′

π1
(M1)×D′

σ(M2) −→ D′
σ◦pr2

(M)

(u1, u2) 7−→ u1 ×
π1

u2
and

D′
ρ(M1)×D′

π2
(M2) −→ D′

ρ◦pr1
(M)

(u1, u2) 7−→ u1 ×
π2

u2

If uj ∈ D′
πj
(Mj), j = 1, 2 then the equality

(28) u1 ×
π1

u2 = u1 ×
π2

u2

holds and both previous maps restrict to a separately continuous bilinear map

(29)
D′

ρ,π1
(M1)×D′

π2,σ(M2) −→ D′
ρ◦pr1,π,σ◦pr2

(M)

(u1, u2) 7−→ u1 ×
π1

u2.

Remark 17. The above map in (27) restricts to a separately continuous map

(30) P ′
π1
(M1)×D′

σ(M2) −→ D′
σ◦pr2

(M) ∩ D′
fc−pr2

(M).

There are analogous statements for the fibered product over π2 and the conditions on supports can

be interchanged.
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Proof. Let u1 ∈ D′
π1
(M1) and u2 ∈ D′(M2). As a distribution on M , u1 ×

π1

u2 is defined by

(31) 〈u1 ×
π1

u2, f〉 =
∫

M2

(∫

M1π2(m2)

u1π2(m2)(m1)f(m1,m2)

)
u2(m2)

where the integrals are taken in the distribution sense. This coincides with the fibered product of

functions when u1, u2 are C∞. Proposition 14 says that

(32) T : u ∈ D′
π1
(M1) 7−→ pr∗1(u) ∈ L(C∞

fc−pr2
(M,ΩM ), C∞(M2,ΩM2))

is well defined and continuous. Observing that the inclusion C∞
fc−σ◦pr2

(M,ΩM ) ⊂ C∞
fc−pr2

(M,ΩM )

is continuous, we get the continuity of the mapping:

(33) T : u ∈ D′
π1
(M1) 7−→ pr∗1(u) ∈ L(C∞

fc−σ◦pr2
(M,ΩM ), C∞(M2,ΩM2)).

From pr∗1(u)(C
∞
fc−σ◦pr2

(M,ΩM )) ⊂ C∞
fc−σ(M2,ΩM2)), we get from the closed graph Theorem again

that the restricted map

pr∗1(u) : C
∞
fc−σ◦pr2

(M,ΩM ) −→ C∞
fc−σ(M2,ΩM2)

is continuous, and we outline the proof of continuity of the mapping:

T : u ∈ D′
π1
(M1) 7−→ pr∗1(u) ∈ L(C∞

fc−σ◦pr2
(M,ΩM ), C∞

fc−σ(M2,ΩM2)).

By definition of the topology of uniform convergence on bounded subsets, we have to estimate

(34) pB(T (u)) = sup
f∈B

p(T (u)(f))

for any semi-norm p defining the topology of C∞
fc−σ(M2,ΩM2) and any bounded subset B ⊂

C∞
fc−σ◦pr2

(M,ΩM ). But for any such bounded subset B, there exists Ω ⊂M such that σ◦pr2 : Ω → C

is proper and f ∈ B ⇒ supp(f) ⊂ Ω. We then have supp(T (u)(f)) ⊂ pr2(Ω) for any B. Since

σ : pr2(Ω) → C is proper, p is also a continuous semi-norm on C∞
0 (pr2(Ω),ΩM2) hence we can

replace in (34) p by a semi-norm of C∞
0 (pr2(Ω),ΩM2) or equally by a semi-norm of C∞(M2,ΩM2)

and the result now follows from the continuity of (33). Then

(35) u1 ×
π1

u2 = u2 ◦ pr∗1(u1) ∈ LC∞(C)(C
∞
fc−σ◦pr2

(M,ΩM ), C∞(C,ΩC))

is continuous in u1 and u2 since the composition of continuous linear maps is separately continuous.

When uj ∈ D′
πj
(Mj), j = 1, 2, both fibered products u1×

πj

u2, j = 1, 2 makes sense. Starting with

(31) and applying Fubini Theorem for distributions, we get their equality and this also allows to

take into account the extra transversality assumptions (29) in order to conclude, by the previous

method, that u1 ×
π2

u2 is transversal with respect to ρ ◦ pr1, π and σ ◦ pr2 and depends continuously

on u1 and u2. �

Consider a commutative diagram

(36) M
f

//

π
  A

AA
AA

AA
A

N

ρ
~~~~
~~
~~
~~

B
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where f is a C∞ map and π, ρ are submersions. If u ∈ E ′(M,ΩM ), the push-forward of u by f is

given by 〈f∗u, g〉 = 〈u, g ◦ f〉 and if moreover u is transversal with respect to π, then f∗u is given

by the C∞ family ((f |Mb
)∗ub), b ∈ B. We obtain a map

(37) f∗ : E ′
π(M,ΩM ) −→ E ′

ρ(N,ΩN ).

Since f is not necessarily proper, we can not extend f∗ to D′
π, nevertheless:

Proposition 18. Let ϕ ∈ C∞(M) such that f : supp(ϕ) −→ N is proper. Then the map

D′
π(M,ΩM ) −→ D′

ρ(N,ΩN )(38)

u 7−→ f∗(ϕu)(39)

is well defined and continuous.

Proof. Under the assumption on the support of ϕ, we easily get that g 7−→ ϕ.g◦f maps continuously

C∞
fc−ρ(N) into C∞

fc−π(M). The result follows. �

3. Convolution of transversal distributions on groupoids

We apply these observations in the context of Lie groupoids.

A Lie groupoid is a manifold G endowed with the additional following structures:

• two surjective submersions r, s : G⇉ G(0) onto a manifold G(0) called the space of units.

• An embedding u : G(0) −→ G, which allows to consider G(0) as a submanifold of G and

then such that

(40) r(x) = x , s(x) = x, for all x ∈ G(0).

• A C∞ map

(41) i : G −→ G, γ 7−→ γ−1

called inversion and satisfying s(γ−1) = r(γ) and r(γ−1) = s(γ) for any γ.

• a C∞ map

(42) m : G(2) = {(γ1, γ2) ∈ G2 ; s(γ1) = r(γ2)} −→ G, (γ1, γ2) 7−→ γ1γ2

called the multiplication, satisfying the relations, whenever they make sense

(γ1γ2)γ3 = γ1(γ2γ3) r(γ)γ = γ γs(γ) = γ(43)

γγ−1 = r(γ) γ−1γ = s(γ) r(γ1γ2) = r(γ1), s(γ1γ2) = s(γ2).(44)

It follows from these axioms that i is a diffeomorphism equal to its inverse, m is a surjective

submersion and γ−1 is the unique inverse of γ, for any γ, that is the only element of G satisfying

γγ−1 = r(γ), γ−1γ = s(γ). These assertions need a proof, and the unfamiliar reader is invited to

consult for instance [13] and references therein.

It is customary to write

Gx = s−1(x), Gx = r−1(x), Gy
x = Gx ∩Gy, mx = m|Gx×Gx : Gx ×Gx −→ G.

Gx, G
x are submanifolds and Gx

x is a Lie group. The submersion d : (γ1, γ2) 7→ γ1γ
−1
2 defined on

G×
s
G is called division of G.

Obviously, Lie groups, C∞ vector bundles, principal bundles, are Lie groupoids. Also, for any

manifold X, the manifold X ×X inherits a canonical structure of Lie groupoid with unit space X
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and multiplication given by (x, y).(y, z) = (x, z). The reader can find in [25, 19, 3, 18, 16, 5, 15, 17, 6]

more concrete examples.

The Lie algebroid A(G) of a Lie groupoid G is the fiber bundle TG|G(0)/TG(0) over G(0). It can

be identified with Ker ds|G(0) or Ker dr|G(0) . Its dual A∗(G) is the conormal bundle of G(0).

We recall the construction of the canonical convolution algebra C∞
c (G,Ω1/2) [3, 7] associated

with any Lie groupoid G. The product of convolution

(45) C∞
c (G,Ω1/2)× C∞

c (G,Ω1/2)
∗−→ C∞

c (G,Ω1/2)

is given by the integral

(46) f ∗ g(γ) =
∫

γ1γ2=γ
f(γ1)g(γ2), γ ∈ G

which is well defined and gives an internal operation as soon as we take

(47) Ω1/2 = Ω1/2(ker dr)⊗ Ω1/2(ker ds) = Ω1/2(ker dr ⊕ ker ds).

To understand this point, we recall

Lemma 19. [3, 7]. Denoting by m the multiplication map of G and by pr1,pr2 : G × G → G the

natural projection maps, we have a canonical isomorphism

(48) pr∗1(Ω
1/2)⊗ pr∗2(Ω

1/2)|G(2) ≃ Ω(ker dm)⊗m∗(Ω1/2).

Proof. We note G
(2)
γ the fiber of m at γ, that is G

(2)
γ = {(γ1, γ2) ∈ G(2) ; γ1γ2 = γ}.

Now, the restricted map pr1 : G
(2)
γ → Gr(γ) being a diffeomorphism, we have a canonical isomor-

phism of vector bundles

TG(2)
γ

≃−→ pr∗1(TG
r(γ)) = pr∗1(ker dr)|G(2)

γ
, (γ1, γ2,X1,X2) 7−→ (γ1, γ2,X1).

Similarly, TG
(2)
γ ≃ pr∗2(TGs(γ)). Moreover the map

pr∗1(ker ds)|G(2)
γ

≃−→ G(2)
γ × TγGs(γ), (γ1, γ2,X1) 7−→ (γ1, γ2, (dRγ2)γ1(X1))

provides a canonical trivialisation of the vector bundle pr∗1(ker ds)|G(2)
γ
. The same holds for

pr∗2(ker dr)|G(2)
γ

≃ G(2)
γ × TγG

r(γ).

With these isomorphisms in hand, we get

pr∗1(Ω
1/2)|

G
(2)
γ

⊗ pr∗2(Ω
1/2)|

G
(2)
γ

≃ Ω1/2(pr∗1(ker dr ⊕ ker ds)|
G

(2)
γ

⊕ pr∗2(ker dr ⊕ ker ds)|
G

(2)
γ
)

≃ Ω1/2(TG(2)
γ ⊕ TγGs(γ) ⊕ TγG

r(γ) ⊕ TG(2)
γ )

≃ Ω(TG(2)
γ )⊗ Ω1/2(TγGs(γ) ⊕ TγG

r(γ)).

This gives the canonical isomorphim (48). �

Since in the basic formula (46) the function under sign of integration

G(2)
γ ∋ (γ1, γ2) 7→ f(γ1)g(γ2) ∈

(
pr∗1(Ω

1/2)⊗ pr∗2(Ω
1/2)

)
(γ1,γ2)

is a C∞ section of the bundle
(
pr∗1(Ω

1/2)⊗ pr∗2(Ω
1/2)

)
|
G

(2)
γ
, Lemma 19 shows that (46) is the integral

of a one density, canonically associated with f, g over the submanifold m−1(γ) and that the result

is a C∞ section of Ω1/2. Further computations on densities show that the statement

(49) f ∗ g(γ) =
∫

Gr(γ)

f(γ1)g(γ
−1
1 γ) =

∫

Gs(γ)

f(γγ−1
2 )g(γ2)
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makes sense and is true. The involution on C∞
c (G,Ω1/2) is also natural in terms of densities

f⋆ = i∗(f), f ∈ C∞
c (G,Ω1/2)

where i is the induced vector bundle isomorphism over the inversion map of G

ker dr ⊕ ker ds −→ ker dr ⊕ ker ds, (γ,X1,X2) 7−→ (γ−1, di(X2), di(X1)).

The spaces C∞(G,Ω−1/2 ⊗ ΩG) and C
∞
c (G,Ω−1/2 ⊗ ΩG) are endowed with their usual Fréchet

and LF topological vector space structures and we denote by E ′(G,Ω1/2) and D′(G,Ω1/2) their

topological duals. The choice of densities is made so that we have canonical embeddings

C∞(G,Ω1/2) →֒ D′(G,Ω1/2) and C∞
c (G,Ω1/2) →֒ E ′(G,Ω1/2).

For simplicity, we assume in the sequel that G(0) is compact, thus E ′(G,Ω1/2) = D′
fc−π(G,Ω

1/2)

and E ′
π(G,Ω

1/2) = P ′
π(G,Ω

1/2) if π ∈ {r, s}.

Theorem 20. The bilinear map

E ′
s(G,Ω

1/2)× E ′(G,Ω1/2)
∗−→ E ′(G,Ω1/2)(50)

(u, v) 7−→ u ∗ v = m∗(u×
s
v)

is well defined and separately continuous. Also, the maps

D′(G,Ω1/2)
∗−→ D′(G,Ω1/2) and D′

s(G,Ω
1/2)

∗−→ D′
s(G,Ω

1/2)(51)

v 7−→ u0 ∗ v = m∗(u0 ×
s
v) u 7−→ u ∗ v0 = m∗(u×

s
v0)

are well defined and continuous for any u0 ∈ E ′
s(G,Ω

1/2) and v0 ∈ E ′(G,Ω1/2). Similar statements

are available for r-transversal distributions used as right variables. We get by restriction separately

continuous bilinear maps

(52) E ′
π(G,Ω

1/2)× E ′
π(G,Ω

1/2)
∗−→ E ′

π(G,Ω
1/2)

for π = r and π = s. The space (E ′
π(G,Ω

1/2), ∗) is an associative algebra with unit given by

(53) 〈δ, f〉 =
∫

G(0)

f, f ∈ C∞(G,Ω−1/2 ⊗ ΩG).

In particular (E ′
r,s(G,Ω

1/2), ∗) is an associative unital algebra with involution given by

(54) u⋆ = i∗(u).

Proof. Applying Proposition 16 to the case M1 = M2 = G, B = G(0), π1 = s, π2 = r and

σ : G→ {pt}, one gets a distribution u×
s
v ∈ D′(G(2),Ω1/2) which depends continuously on u and

v. Since u ∈ E ′ on can choose φ ∈ C∞
c (G) such that u = φu. Then

u×
s
v = ϕu×

s
v

where ϕ = φ ◦ pr1 |G(2) and Proposition 18 can be applied to the case f = m with B = {pt}. This
gives that u ∗ v is well defined for v ∈ D′ and the continuity of v 7→ u ∗ v on E ′,D′ as well. For fixed

v ∈ E ′, one gets the continuity of u 7→ u ∗ v on E ′
s,D′

s in the same way.

To prove the statement involving (52) for π = s we apply Proposition 16 to M1 = M2 = G,

B = G(0), π1 = s, π2 = r and σ = s and Proposition 18 to ρ = s and π = s ◦ pr2.
The associativity of ∗ on distributions follows by continuity and density of C∞

c (G,Ω1/2).
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We check that the integral defining δ has an intrinsic meaning and gives a unit in E ′
r,s(G,Ω

1/2).

Since TG|G(0) = TG(0) ⊕ ker ds, we have Ω(G)|G(0) = Ω(G(0))⊗ Ω(ker ds). On the other hand the

inversion gives a canonical isomorphism between the bundles ker ds|G(0) and ker dr|G(0) , thus

Ω(ker ds) = Ω1/2(ker ds)⊗ Ω1/2(ker ds) ≃ Ω1/2(ker ds)⊗ Ω1/2(ker dr) = Ω1/2

Through these canonical identifications, any f ∈ C∞(G,Ω−1/2 ⊗ΩG) gives by restriction to G(0) a

one density on G(0), which gives a well defined meaning to δ(f). Obviously

r∗(fδ) = s∗(fδ) = f |G(0) ∈ C∞(G(0)) ⊂ D′(G(0)), for any f ∈ C∞(G),

in particular δ ∈ E ′
r,s(G,Ω

1/2). If δx ∈ D′(Gx), x ∈ G(0) is the associated C∞ family, we then get

by Remark 6

〈δx, φ〉 = r∗(δφ̃)(x) = φ(x), for any φ ∈ C∞
c (Gx) and φ̃ ∈ C∞

c (G) such that φ̃|Gx = φ.

It follows that for any f ∈ C∞(G,Ω−1/2 ⊗ ΩG),

〈u ∗ δ, f〉 =

∫

x∈G(0)

〈ux ⊗ δx, (f ◦m)|Gx×Gx〉 =
∫

x∈G(0)

〈ux, f |Gx〉 = 〈u, f〉.

The proof of the equality δ ∗ u = u is similar. The assertion about the involution is obvious. �

In particular, when one of the two factors is in C∞
c , the convolution product is defined without

any restriction on the other factor. We give a sufficient condition for the result to be C∞.

Proposition 21. The convolution product gives by restriction a bilinear separetely continuous map

D′
r(G,Ω

1/2)× C∞
c (G,Ω1/2)

∗−→ C∞(G,Ω1/2).

The analogous statement with C∞ functions on the left and s-transversal distributions on the right

also holds. The map u 7→ u ∗ · mapping D′
r(G,Ω

1/2) to L(C∞
c (G,Ω1/2), C∞(G,Ω1/2)) is injective.

Proof. If u = (uy)y ∈ D′
r, the map

(55) γ 7→ 〈ur(γ)(·), f((·)−1γ)〉

is C∞ and by definition of the convolution product we get

〈u ∗ f, φ〉 =
∫

γ2∈G
〈ur(γ2)(·), f((·)−1γ2)〉φ(γ2).

Thus u∗f coincides with the C∞ function (55). The continuity of u 7→ u∗f is given by Theorem 20

and repeating the argument given in its proof, one gets the continuity of f 7→ u∗f on C∞
0 (K,Ω1/2) =

{f ∈ C∞ ; supp(f) ⊂ K} for any compact K ⊂ G. The results follows by inductive limit.

Now, the vanishing of u ∗ f for any f and the previous expression for u ∗ f shows that ux = 0,

for any x, and thus u = 0. �

Remark 22. Note that if in the previous proposition we suppose that u has compact support

K ⊂ G, then u∗f can be defined for any map f ∈ C∞(G,Ω1/2). Moreover for any f ∈ C∞
c (G,Ω1/2),

then u ∗ f is also compactly supported and supp(u ∗ f) ⊂ K.supp(f).



CONVOLUTION OF DISTRIBUTIONS ON GROUPOIDS 15

4. G-operators

We recall the notion of G-operators given in [16] and we add a notion of adjoint for them.

Definition 3. A (left) G-operator is a continuous linear map P : C∞
c (G,Ω1/2) → C∞(G,Ω1/2)

such that there exists a family Px : C∞
c (Gx,Ω

1/2
Gx

) −→ C∞(Gx,Ω
1/2
Gx

), x ∈ G(0) of operators such

that

(56) P (f)|Gx = Px(f |Gx), ∀f ∈ C∞
c (G,Ω1/2), ∀x ∈ G(0)

(57) Pr(γ) ◦Rγ = Rγ ◦ Ps(γ), ∀γ ∈ G.

A G-operator P is said adjointable if there exists a G-operator Q such that

(58) (P (f)|g) = (f |Q(g)) ; f, g ∈ C∞
c (G,Ω1/2).

Here (f |g) = f⋆ ∗ g is the C∞
c (G,Ω1/2)-valued pre-hilbertian product of C∞

c (G,Ω1/2).

We note OpG and Op⋆G respectively the linear spaces of G-operators and adjointable ones.

We say that G-operator P is supported in K if supp(P (f)) ⊂ K.supp(f) for all f . The subspaces

of compactly supported G-operators are denoted OpG,c,Op⋆G,c.

Looking at C∞
c (G,Ω1/2) and C∞(G,Ω1/2) as right C∞

c (G,Ω1/2)-modules for the convolution

product, G-operators can be characterized in a simple way.

Proposition 23. A linear operator P : C∞
c (G,Ω1/2) → C∞(G,Ω1/2) is a G-operator if and only

if it is continuous and

P (f ∗ g) = P (f) ∗ g ∀f, g ∈ C∞
c (G,Ω1/2).

In other words, OpG = LC∞
c (G,Ω1/2)(C

∞
c (G,Ω1/2), C∞(G,Ω1/2)).

Proof. Let P ∈ OpG. Let us write px for the Schwartz kernel of Px. For any f, g compactly

supported and γ ∈ G

P (f ∗ g)(γ) =

∫

γ2∈Gs(γ)

∫

γ1∈Gs(γ)

ps(γ)(γ, γ2)f(γ2γ
−1
1 )g(γ1)

=

∫

γ1∈Gs(γ)

(∫

γ2∈Gs(γ)

ps(γ)(γ, γ2)(Rγ−1
1
f)(γ2)

)
g(γ1)

=

∫

γ1∈Gs(γ)

(∫

γ2∈Gs(γ)

pr(γ1)(γγ
−1
1 , γ2)f(γ2)

)
g(γ1)

=

∫

γ1∈Gs(γ)

P (f)(γγ−1
1 )g(γ1) = P (f) ∗ g(γ).

Conversely, let f ∈ C∞
c (G,Ω1/2) and x ∈ G(0) such that f |Gx = 0. observe that (g ∗ f)|Gx = 0

for any g ∈ C∞
c (G,Ω1/2). It follows that P (g ∗ f)|Gx = P (g) ∗ f |Gx = 0. Choose a sequence

φn ∈ C∞
c (G,Ω1/2) converging to δ in E ′

r. Then φn ∗ f converges to f in C∞
c (G,Ω1/2) and therefore

P (f)(γ) = limP (φn ∗ f)(γ) = 0 ∀γ ∈ Gx.

In other words, P (f)|Gx only depends on f |Gx and we can define Px for any x by

Px(f) = P (f̃)|Gx ∀f ∈ C∞
c (Gx,Ω

1/2
Gx

) and f̃ ∈ C∞
c (G,Ω1/2) such that f̃ |Gx = f.
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Let γ ∈ Gy
x. Then for any γ′ ∈ Gy and f ∈ C∞

c (G,Ω1/2), we have

Rγ(Px(φn ∗ f))(γ′) = P (φn ∗ f)(γ′γ)
= P (φn) ∗ f(γ′γ) = P (φn) ∗ (Rγf)(γ

′) = P (φn ∗ (Rγf))(γ
′).

Taking the limit in this equality gives (57). �

Let u ∈ D′
r(G,Ω

1/2). Using Propositions 21 and 23, we can define P ∈ OpG by setting P (f) =

u ∗ f for any f ∈ C∞
c (G,Ω1/2).

Conversely, let P ∈ OpG and px ∈ D′(Gx ×Gx) the Schwartz kernel of Px, x ∈ G(0). Since

γ 7−→ P (f)(γ) =

∫
ps(γ)(γ, γ1)f(γ1)

is C∞ for any f , we get that γ 7→ ps(γ)(γ, ·) belongs to D′
pr1

(G ×
s
G) and then using Proposition

12, it restricts to the map G(0) ∋ x 7→ px(x, ·) belonging to D′
s(G). Defining kP ∈ D′

r(G) by

kP (γ) = pr(γ)(r(γ), γ
−1), we get for any f ∈ C∞

c (G,Ω1/2), x, y ∈ G(0) and γ ∈ Gy
x

P (f)(γ) =

∫

Gx

px(γ, γ1)f(γ1) =

∫

Gy

py(y, γ1)f(γ1γ)

=

∫

Gy

py(y, γ
−1
1 )f(γ−1

1 γ) = 〈(kP )y, f((·)−1γ)〉Gy = kP ∗ f(γ).(59)

Thus P the operator given by left convolution with kP . We call kP the convolution distributional

kernel of P . Note that supp(P ) = supp(kP ). We have proved

Theorem 24. The map P 7→ kP gives the isomorphisms

(60) OpG ≃ D′
r(G,Ω

1/2) and OpG,c ≃ E ′
r(G,Ω

1/2).

If kP ∈ D′
r,s(G,Ω

1/2) then P is obviously adjointable and kP ⋆ = (kP )
⋆. Conversely, if P as an

adjoint Q then

(61) (kP ∗ f)⋆ ∗ g = (f⋆ ∗ k⋆P ) ∗ g = f⋆ ∗ (kQ ∗ g) ; f, g ∈ C∞
c (G,Ω1/2),

hence k⋆P = kQ ∈ D′
s(G,Ω

1/2) ∩ D′
r(G,Ω

1/2). Thus Theorem 24 yields

Corollary 25. The map P → kP gives an isomorphism

(62) Op⋆G ≃ D′
r,s(G,Ω

1/2).

Remark 26. Rephrazing the previous results, we have, for instance

OpG ≃ Ls(C
∞
c (G,Ω1/2), C∞(G(0))).

where we have replaced LC∞(G(0)) by Ls to emphasize that the C∞(G(0))-module structure on

C∞
c (G,Ω1/2) is given by s. Also

Op⋆G ≃ Lr,s(C
∞
c (G,Ω1/2), C∞(G(0))).

where Lr,s = Ls ∩ Lr. In terms of Schwartz kernel theorems for submersions, G-operators thus

appear as “semi-regular” distributions (see Treves [21, p.532]) since, for π = s or π = r

D′(G,Ω1/2) ≃ Lπ(C
∞
c (G,Ω1/2),D′(G(0))).

Now observe that if kP ∈ E ′
r,s(G,Ω

1/2), Theorem 20 implies that P extends continuously to a map

D′(G,Ω1/2) −→ D′(G,Ω1/2) sending the subspace E ′
r,s to E ′

r,s. This leads to another characterization

of adjointness.
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Proposition 27. A compactly supported G-operator P is adjointable if and only if it extends

continuously to a map

P̃ : D′(G,Ω1/2) −→ D′(G,Ω1/2)

such that P̃ (δ) ∈ D′
r,s(G,Ω

1/2). In that case, P̃ = kP ∗ ·.

Proof. Let u ∈ D′(G,Ω1/2) and (un) ⊂ C∞
c (G,Ω1/2) a sequence converging to u in D′. We have

P̃ (u ∗ f) = limP (un ∗ f) = limP (un) ∗ f = P̃ (u) ∗ f, ∀f ∈ C∞
c (G,Ω1/2).

Thus P̃ is automatically C∞
c (G,Ω1/2)-right linear. It follows that

kP ∗ f = P (f) = P (δ ∗ f) = P̃ (δ) ∗ f, ∀f ∈ C∞
c (G,Ω1/2)

which proves that kP = P̃ (δ) ∈ D′
r,s(G,Ω

1/2) and that P̃ is given by left convolution with kP . �

5. Convolution on groupoids and wave front sets

We now turn to some microlocal aspects of the convolution of distributions on groupoids. In

view of Proposition 7, it is natural to call r-transversal any (conic) subset W ⊂ T ∗G \ 0 such that

W ∩ ker dr⊥ = ∅, indeed in that case

(63) D′
W (G,Ω1/2) ⊂ D′

r(G,Ω
1/2).

Similarly, W is called s-transversal if W ∩ ker ds⊥ = ∅ and we call bi-transversal any set which is

both r and s-transversal. We then introduce

(64) D′
a(G,Ω

1/2) = {u ∈ D′(G,Ω1/2) ; WF(u) is bi-transversal}

and E ′
a = D′

a ∩ E ′. We call them admissible distributions. From Proposition 7, we get

(65) D′
a(G,Ω

1/2) ⊂ D′
r,s(G,Ω

1/2).

Example 1. Observe that A∗G \ 0 is bi-transversal. Since Ψ(G) = I(G,G(0)) ⊂ D′
A∗G(G) (see

[14]) we get

(66) Ψ(G) ⊂ D′
a(G,Ω

1/2).

Theorem 20 and Proposition 21 can be reused in various ways for subspaces of distributions with

transversal wave front sets. We only record the main one: the convolution product restricts to a

bilinear map

(67) E ′
a(G,Ω

1/2)× E ′
a(G,Ω

1/2)
∗−→ E ′

r,s(G,Ω
1/2),

and we strenghthen this result as follows, by using the cotangent groupoid structure of Coste-

Dazord-Weinstein (see Appendix).

Theorem 28. For any u1, u2 ∈ E ′
a(G,Ω

1/2), we have u1 ∗ u2 ∈ E ′
a(G,Ω

1/2) and

(68) WF(u1 ∗ u2) ⊂ WF(u1) ∗WF(u2)

where on the right, ∗ denotes the product of the symplectic groupoid T ∗G ⇉ A∗G. In particular

(E ′
a(G,Ω

1/2), ∗) is a unital involutive subalgebra of (E ′
r,s(G,Ω

1/2), ∗).
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Proof. Let uj ∈ E ′
a(G,Ω

1/2) and setWj = WF(uj), j = 1, 2. We first show that the fibered product

u1 ×
π
u2 (where π = r, s indifferently) given by Proposition 16, coincides with the distribution

obtained by the functorial operations in [10, Theorems 8.2.9, 8.2.4]:

(69) u1 ×
π
u2 = ρ∗(u1 ⊗ u2) ∈ D′(G(2),Ω(ker dm)⊗m∗(Ω1/2)),

where ρ : G(2) →֒ G2. By [10, Theorem 8.2.9]), we know that

(70) WF(u1 ⊗ u2) ⊂W1 ×W2 ∪W1 × (G× {0}) ∪ (G × {0}) ×W2,

and to apply [10, Theorems 8.2.4], we just need to check that

(71) WF(u1 ⊗ u2)∩N∗G(2) = ∅.

Observe that N∗G(2) = kermΓ ⊂ Γ(2) and ker ds⊥ = ker rΓ. Thus, if

δj = (γj , ξj) ∈ T ∗
γjG and (δ1, δ2) ∈ WF(u1 ⊗ u2)∩N∗G(2)

then (δ1, δ2) ∈ Γ(2) and

(72) rΓ(δ1) = rΓ(δ1δ2) = (r(γ1), 0).

By the s-transversality assumption on W1 and the relation (70), this implies δ1 = (γ1, 0) and

δ2 ∈W2. On the other hand

(73) sΓ(δ2) = sΓ(δ1δ2) = (s(γ2), 0),

which contradicts the r-transversality of W2, and this proves (71). Therefore, the right hand side

in (69) is well defined by [10, Theorems 8.2.4] and it coincides with the left hand side, which is

obvious after pairing with test functions. Now

(74) u1 ∗ u2 = m∗(u1 ×
π
u2) = m∗ρ

∗(u1 ⊗ u2)

and thus, using [10, Theorems 8.2.4] and [8, (3.6), p. 328],

(75) WF(u1 ∗ u2) ⊂ m∗ρ
∗ WF(u1 ⊗ u2) .

Here ρ∗ : T ∗G2 −→ T ∗G(2) is the restriction of linear forms and, for any W̃ ⊂ T ∗G(2),

m∗(W̃ ) = {(γ, ξ) ∈ T ∗G ; ∃(γ1, γ2) ∈ m−1(γ), (γ1, γ2,
tdmγ1,γ2(ξ)) ∈ W̃ ∪G(2) × 0}.

Since m is submersive, tdmγ1,γ2 is injective and the term G(2) × 0 can be removed. By definition of

the multiplication of Γ = T ∗G, we get, for any W ⊂ T ∗G2, the equivalence

(76) γ1γ2 = γ and (γ1, γ2,
tdmγ1,γ2(ξ)) ∈ ρ∗(W ) ⇔ ∃(δ1, δ2) ∈ Γ(2) ∩W, δ1δ2 = (γ, ξ).

Thus,

(77) m∗ρ
∗W = mΓ(W ∩ Γ(2)).

By r-transversality of WF(u1), we have sΓ(WF(u1)) ⊂ A∗G \ 0, so WF(u1)×(G × {0}) ∩ Γ(2) =

∅. Similarly, s-transversality of WF(u2) gives (G × {0}) × WF(u2)∩Γ(2) = ∅. It follows that

WF(u1 ⊗ u2)∩Γ(2) = (WF(u1)×WF(u2)) ∩ Γ(2) and therefore

mΓ(WF(u1 ⊗ u2)∩Γ(2)) = mΓ((WF(u1)×WF(u2)) ∩ Γ(2)) = WF(u1) ∗WF(u2)

which proves (68). Clearly, W1 ∗W2 is s or r-transversal if the same holds respectively for W1 and

W2, so (68) implies u1 ∗ u2 ∈ E ′
a, therefore E ′

a is a subalgebra of E ′
r,s.

Finally, since WF(δ) = A∗G \ 0, we have δ ∈ E ′
a and since WF(u⋆) = iΓ(WF(u)), we conclude

that E ′
a is unital and involutive. �
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Looking at the proof of the Theorem, we see that the assumptions on WF(uj) can be significanlty

relaxed in order to conserve the property (71) and then to be able to define the convolution product

u1 ∗ u2 by the right hand side of (74).

Firstly, ifW ⊂ T ∗G\0, thenW ×(G×0)∩kermΓ = ∅. Indeed, if (γ1, ξ1, γ2, 0) ∈W×(G×{0})∩
Γ(2), we can choose t1 ∈ Tγ1G such that ξ1(t1) 6= 0 since ξ1 6= 0 by assumption. Using a local section

β of r such that β(s(γ1)) = γ2 and setting t2 = dβds(t1) ∈ Tγ2G, we get (t1, t2) ∈ T(γ1,γ2)G
(2) and

ξ1(t1) + 0(t2) 6= 0, that is ξ1 ⊕ 0 6= 0 which proves that (γ1, ξ1, γ2, 0) 6∈ kermΓ.

Arguing identically on (G× 0)×W we get the equivalence, for any distributions u1, u2

(78) WF(u1 ⊗ u2)∩ kermΓ = ∅ ⇔ WF(u1)×WF(u2)∩ kermΓ = ∅.

This is again the condition (71) which is sufficient to define ρ∗(u1 ⊗ u2) = u1 ⊗ u2|G(2) and there

the convolution product under additional suitable supports conditions.

Theorem 29. Let Wj ⊂ T ∗G \ 0 be closed cones such that

(79) W1 ×W2 ∩ kermΓ = ∅

and set W1∗W2 = mΓ((W1 ×W2 ∪W1 × 0 ∪ 0×W2) ∩ Γ(2)). Then the map

E ′
W1

(G,Ω1/2)× E ′
W2

(G,Ω1/2)
∗−→ E ′

W1∗W2
(G,Ω1/2)(80)

(u1, u2) 7−→ m∗(u1 ⊗ u2|G(2))(81)

is separately sequentially continuous and coincides with the convolution product on C∞
c (G,Ω1/2).

Proof. Under the assumption made on W1,W2, we can apply [10, Theorems 8.2.4, 8.2.9] to find

that the bilinear map

D′
W1

(G,Ω1/2)×D′
W2

(G,Ω1/2) −→ D′
ρ∗(W1×̄W2)

(G(2),Ω1/2)(82)

(u1, u2) 7−→ u1 ⊗ u2|G(2)

is well defined, sequentially separately continuous for the natural notion of convergence of sequences

in the spaces D′
W [10, 8], and also separately continuous for the normal topology of these spaces

[2]. Above, we have set for convenience W1×̄W2 =W1 ×W2 ∪W1 × 0 ∪ 0×W2.

To applym∗ and get a continuous map for the same topologies, we restrict ourselves to compactly

supported distributions and we get

(83) E ′
W1

(G,Ω1/2)× E ′
W2

(G,Ω1/2)
(·⊗·)|

G(2)−→ E ′
ρ∗(W1×̄W2)

(G(2),Ω1/2)
m∗−→ E ′

W1∗W2
(G,Ω1/2).

Indeed, the formulas (75) and (77) are still valid here and give the last distribution space above. �

If u1 or u2 is smooth then WF(u1)×WF(u2) is empty and (79) is trivially satisfied, thus

Corollary 30. The convolution product of Theorem 29 gives by restriction the maps

(84) E ′(G,Ω1/2)× C∞
c (G,Ω1/2)

∗−→ E ′
s−1
Γ (0)

(G,Ω1/2),

(85) C∞
c (G,Ω1/2)× E ′(G,Ω1/2)

∗−→ E ′
r−1
Γ (0)

(G,Ω1/2).

As we said, bi-transversal subsets of T ∗G \ 0 satisfy (79). Actually,

Corollary 31. Let W1,W2 be any subsets of T ∗G \ 0. If W1 is s-transversal (resp. W2 is

r-transversal) then the assumption (79) is satisfied and W1 ∗ W2 is s-transversal (resp. W2 r-

transversal) .
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Proof. Use the equalities sΓ ◦mΓ = sΓ ◦ pr2 and rΓ ◦mΓ = rΓ ◦ pr1. �

Remark 32. Theorems 20 and 29 do not apply exactly to the same situations. For instance,

consider the pair groupoid G = R × R. On one hand, using the relation kermΓ = ((ker ds)⊥ ×
(ker dr)⊥) ∩ (T ∗G)(2) and Remark 9, it is easy to obtain pairs of distributions (u1, u2) ∈ E ′

s(R
2)×

E ′(R2) for which only Theorem 20 can be applied to define u1 ∗ u2. On the other hand, con-

sider the distributions u1 = δ(0,0) and u2 = δ(1,1), whose wave fronts are respectively W1 =

{(0, 0, ξ, η) ; (ξ, η) 6= (0, 0)} and W2 = {(1, 1, ξ, η) ; (ξ, η) 6= (0, 0)}. These distributions are

neither s nor r transversal, butW1×W2∩Γ(2) = ∅, hence the convolution u1 ∗u2 on G can only be

defined by Theorem 29 (note that u1 ∗ u2 = 0; less peculiar examples can be easily constructed).

Of course, both convolution products coincide when both make sense, since the equality (69) is

valid as soon as (WF(u1)×WF(u2)) ∩ kermΓ = ∅.

6. Appendix : The cotangent groupoid of Coste-Dazord-Weinstein

We recall the definition of the cotangent groupoid of Coste-Dazord-Weinstein. We explain the

construction of the source and target map given in [4] and we enlighten the role played by the

differential of the multiplication map of G. This is a pedestrian approach based on concrete

differential geometry while more conceptual developments can be found in [20, 13].

Let G be a Lie groupoid whose multiplication is denoted by m, source and target by s, r and

inversion by i. Differentiating all the structure maps ofG, we get that TG⇉ TG(0) is a Lie groupoid

whose multiplication is given by dm, source and target by ds, dr and inversion by di. Hence, it

is natural to try to transpose everything to get a groupoid structure on Γ = T ∗G. Following this

idea, it is natural to decide that the product (γ1, ξ1).(γ2, ξ2) ∈ T ∗G of two elements (γj , ξj) ∈ T ∗G

is defined by (γ1γ2, ξ) where ξ is the solution of the equation

(86) tdm(γ1,γ2)(ξ) = (ξ1, ξ2)|T(γ1,γ2)
G(2) .

Indeed, m : G(2) −→ G being a submersion, tdm(γ1,γ2) is injective for all (γ1, γ2) ∈ G(2) and ξ, when

it exists, is therefore unique. In that case, we have

(87) ξ = tdm−1
(γ1,γ2)

ρ(ξ1, ξ2)

where ρ : T ∗
G(2)G

2 −→ T ∗G(2) is the restriction of linear forms and we introduce the notations

(88) ξ = ξ1 ⊕ ξ2 and mΓ(γ1, ξ1, γ2, ξ2) = (γ1γ2, ξ1 ⊕ ξ2).

The equation (86) has a solution ξ if and only if

(89) (ξ1, ξ2) ∈ Im tdm(γ1,γ2).

Since Im tdm(γ1,γ2) = (ker dm(γ1,γ2))
⊥, this is equivalent to

(90) ξ1(t1) + ξ2(t2) = 0, ∀(t1, t2) ∈ ker dm(γ1,γ2).

Let us explicit ker dm ⊂ TG(2). Let

Lγ : Gs(γ) −→ Gr(γ), γ′ 7→ γγ′ and Rγ : Gr(γ) −→ Gs(γ), γ
′ 7→ γ′γ

be the left and right multiplication maps of G. Let (γ1, γ2) ∈ G(2) and set γ = γ1γ2, x = s(γ1).

Parametrizing G
(2)
γ = m−1(γ) by Gr(γ) ∋ η 7→ (η, η−1γ), we find, after a routine computation:

(91) (t1, t2) ∈ ker dm(γ1,γ2) ⇔ t1 = dLγ1di(t), t2 = dRγ2(t), for some t ∈ TxGx.
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It follows that (89) is equivalent to the equality

(92) tdRγ2(ξ2) = −td(Lγ1 ◦ i)(ξ1) ∈ (TxGx)
∗,

where it is understood that Rγ2 and Lγ1◦i are differentiated at γ = x and that the linear forms ξ1, ξ2

are restricted to the ranges of the corresponding differential maps. The same abuse of notations

is used below without further notice. We then define elements s(ξ1), r(ξ2) belonging to A∗
xG =

(TxG/TxG
(0))∗ by

(93) s(ξ1)(t+ u) = tdLγ1(ξ1)(t) for all t+ u ∈ TxG
x ⊕ TxG

(0) = TxG,

(94) r(ξ2)(t+ u) = tdRγ2(ξ2)(t) for all t+ u ∈ TxGx ⊕ TxG
(0) = TxG.

Differentiating the relation γ−1γ = s(γ) at γ = x we get the relation

(95) di+ id = ds+ dr

which yields −di(t) ≡ t mod TxG
(0), ∀t ∈ TxG. Thus, (92), and then (89), is equivalent to

(96) r(ξ2) = s(ξ1) ∈ A∗
xG.

This leads to the definitions

(97) sΓ(γ, ξ) = (s(γ), s(ξ)) ∈ A∗G and rΓ(γ, ξ) = (r(γ), r(ξ)) ∈ A∗G, ∀(γ, ξ) ∈ T ∗G.

Finally, we denote uΓ : A∗G →֒ T ∗G the canonical inclusion and we set

(98) iΓ(γ, ξ) = (γ−1,−(tdiγ)
−1(ξ)), ∀(γ, ξ) ∈ T ∗G.

Theorem 33. [4]. Let G be a Lie groupoid. The space Γ = T ∗G is a Lie groupoid with unit space

A∗G and structural maps given by sΓ, rΓ,mΓ, iΓ and uΓ (respectively, source, target, multiplication,

inversion and inclusion of unit maps).

Remark 34. (1) The Lie algebroid of G is sometimes defined by AG = ker ds|G(0) . In that

picture, we deduce from (92) that sΓ and rΓ have to be defined by replacing s, r by

(99) s̃(ξ) = −td(Lγ ◦ i)(ξ) and r̃(ξ) = tdRγ(ξ).

(2) The submanifold Γ(2) of composable pairs in Γ is given by

(100) Γ(2) = {(δ1, δ2) ∈ T ∗
G(2)G

2 ; ρ(δ1, δ2) ∈ (ker dm)⊥}

and mΓ = tdm−1 ◦ ρ.
(3) The graph of mΓ is canonically isomorphic to the conormal space of the graph of m:

(101) Gr(mΓ) ∋ (γ, ξ, γ1, ξ1, γ2, ξ2) −→ (γ,−ξ, γ1, ξ1, γ2, ξ2) ∈ N∗Gr(m).

Since N∗Gr(m) is Lagrangian in T ∗G× T ∗G× T ∗G, we get that Gr(mΓ) is Lagrangian in

(−T ∗G)× T ∗G× T ∗G, that is, Γ is a symplectic groupoid.

Finally, we remember that T ∗G is also a vector bundle over G, and we note p : T ∗G → G the

projection map. The following result is useful and obvious from the construction detailed above.
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Proposition 35. (1) The subspace of composable pairs Γ(2) is a vector bundle over G(2) and

mΓ : Γ(2) → Γ is a vector bundle homomorphism:

(102) Γ(2)

(p,p)
��

mΓ
// Γ

p

��

G(2) m
// G

whose kernel is the conormal space of G(2) into G2: kermΓ = N∗G(2).

(2) The maps rΓ, sΓ : Γ → A∗G are also vector bundle homomorphisms:

(103) Γ

p

��

sΓ
// A∗G

p
��

G
s

// G(0)

Γ

p

��

rΓ
// A∗G

p
��

G
r

// G(0)

and ker rΓ = (ker ds)⊥, ker sΓ = (ker dr)⊥.

We finish this review with two basic examples, the first one being the historical one [4].

Example 2. Let G be a Lie group with Lie algebra g. We have immediately

(104) sΓ(g, ξ) = L∗
gξ ∈ g

∗ and rΓ(g, ξ) = R∗
gξ ∈ g

∗.

When sΓ(g1, ξ1) = rΓ(g2, ξ2), we get (g1, ξ1)(g2, ξ2) = (g1g2, ξ) with ξ characterized by:

(105) ξ(dm(g1,g2)(t1, t2)) = ξ1(t1) + ξ2(t2).

Since dm(g1,g2)(t1, t2) = dRg2(t1) + dLg1(t2), we obtain ξ = R∗
g−1
2

ξ1 = L∗
g−1
1

ξ2. Thus

(106) (g1, ξ1)(g2, ξ2) = (g1g2, R
∗
g−1
2
ξ1) when L

∗
g1ξ1 = R∗

g2ξ2.

On the other hand, we recall that G acts on g
∗ by

(107) Ad∗g.ξ = L∗
gR

∗
g−1ξ.

This gives rise to the transformation groupoid G×| g
∗ ⇉ g

∗ whose source, target, multiplication and

inversion are thus given by

(108) s(g, ξ) = Ad∗g.ξ, r(g, ξ) = ξ, (g1, ξ1)(g2,Ad
∗
g1 .ξ1) = (g1g2, ξ1), (g, ξ)−1 = (g−1,Ad∗g.ξ).

Now, the vector bundle trivialization Φ : T ∗G −→ G× g
∗, (g, ξ) 7−→ (g,R∗

gξ), gives a Lie groupoid

isomorphism Φ : T ∗G −→ G×| g
∗. For instance, we check

Φ((g1, ξ1)(g2, ξ2)) = Φ(g1g2, R
∗
g−1
2
ξ1) = (g1g2, R

∗
g1g2R

∗
g−1
2
ξ1) = (g1g2, R

∗
g1ξ1)

= (g1, R
∗
g1ξ1).(g2, R

∗
g2ξ2) since Ad∗g1 .R

∗
g1ξ1 = L∗

g1ξ1 = R∗
g2ξ2

= Φ(g1, ξ1).Φ(g2, ξ2).

Example 3. We take G = X ×X × Z ⇉ X × Z (cartesian product of the pair groupoid X ×X

with the space Z). Here we have

Γ(0) = A∗G = {(x, x, z, ξ,−ξ, 0) ; (x, ξ) ∈ T ∗X, z ∈ Z}.

Let γ = (x, y, z) and ξ = (ζ, η, σ) ∈ T ∗
γG. Then s(ξ) ∈ T ∗

(y,y,z)X ×X × Z is given by η ∈ T ∗
yX ≃

0× T ∗
yX × 0 after extension by 0 onto the subspace of vectors of the form (u, u,w). This is similar

for r(ξ) ∈ T ∗
(x,x,z)X ×X × Z, starting with ζ ∈ T ∗

xX ≃ T ∗
xX × 0× 0. Using

(u, v, w) = (u− v, 0, 0) + (v, v, w) = (0, v − u, 0) + (u, u,w),
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we get sΓ(x, y, z, ξ, η, σ) = (y, y, z,−η, η, 0), rΓ(x, y, z, ξ, η, σ) = (x, x, z, ξ,−ξ, 0) and

(109) (x, y, z, ξ, η, σ).(y, x′ , z,−η, ξ′, σ′) = (x, x′, z, ξ, ξ′, σ + σ′).

Note that if Z = {pt}, Γ = T ∗(X × X) is isomorphic to the pair groupoid T ∗X × T ∗X, with

isomorphism given by T ∗(X ×X) −→ T ∗X × T ∗X ; (x, y, ζ, η) 7→ (x, ζ, y,−η).
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[12] Pérez Carreras, Pedro and Bonet, José . Barrelled locally convex spaces North-Holland Mathemat-
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