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Abstract

This paper deals with nonparametric estimation of conditional den-

sities in mixture models in the case when additional covariates are

available. The proposed approach consists of performing a prelim-

inary clustering algorithm on the additional covariates to guess the

mixture component of each observation. Conditional densities of the

mixture model are then estimated using kernel density estimates ap-

plied separately to each cluster. We investigate the expected L1-error

of the resulting estimates and derive optimal rates of convergence over

classical nonparametric density classes provided the clustering method

is accurate. Performances of clustering algorithms are measured by

the maximal misclassification error. We obtain upper bounds of this

quantity for a single linkage hierarchical clustering algorithm. Lastly,

applications of the proposed method to mixture models involving elec-

tricity distribution data and simulated data are presented.
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1 Introduction

Finite mixture models are widely used to account for population hetero-
geneities. In many fields such as biology, econometrics and social sciences,
experiments are based on the analysis of a variable characterized by a differ-
ent behavior depending on the group of individuals. A natural way to model
heterogeneity for a real random variable Y is to use a mixture model. In this
case, the density f of Y can be written as

f(t) =
M∑

i=1

αifi(t), t ∈ R. (1.1)

Here M is the number of subpopulations, αi and fi are respectively the
mixture proportion and the probability density function of the ith subpop-
ulation. We refer the reader to Everit and Hand (1981), McLachlan and
Basford (1988), McLachlan and Peel (2000) for a broader picture of mixture
density models as well as for practical applications.

When dealing with mixture density models such as (1.1), some issues arise.
In some cases, the number of components M is unknown and needs to be
estimated. To this end, some algorithms have been developed to provide
consistent estimates of this parameter. For instance, when M corresponds
to the number of modes of f , Cuevas et al. (2000) and Biau et al. (2007)
propose an estimator based on the level sets of f . Model identifiability is
an additional issue that has received some attention in the literature. Actu-
ally, model (1.1) is identifiable only by imposing restrictions on the vector
(α1, . . . , αM , f1, . . . , fM). In order to provide the minimal assumptions such
that (1.1) becomes identifiable, Celeux and Govaert (1995), Bordes et al.
(2006) (see also the references therein) assume that the density functions fi’s
belong to some parametric or semi-parametric density families. However, in
a nonparametric setting, it turns out that identifiability conditions are more
difficult to provide. Hall and Zhou (2003) define mild regularity conditions
to achieve identifiability in a multivariate nonparametric setting while Kita-
mura (2004) considers the case where appropriate covariates are available.

When the model (1.1) is identifiable, the statistical problem consists of esti-
mating mixture proportions αi and density functions fi. In the parametric
case, some algorithms have been proposed such as maximum likelihood tech-
niques (Lindsay (1983a,b), Redner and Walker (1984)) as well as Bayesian
approaches (Diebolt and Robert (1994), Biernacki et al. (2000)). When the
fi’s belong to nonparametric families, it is often assumed that training data
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are observed, i.e., the component of the mixture from which Y is distributed
is available. In that case, the model is identifiable and some algorithms allow
to estimate both the αi’s and the fi’s (see Titterington (1983), Hall and Tit-
terington (1984, 1985), Cerrito (1992)). However, as pointed out by Hall and
Zhou (2003), inference in mixture nonparametric density models becomes
more difficult without training data. These authors introduce consistent
nonparametric estimators of the conditional distributions in a multivariate
setting. We also refer to Bordes et al. (2006) who provide efficient estimators
under the assumption that the unknown mixed distribution is symmetric.
These estimates are extended by Benaglia et al. (2009, 2011) for multivariate
mixture models.

The framework we consider takes place between the two above situations.
More precisely, training data are not observed but we assume to have at
hand some covariates that may provide information on the components of the
mixture from which Y is distributed. Our approach consists of performing
a preliminary clustering algorithm on these covariates to guess the mixture
component of each observation. Density functions fi are then estimated using
a nonparametric density estimate based on the predictions of the clustering
method.

Many authors have already proposed to carry out a preliminary clustering
step to improve density estimates in mixture models. Ruzgas et al. (2006)
conduct a comprehensive simulation study to conclude that a preliminary
clustering using the EM algorithm allows to some extent to improve per-
formances of some density estimates (see also Jeon and Landgrebe (1994)).
However, to our knowledge, no work has been devoted so far to measure the
effects of the clustering algorithm on the resulting estimates of the distribu-
tion functions fi. This paper proposes to fill this gap, studying the L1-error of
these estimates. To do so, we measure the performance of clustering meth-
ods by the maximal misclassification error (2.3). This criterion allows us
to derive optimal rates of convergence over classical nonparametric density
classes, provided the clustering method used in the first step performs well
with respect to this notion.

The paper is organized as follows. In Section 2, we present the two-step
estimator and give the main results. Examples of clustering algorithms are
worked out in Section 3. In particular, the maximal misclassification error of
a hierarchical clustering algorithm is studied under mild assumptions on the
model. Applications on simulated and real data are presented in Sections 4
and 5. A short conclusion including a discussion of the implications of the
work is given in Section 6 and proofs are gathered in Section 7.
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2 A two-step nonparametric estimator

2.1 The statistical problem

Our focus is on the estimation of conditional densities in a univariate mixture
density model. Formally we let (Y, I) be a random vector taking values in
R×J1,MK where M ≥ 2 is a known integer. We assume that the distribution
of Y is characterized by a density f defined, for all t ∈ R, by

f(t) =
M∑

i=1

αifi(t),

where, for all i ∈ J1,MK, αi = P(I = i) are the prior probabilities (or the
weights of the mixture) and fi are the densities of the conditional distribu-
tions L(Y |I = i) (or the components of the mixture).

If we have at hand n observations (Y1, I1), . . . , (Yn, In) drawn from the distri-
bution of (Y, I), one can easily find efficient estimates for both the αi’s and
the fi’s. For example, if we denote Ni = # {k ∈ J1, nK : Ik = i}, then we can
estimate αi using the empirical proportion ᾱi = Ni/n and fi by the kernel
density estimate f̄i defined for all t ∈ R by

f̄i(t) =
1

Ni

n∑

k=1

Kh(t, Yk)Ii(Ik) (2.1)

if Ni > 0. For the definiteness of f̄i we conventionally set f̄i(t) = 0 if Ni = 0.
Here K is a kernel which belongs to L1(R,R) and such that

∫
K = 1, h > 0

is a bandwidth and

Kh(t, y) =
1

h
K
(
t− y

h

)
(2.2)

is the classical convolution kernel located at point t (see Rosenblatt (1956)
and Parzen (1962) for instance). Estimate (2.1) is just the usual kernel
density estimate defined from observations in the ith subpopulation. It follows
that, under classical assumptions regarding the smoothing parameter h and
the kernel K, f̄i has similar properties as those of the well-known kernel
density estimate. In particular, the expected L1-error

E‖f̄i − fi‖1 = E

∫

R

|f̄i(t) − fi(t)|dt

achieves optimal rates when fi belongs to regular density classes such as
Hölder or Lipschitz classes (see Devroye and Györfi (1985)).
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The problem is more complicated when the random variable I is not ob-
served. In this situation, ᾱi and f̄i are not computable and one has to find
another way to define efficient estimates for both αi and fi. In this work,
we assume that one can obtain information on I through another covariate
X which takes values in R

d where d ≥ 1. This random variable is observed
and its conditional distribution L(X|I = i) is characterized by a density
gi = gi,n : R

d → R which could depend on n. In this framework, the
statistical problem is to estimate both the components and the weights of
the mixture model (1.1) using the n-sample (Y1, X1), . . . , (Yn, Xn) extracted
from (Y1, X1, I1), . . . , (Yn, Xn, In) randomly drawn from the distribution of
(Y,X, I).

2.2 Discussion on the model

Estimating components of a mixture model is a classical statistical problem.
The new feature proposed here is to include covariates in the model which can
potentially improve traditional algorithms. These covariates are represented
by a random vector X which provides information on the unobserved group I.
This model includes many practical situations. Three examples are provided
in this section.

The classical mixture problem without covariates. A traditional
problem in mixture models is the estimation of the components fi, i ∈ J1,MK
in (1.1) from (only) an i.i.d sample Y1, . . . , Yn drawn from f : no covariates
are available. In this context, many parametric methods such as the EM
algorithm (and its derivatives) as well as nonparametric procedures (under
suitable identifiability constraints) can be used and are widely studied. Even
if this model is formally a particular case of ours (we just have to take
X = Y ), the approach presented in this paper is not designed to be compet-
itive in this situation with dedicated parametric or nonparametric methods.
Indeed, our model focus on practical situations where covariates can be used
to obtain useful information about the hidden variable I. Below, we offer
two realistic situations where such covariates are naturally available.

Medical example. Many diseases evolve over time and exhibit different
stages of development which can be represented by a variable I that takes
a finite number of values. In many situations, the problem is not to study
the stage I but some variables that can potentially have different behavior
according to I. For instance, the survival time Y and its conditional dis-
tributions with respect to I are typically of interest in many situations. In
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practice, the stage I is generally not observed. It is assessed by the medical
team from several items such as physiological data, medical examinations,
interviews with the patient (and so on) that can be represented by covariates
X in our model.

Electricity distribution. A distribution network may locally experience
minor problems, due for example to bad weather, that may affect some cus-
tomers during a fixed period of time in a given geographical area. To better
understand the origin and/or consequences of the dysfunctions, and thus
better forecast network operations, electricity distributors are interested in
the distribution behavior of several quantities Y for two different groups of
customers: those affected by the malfunction and the others. Variables Y
may for instance represent averages or variations of consumption after the
disruption period. In this situation the group is represented by a variable
I: I = 1 for the users affected by the disruption and 2 for the others. This
binary variable I is not directly observed but it can be guessed from individ-
uals curves of consumptions during the disruption period. In our framework,
discrete versions of these curves correspond to the covariate X. This example
is explained in-depth and analyzed in Section 5 using real data from ERDF,
the main French distributor of electricity.

2.3 A kernel density estimate based on a clustering

approach

To estimate densities fi of the conditional distributions L(Y |I = i), i ∈
J1,MK, we propose a two-step algorithm that can be summarized as follows.

1. Apply a clustering algorithm on the sample X1, . . . , Xn to predict the
label Ik of each observation Xk;

2. Estimate conditional densities fi by kernel density estimates (2.1) where
unobserved labels are substituted by predicted labels.

Formally, we first perform a given clustering algorithm to split the sample
X1, . . . , Xn into M + 1 clusters X0,X1, . . . ,XM such that Xi 6= ∅ for all
i ∈ J1,MK. Clusters X0,X1, . . . ,XM satisfy

M⋃

i=0

Xi = {X1, . . . , Xn} and ∀i 6= j, Xi ∩ Xj = ∅.

We do not specify the clustering method here, some examples are discussed
in Sections 3 and 4. Observe that we define M + 1 clusters instead of M .
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The cluster X0 (which could be empty) contains the observations for which
the clustering procedure is not able to predict the label. For example, if the
clustering procedure reveals some outliers, they are collected in X0 and we
do not use these outliers to estimate the fi’s.

Once the clustering step is performed, we define the predicted labels Îk as

Îk = i if Xk ∈ Xi, k ∈ J1, nK, i ∈ J1,MK.

Observation Xk is not correctly assigned to its group with probability P(Îk 6=
Ik). We measure the performance of the clustering algorithm by the maximal
probability to not correctly attribute an observation:

ϕn = max
1≤k≤n

P(Îk 6= Ik). (2.3)

We call this error term the maximal misclassification error. It will be studied
for two clustering algorithms in Section 3.

To define our estimates, we just replace in (2.1) the true labels Ik by the
predicted labels Îk. Formally, prior probabilities αi are estimated by

α̂i =
N̂i

n
where N̂i = #{k ∈ J1, nK : Îk = i},

while for the conditional densities fi, we consider the kernel density estimator
with kernel K : R → R and bandwidth h > 0

f̂i(t) =
1

N̂i

∑

k:Xk∈Xi

Kh(t, Yk) =
1

N̂i

n∑

k=1

Kh(t, Yk)I{i}(Îk), (2.4)

where Kh is defined in (2.2). Observe that since for all i ∈ J1,MK the clusters
Xi are nonempty, the estimates f̂i are well defined.

Kernel estimates f̂i are defined from observations in cluster Xi. The under-
lying assumption is that, for all i ∈ J1,MK, each cluster Xi collects almost
all of the observations Xk such that Yk is randomly drawn from fi. Under
this assumption, ϕn is expected to be small and f̂i to be closed to the oracle
estimates f̄i defined by equation (2.1). This closeness is measured in the fol-
lowing theorem which makes the connection between the expected L1-errors
of f̄i and fi.

Theorem 2.1 There exist positive constants A1 −A3 such that, for all n ≥ 1
and i ∈ J1,MK

E

∥∥∥f̂i − fi

∥∥∥
1

≤ E

∥∥∥f̄i − fi

∥∥∥
1

+ A1ϕn + A2 exp(−n) (2.5)
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and

E|α̂i − αi| ≤ ϕn +
A3√
n
. (2.6)

Constants A1 − A3 are specified in the proof of the theorem. We emphasize
that inequalities (2.5) and (2.6) are non-asymptotic, that is, the bounds are
valid for all n. If we intend to prove any consistency results regarding f̂i and
α̂i, inequality (2.5) says that the maximal misclassification error ϕn should
tend to zero. Moreover, if ϕn tends to zero much faster than the L1-error of
f̄i, then the asymptotic performance is guaranteed to be equivalent to the
one of the oracle estimate f̄i. The L1-error of f̄i, with properly chosen band-
width h and kernel K, is known to go to zero, under standard smoothness
assumptions, at rate n− s

2s+1 where s > 0 is typically an index representing the
regularity of fi. For example, when we consider Lipschitz or Hölder classes of
functions with compact supports, s corresponds to the number of absolutely
continuous derivatives of the functions fi. In this context, if ϕn = O(n− s

2s+1 ),
then

E

∥∥∥f̂i − fi

∥∥∥
1

= O(n− s
2s+1 ).

Remark 2.1 Note that even if clusters X1, . . . ,XM are arbitrarily indexed,
inequalities (2.5) and (2.6) are true whatever the choice of the indexes. How-
ever, when indexes are not chosen according to the true labels, ϕn could be
large even if the clustering procedure performs well. In this situation there
exists a permutation of the indexes such that, after this permutation, the max-
imal misclassification error is small. More precisely it can be readily seen,
using Theorem 2.1, that

min
π∈ΠM

E

∥∥∥f̂π(i) − fi

∥∥∥
1

≤ E

∥∥∥f̄i − fi

∥∥∥
1

+ A1 min
π∈ΠM

ϕn(π) + A2 exp(−n) (2.7)

where ΠM denotes the set of all permutations of J1,MK and ϕn(π) is the max-
imal misclassification error of the clustering method after the permutation of
the indexes:

ϕn(π) = max
k=1,...,n

P(π(Îk) 6= Ik), π ∈ ΠM . (2.8)

Remark 2.2 As usual, the choice of the bandwidth h reveals crucial for the
performance of the kernel density estimates. However, this paper does not
provide any theory to select this parameter. If automatic or adaptive pro-
cedures are needed, they can be obtained by adjusting traditional automatic
selection procedures for classical nonparametric estimators (see for exam-
ple Berlinet and Devroye (1994) or Devroye and Lugosi (2001)).
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3 Clustering procedures

The proposed procedure requires a preliminary clustering algorithm per-
formed on the sample X1, . . . , Xn. Even if any clustering algorithm could
be applied in practice, it should be chosen according to the conditional dis-
tributions L(X|I = i), i ∈ J1,MK. More precisely, each cluster should match
up with observations drawn from one of those conditional distributions. From
a theoretical point of view, for a given clustering procedure, the problem is
to find upper bounds for the maximal misclassification error ϕn to apply
Theorem 2.1. In a parametric setting, i.e., when conditional distributions
are identified by unknown parameters, clustering algorithms are often based
on efficient estimators of these unknown parameters. We provide an exam-
ple in Section 3.1. Without parametric assumptions on the distribution, the
problem is more complicated. Contrary to data analysis methods such as
regression or classification, there are many ways to define clustering. One of
the most popular approach consists of defining clusters as the connected com-
ponents of the level sets of the density (see Hartigan (1975)). This amounts
to saying that clusters represent high density regions of the data separated by
low density regions. In this context, many authors have studied theoretical
performances of clustering algorithms based on neighborhood graphs such
as hierarchical or spectral clustering algorithms. In Section 3.2, we extend
results of Maier et al. (2009) and Arias-Castro (2011) to our framework for a
hierarchical clustering algorithm based on pairwise distances. This procedure
is challenged with other clustering methods in the simulation part.

3.1 A parametric example

We consider a mixture of two uniform univariate densities

g1,n(x) = g1(x) = I[0,1](x) and g2,n(x) = I[1−λn,2−λn](x),

where we recall that gi,n is the density of the conditional distribution L(X|I =
i), i = 1, 2. Here (λn)n is a non-increasing sequence which tends to 0 as n
goes to infinity. In this parametric situation, a natural way to guess the
unobserved label Ik of the observation Xk is to find an estimator λ̂n of λn

and to predict the labels (see Figure 1) according to

Îk =





1 if Xk ≤ 1 − λ̂n

0 if 1 − λ̂n < Xk < 1

2 if Xk ≥ 1.

(3.1)
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The accuracy of these predictions depends on the choice of the estimator λ̂n.
Here we choose λ̂n = 2 −X(n) where X(n) = max1≤k≤n Xk. Note that in this
situation, we have for i = 1, 2

Îk = i =⇒ Ik = i, a.s.

It means that all classified observations (with non-zero estimated label) are
well-classified and that misclassified observations are collected in X0 (see
Figure 1).
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Ik = 1 Ik = 1 or 2 Ik = 2

Îk = 2Îk = 0Îk = 1

2

λ̂n

λn λn

λ̂n

Figure 1: A sample of n = 11 points.

The following proposition establishes a performance bound for the maximal
misclassification error ϕn of this clustering procedure.

Proposition 3.1 There exists a positive constant A4 such that for all n ≥ 1

ϕn ≤ λn + A4
log n

n
.

Unsurprisingly, ϕn decreases as λn decreases. Moreover, since in most cases
of interest, the expected L1-error of f̄i tends to zero much slower than 1/

√
n,

this property means that, asymptotically, the expected L1-error of f̂i is of
the same order as the expected L1-error of f̄i provided λn = O(1/

√
n) (see

(2.5)).

3.2 A hierarchical clustering algorithm

Assuming that clusters are defined as connected components of level sets of
a density, many authors have studied theoretical properties of various clus-
tering algorithms. For instance, Maier et al. (2009) and Arias-Castro (2011)
prove that algorithms based on pairwise distances (k-nearest neighbor graph,
spectral clustering...) are efficient as soon as these connected components are
separated enough. In this section, we extend results of these authors to bound
the maximal misclassification error ϕn for a hierarchical clustering algorithm.
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3.2.1 The clustering algorithm

Given X1, . . . , Xn, we consider a single linkage hierarchical clustering al-
gorithm based on pairwise distances to extract exactly M disjoint clusters
X1, . . . ,XM from the observations (see Arias-Castro (2011)). This algorithm
consists of finding a data-driven radius r̂n > 0 such that the set

n⋃

k=1

B(Xk, r̂n) (3.2)

has exactly M connected components. Here B(x, r) stands for the closed
Euclidean ball with center x ∈ R

d and radius r > 0. Cluster Xi is then
naturally composed by observations Xk which belong to the ith connected
component of the set (3.2).

The radius r̂n can be defined in a formal way to derive statistical properties
of the clustering procedure. To this end, we define for each positive real
number r the n× n affinity matrix Ar = (Ar

k,ℓ)1≤k,ℓ≤n by

Ar
k,ℓ =





1 if ‖Xk −Xℓ‖2 ≤ 2r ⇐⇒ B(Xk, r) ∩B(Xℓ, r) 6= ∅,
0 otherwise,

(3.3)

where ‖x‖2 stands for the Euclidean norm of x ∈ R
d. This matrix induces

a non-orientated graph on the set J1, nK and two different observations Xk

and Xℓ belong to the same cluster if k and ℓ belong to the same connected
component of the graph. We let M̂r be the number of connected components
of the graph and we denote by X1(r), . . . ,XM̂r

(r) the associated clusters. The
radius is selected as follows

r̂n = inf{r > 0 : M̂r ≤ M}.
Note that r̂n is well-defined since the random set RM = {r > 0 : M̂r ≤ M}
is lower bounded (by 0) and non-empty since r∗ = maxk,ℓ ‖Xk −Xℓ‖2 always

belongs to this set (M̂r∗ = 1). Moreover, since r 7→ M̂r is non-increasing
and right-continuous, one can easily prove that r̂n = min RM and M̂r̂n

=
M almost surely when n ≥ M . Let X1(r̂n), . . . ,XM(r̂n) be the M clusters

induced by Ar̂n , the aim is to study the maximal misclassification error (2.3)
of this clustering algorithm.

Remark 3.1 The algorithm requires that the connected components of the
graph induced by the n × n matrix Ar be computed for different values of
r. Some algorithms can be performed to obtain these connected components.
For instance, we can use the Depth-First search algorithm (see Cormen et al.
(1990)) which can be performed efficiently in O(Vn + En) operations, where
Vn and En denote respectively the number of vertices and edges of the graph.
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3.2.2 The clustering model

Recall that the clustering algorithm is performed on the sample X1, . . . , Xn.
To study the maximal misclassification error, some assumptions on the dis-
tribution of X are needed.

Assumption 1 Let gn denotes the probability density of X. We assume
that there exists a positive sequence (tn)n such that the set

{x ∈ R
d : gn(x) ≥ tn} (3.4)

has exactly M disjoint connected compact sets S1,n, . . . , SM,n satisfying, for
all i ∈ J1,MK,

P(X1 ∈ Si,n|I1 = i) =
∫

Si,n

gi,n(x) dx > 1/2, (3.5)

where we recall that gi,n stands for the density of the conditional distribution
L(X|I = i), i ∈ J1,MK. We note Sn =

⋃M
i=1 Si,n and

δn = inf
1≤i6=j≤M

dist(Si,n, Sj,n),

where
dist(Si,n, Sj,n) = inf

x∈Si,n

inf
y∈Sj,n

‖x− y‖2.

Assumption 2 There exist two positive constants c1 and c2, and a family
of N ∈ N

⋆ Euclidean balls {Bℓ}ℓ=1,...,N with radius rn/2 such that





Sn ⊂ ⋃N
ℓ=1 Bℓ

Leb(Sn) ≥ c1
∑N

ℓ=1 Leb(Sn ∩Bℓ)

∀ℓ = 1, . . . , N, Leb(Sn ∩Bℓ) ≥ c2r
d
n,

where Leb denotes the Lebesgue measure on R
d and rn is defined by

rd
n =

τ log n

ntn
with τ > 1/c2.

Assumption 1 is classical to study performances of clustering algorithm (see
Maier et al. (2009)) or to estimate the number of clusters (see Biau et al.
(2007)). It implies that clusters reflect high-density regions separated by low-
density regions. Condition (3.5) is required to be sure that the connected
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components of (3.4) are correctly indexed. It makes it possible to avoid that
most of the observation in Si,n are drawn from gj,n with j 6= i. Assumption 2
is more technical and pertains to the diameter and regularity of the sets Si,n.
Our approach consists of identifying sets Si,n with the connected components
of
⋃n

k=1 B(Xk, r). Thus, when diameter of Si,n increases, large values of radius
r are necessary to connect observations in Si,n. However for too large values
of r, the number of connected components of

⋃n
k=1 B(Xk, r) becomes smaller

than M and the method fails. Consequently, we need to constraint the
diameter of Si,n. This is ensured by assumption 2 since it implies that Sn

can be covered by N Euclidean balls such that

N ≤ n

c1c2τ log n
. (3.6)

Finally, inequality Leb(Sn ∩ Bℓ) ≥ c2r
d
n in assumption 2 can be seen as a

smoothness assumption on the boundaries of Sn (see Biau et al. (2008)).

Remark 3.2 In dimension 1, since each Si,n is connected, it is a segment
of the real line. Thus, under assumption 1, its diameter is bounded by 1/tn
and assumption 2 is satisfied. For higher dimensions, things turn out to
be more complicated. Indeed, even if the measure of the compact set Sn is
upper bounded by 1/tn, its diameter can be as large as we want. Consider for
example the density

hn(x, y) = I[1−1/an,an](x)I[0,1/x2](y), (x, y) ∈ R
+⋆ × R

+,

where an > 1. Since an could be chosen to be arbitrarily large, the diameter
of Sn could also be arbitrarily large and assumption 2 does not hold. This
assumption restricts to some extent the shape of Sn. It is satisfied for regular
sets such that the diameter does not increase too quickly as n goes to infinity.
For example, consider the two dimensional situation where Sn is a rectangle
with length un and width vn. In such a scenario, one can easily prove that
if there exist two positive constants a1 and a2 such that un ≥ a1rn and vn ≥
a2rn, then assumption 2 holds. Note also that this assumption is verified
for sets Sn that do not depend on the sample size n with smooth boundaries
(see Biau et al. (2007), Maier et al. (2009)).

Remark 3.3 Assumption 1 is clearly satisfied when supports of conditional
densities gi,n are disjoint. This assumption could also be verified when these
supports overlap. As an example, consider the Laplace mixture model:

gi,n(x) =
1

2σn

exp

(
−|x− µi,n|

σn

)
, i = 1, 2,
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where σn > 0 and µi,n ∈ R (see Figure 2). Let ℓn = |µ1,n − µ2,n| be the
distance between the two location parameters µ1,n and µ2,n and define

t∗,n =

√
α1α2

σn

exp

(
− ℓn

2σn

)

and

t∗i,n =
1

2σn

(
αi + (1 − αi) exp

(
− ℓn

σn

))
, i = 1, 2.

Then direct calculations yield that for any tn ∈ (t∗,n, t
∗
1,n ∧ t∗2,n), the level set

{α1g1,n + α2g2,n ≥ tn} has exactly M = 2 connected components provided
log(α1/(1 − α1)) ∈ (−ℓn/σn, ℓn/σn).

S1,n S2,n

S1,n + rn S2,n + rn

δn

ℓn

Figure 2: Connected components of level sets for a mixture of Laplace distribu-
tions.

3.2.3 The maximal misclassification error

The algorithm described in Section 3.2.1 provides a partition of {X1, . . . , Xn}
into M clusters X1(r̂n), . . . ,XM(r̂n). To apply Theorem 2.1, we have to find
an upper bound of the maximal misclassification error for the predicted rule

Îk = i ⇐⇒ Xk ∈ Xi(r̂n).

Observe that, for this clustering algorithm, clusters X1(r̂n), . . . ,XM(r̂n) de-
fined in Section 3.2.1 are arbitrarily indexed. Thus there is no guarantee that
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the predicted labels are correctly indexed. To circumvent this problem, as
suggested in Remark 2.1, we study the maximal misclassification error up to
a permutation of the indexes.

The proposed clustering algorithm has been studied by Maier et al. (2009)
and Arias-Castro (2011). They prove that each cluster corresponds to one of
the connected components of (3.4) with high probability in a model similar
to ours. In other words, clusters make it possible to identify each connected
components of (3.4). Even if the identification of these connected compo-
nents is important in our setting, it is not sufficient since our goal is to find
an upper bound of the misclassification error (2.8). Moreover, since supports
of conditional densities gi,n can overlap, observations in the connected com-
ponents Si,n of (3.4) are not guaranteed to emerge from the distribution of
L(X|I = i). This leads us to define

ψn = max
i=1,...,M

P(X1 /∈ (Si,n + rn)|I1 = i)

where for S ⊂ R
d and r > 0

S + r = {x ∈ R
d : ∃y ∈ S such that ‖x− y‖2 ≤ r}.

Observe that ψn is the maximal probability that an observation from the ith

group does not belong to Si,n + rn. This parameter reflects the degree of
difficulty for the model to correctly predict the label of the observations: the
larger ψn, the more difficult it is. We can now set forth the main result of
this section.

Theorem 3.1 Suppose that Assumption 1 and Assumption 2 hold. More-
over, if

δn > 2rn = 2

(
τ log n

ntn

)1/d

, (3.7)

then for all 0 < a ≤ c2τ − 1, we have

min
π∈ΠM

max
1,...,n

P(π(Îk) 6= Ik) ≤ A5

na log n
+ (n+ 2)ψn, (3.8)

where A5 is positive constant.

This theorem provides minimal assumptions to make accurate predictions
of the labels Ik. Inequality (3.7) gives the minimum distance between the
connected components Si,n to make the clustering method efficient. When
supports of the conditional densities gi,n are disjoints, it is easily seen that
ψn = 0 and Îk = Ik almost surely for n large enough provided inequality
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(3.7) is satisfied. When the supports overlap, inequality (3.8) ensures that
the algorithm performs well provided the probability ψn tends to zero much
faster than 1/n. In the Laplace example presented in Remark 3.3, it can be
easily seen that

ψn = O
(

exp

(
− ℓn

2σn

))
.

It implies that as soon as ℓn/σn ≥ 3 log(n)/2, nψ(n) ≤ n−1/2 and the kernel
density estimates defined in (2.4) satisfy

min
π∈ΠM

E‖f̂π(i) − fi‖ ≤ E‖f̄i − fi‖ +
A6√
n
.

Finally, note that when ψn = 0, inequality (3.8) implies that each cluster
Xi(r̂n) belong to one of the connected components of (3.4) with high proba-
bility. This result was obtained by Arias-Castro (2011) in a context similar
to ours under assumption (3.7). Theorem 3.1 extends this result for ψn > 0.
Note also that proof of this theorem (see Section 7) is different from Arias-
Castro (2011) and rely on support density estimation tools proposed by Biau
et al. (2008).

4 Simulation study

In this section, we provide simulation results enlightening the efficiency of
the proposed estimator. To this end, Y is simulated from mixtures of uni-
variate Gaussian laws whereas several scenarios on the distribution of X are
considered.

To illustrate Theorem 2.1 and Theorem 3.1, we compare the accuracy of
our two-step estimate f̂i (see (2.4)) with the accuracy of the oracle estimate
f̄i (see (2.1)). Such comparisons are made in both Sections 4.1 and 4.2.
However, each of these sections focus on special points.

In Section 4.1, the two-step estimate is also compared with the classical EM
algorithm. Even if this algorithm is known to be efficient under the para-
metric assumption made on the distribution of Y , it does not take advantage
of the presence of covariates X. It allows our method to outperform the EM
algorithm in favorable situations.

In Section 4.2, different clustering procedures on X are considered on several
classical data sets. In particular the behavior of the spectral clustering and
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the k-means algorithm are studied. Both of them are compared with the
hierarchical method studied in Section 3.2.

4.1 Comparison with the EM algorithm

In this simulation section, density of Y is given by

f(t) =
3

4
f1(t) +

1

4
f2(t), t ∈ R

where f1 and f2 stand for the densities of the normal distribution with mean
−∆ and ∆ and variance 1. Parameter ∆ measures the separation between
the components f1 and f2 (see Figure 3).
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Figure 3: Density of Y for various values of ∆.

Two scenarios are considered for the distribution of X. In the first one,
conditional densities gi,n, i = 1, 2 are uniform univariate densities:

g1,n(x) = I]0,1[(x) and g2,n(x) =
1

2
I]1+δn,3+δn[(x), x ∈ R

where δn > 0 measures the distance between the supports of g1,n and g2,n. For
the second one, we consider the mixture of Laplace distributions discussed
in Section 3.2.2: conditional densities gi,n, i = 1, 2 are given by

gi,n(x) =
1

2σn

exp

(
−|x− µi,n|

σn

)
, i = 1, 2,
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where σn = 1, µ1,n = 1 and µ2,n = µ1,n + ℓn where ℓn > 0. Observe that
supports of gi,n are disjoints in the uniform scenario while they overlap in
the Laplace example. The separation between these conditional distributions
is represented by the location parameters δn and ℓn.

For the two proposed scenarios, estimators f̂1 and f̂2 defined in (2.4) are
computed using the hierarchical clustering procedure proposed in Section 3.2.
These estimates are compared in terms of L1-error with the oracle (but un-
observable) estimates f̄1 and f̄2 defined in (2.1). Nonparametric kernel esti-
mates f̄i and f̂i are computed with a Gaussian kernel. Recall that this paper
does not put forth any theory for selecting the bandwidth h in an optimal way
(see Remark 2.2). Here we use the default data-driven procedure proposed
in the GNU-R library np (see Hayfield and Racine (2008)). In addition,
these nonparametric density estimates are compared with the EM algorithm
(Dempster et al. (1977)) known to perform well to estimate parameters in
a Gaussian mixture model. Formally, we run this algorithm on the sample
Y1, . . . , Yn to estimate Gaussian parameters of f1 and f2. We use the GNU-R
library mclust and denote by f em

1 and f em
2 the resulting estimates. They

are used as a benchmark. We set n = 300 and, for the sake of clarity, we
present the results regarding f1 only since conclusions are the same for f2.
Table 1 presents, for different values of ∆, δn and ℓn, the ratio

R(f̃1) =
E‖f̃1 − f1‖1

E‖f em
1 − f1‖1

(4.1)

where f̃1 is either f̂1 or f̄1. Expectations are evaluated over 500 Monte Carlo
replications.

Uniform: Laplace:
R(f̄1)R(f̂1) for δn = ... R(f̂1) for ℓn = ...

0.03 0.05 0.1 4.5 5.5 6.5

∆ = 0.1 0.636 0.563 0.464 0.817 0.509 0.476 0.464
∆ = 0.5 1.156 0.923 0.679 1.261 0.749 0.692 0.679
∆ = 1 1.772 1.288 0.844 1.769 0.954 0.869 0.843
∆ = 2 4.243 2.876 1.702 4.298 2.093 1.830 1.701

Table 1: L1-ratio (4.1) evaluated over 500 replications.

As expected, the performances of the EM algorithm clearly depend on the
separation distance between the target densities f1 and f2. For large ∆
values, parametric estimates resulting from the EM algorithm outperform
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Figure 4: Boxplot of the L1-error for the estimate f em
1 (EM), the oracle esti-

mate f̄1 (OR) and the two-step estimate f̂1 (TS) for the Laplace example. The
separation distance ∆ between f1 and f2 vary from 0.1 (left) to 2 (right) and
ℓn = 5.5.

the nonparametric estimates proposed in this paper (e.g. ∆ = 2 in Figure 4).
This is not the case when f1 is closed to f2: L1-performance of f̂1 over f em

1

is significantly better for ∆ = 0.1 and ∆ = 0.5 and roughly similar for
∆ = 1. Note also that the L1-error of f̂1 does not depend on ∆ (see Figure
4). Figure 5 displays scatterplots of the L1-error of f̂1 versus those of the
oracle f̄1 for ∆ = 1. As proved in Theorem 2.1, most points are above
the diagonal. The distance from a point to the first bisector measures to
some extent the distance between f̂1 and f̄1 in terms of L1-error. The closer
to the bisector, the better f̂1. In other words, this distance represents the
performance of the clustering algorithm. We observe that points move closer
to the first bisector as separation parameters δn and ℓn increase. As explained
in Theorem 3.1, performances of the hierarchical clustering algorithm depend
on the separation parameters δn and ℓn: when these parameters increase,
performances of f̂1 become similar to those of the oracle f̄1. Indeed, in our
simulations, we observe that L1-error of f̂1 and f̄1 are quite the same for
δn = 0.1 (resp. ℓn = 6.5) in the uniform case (resp. Laplace case).

4.2 A comparison of clustering algorithms

As discussed in Section 3, any clustering algorithm could be applied in prac-
tice. However, it is clear that L1-performances of the proposed estimate
depend largely on the performances of the clustering method. The problem
is to find the appropriate clustering algorithm according to the covariates
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Figure 5: L1-error of f̄1 (x-axis) and f̂1 (y-axis) for the uniform (up) and Laplace
(down) example.

X. In this section, we propose to compare three standard clustering pro-
cedures: the hierarchical clustering algorithm presented in Section 3.2, the
spectral clustering algorithm performed with a Gaussian kernel (see Arias-
Castro (2011)) and the k-means algorithm.

The model is as follows. The density of Y is now given by

f(t) =
1

2
f1(t) +

1

2
f2(t), t ∈ R

where f1 and f2 stand for the densities of the normal distribution with mean
−1 and 1 and variance 1. Here, random variable X takes values in R

2 and
we again consider two scenarios for its distribution:

• “Circle-Square” model (see Baudry (2009)): g1,n is the density of the
Gaussian distribution with mean (a, 0) and identity variance covariance
matrix; g2,n is the density of the uniform distribution over the square
[−1, 1]2 (see Figure 6).

• “Concentric circles” model (see Ng et al. (2002)): g1,n is the density of
the uniform distribution over C(0, r1 + ε, r1 − ε) and g2,n represents the
uniform distribution over C(0, r2 + ε, r2 − ε), where for r > 0 and ε > 0
C(0, r + ε, r − ε) represents the set between circles with center 0 and
radius r + ε and r − ε (see Figure 7). We fix r1 = 0.3, ε = 0.15 and
consider many values for r2 such that r2 > r1 + 2ε.
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The difficulty encountered in identifying each group depends on parameters
a and r2. The smaller a and r2, the harder to identify the clusters.
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Figure 6: A sample of n = 250 observations for the “Circle-Square” model with
a = 3 (left) and a = 4 (right).
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Figure 7: A sample of n = 250 observations for the “Concentric circles” model
with r2 = 0.75 (left) and r2 = 0.80 (right).

For the two described examples, we use the two-step kernel density estimator
for three clustering algorithms: hierarchical, spectral and k-means. The
resulting estimates are compared with the oracle estimates f̄1 and f̄2. We
keep the same setting as above to compute estimates f̂1 and f̂2: Gaussian
kernel and bandwidth selected with the library np. For the sake of clarity,
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we again present only results on f̂1 since we observe the same conclusions for
f̂2. Table 2 and Table 3 present the ratio

R(f̂1) =
E‖f̂1 − f1‖1

E‖f̄1 − f1‖1

, (4.2)

for many values of a, r2 and n. Expectations are evaluated over 500 Monte-
Carlo replications and Figure 8 presents boxplots of the L1-error of the dif-
ferent estimates. For each replications, we also compute the error of the
clustering procedure

1

n

n∑

k=1

I
Îk 6=Ik

and we display in Table 2 and Table 3 this error term averaged over the 500
replications (it is denoted errn). Observe that this term is closely related to
the maximal misclassification error ϕn.

Hier. Spect. k-means

R(f̂1) errn R(f̂1) errn R(f̂1) errn

a = 3
n = 250 4.680 0.475 1.748 0.121 1.047 0.043
n = 500 6.370 0.483 2.265 0.126 1.034 0.043

a = 4
n = 250 3.565 0.382 1.107 0.018 1.005 0.013
n = 500 5.688 0.449 1.190 0.023 1.000 0.013

a = 5
n = 250 1.285 0.067 0.999 0.001 0.997 0.003
n = 500 1.897 0.130 0.999 0.001 1.000 0.003

Table 2: Error ratio (4.2) evaluated over 500 Monte Carlo replications for the
“Circle-Square” example.

Hier. Spect. k-means

R(f̂1) errn R(f̂1) errn R(f̂1) errn

r2 = 0.75
n = 250 4.040 0.349 2.776 0.195 4.568 0.468
n = 500 1.197 0.021 1.013 0.001 5.993 0.478

r2 = 0.80
n = 250 1.852 0.105 1.433 0.049 4.556 0.467
n = 500 1.010 0.001 1.000 0.000 5.986 0.477

Table 3: Error ratio (4.2) evaluated over 500 Monte Carlo replications for the
“Concentric circles” example.

As proved in Theorem 2.1, performances of f̂1 depend on the accuracy of the
clustering approach: the lower errn, the better f̂1. For the “Circle Square”
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dataset, unsurprisingly k−means algorithm overperforms the two other clus-
tering methods. Indeed, k-means is well appropriate to this dataset since
clusters can be identified by their distances to two particular points (the
centers of the uniform and Gaussian distributions). It is not the case for the
“Concentric circle” dataset where estimates defined from hierarchical and
spectral clustering algorithms achieve the best estimated L1-error.
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Figure 8: Boxplot of the L1-error for the oracle estimate f̄1 (OR) and two-step
estimator f̂1 using the hierarchical algorithm (Hier), spectral clustering algorithm
(Spect) and k-means algorithm (KM). Results are for “Circle-Square” dataset
with a = 4 and n = 500 (left) and “Concentric circles” dataset with r2 = 0.75
and n = 500 (right).

5 Application to electricity distribution

5.1 Context of the study

ERDF is the contract-holder of the public electricity distribution network
in France. ERDF is in charge of operating, maintaining and developing
the network. With 36,000 employees and 35 million customers served over
34,220 communes, ERDF is the largest electricity distributor in Europe. It
operates more than 1.3 million km in power lines and runs more than 11
million operations per year. ERDF also plays an essential role in ensuring
the proper functioning of the competitive electricity market by providing
quality electricity supply among the best in Europe, and serving all network
users without resorting to guaranteeing discriminatory practices.
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In recent years, the electricity sector has entered a period of profound changes
resulting from the emergence of decentralized and intermittent (wind, solar)
means of production and new electricity uses (e.g. electric vehicle). The
increasing integration of these new means of production and new uses has
a major impact on ERDF’s core business: connecting new users (produc-
ers, terminals electric vehicle), and adaptating rules of conduct and network
planning/investment to meet the new specifications. ERDF has initiated
its digital transformation plan so as to take advantage of new information
technologies, and by meeting its new challenges, offer better public service.

ERDF launched the “smart grid” experimental programs in order to run the
network with more flexibility and efficiency. To do so, these programs use
detailed network status and mine/produce information from different users.
These more detailed data (including from a new generation of electricity
meters, called smart meters) will accordingly be used to improve network
monitoring (predictive maintenance).

In this section we focus on the detection of customers who experience a
significant decrease in consumption, for a given period of time, i.e., a period
when overall malfunction of the network could be observed. This will make
it possible to better understand the origin of dysfunctions and thus better
forecast network operation. For this study, we have the benefit of a set of
consumption curves for 226 customers with observations taken at regularly
spaced instants. Based on the observation of the individual consumption
curves, we can cluster individuals into two groups (those who have suffered an
abnormal decline and the others) and estimate, in each group, distributions
of many variables using the approach proposed in this paper.

5.2 Application of the two-step estimator

The consumption curves of n = 226 ERDF’s customers are observed at 9
regularly spaced instants t1, . . . , t9. The time interval [t1, t9] covers a known
period of disruption between times t4 and t6. The observations consist of n
vectors Zk = (Zk1, . . . , Zk9) ∈ R

9 where Zkj stands for the consumption of
user k at time tj.

Since ERDF is interested in comparing the behavior of customers of both
sub-populations (those who have suffered from the disruption and others)
before and after the disruption period, we consider 6 different variables Y (j) in
relation with the consumption around the disruption period. These variables,
presented below, are observed for each customer and thus are defined for any
k ∈ J1, nK.
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1. Average consumptions before, during and after the disruption period
defined by:

Y
(1)

k =
Zk1 + Zk2 + Zk3

3
, Y

(2)
k =

Zk4 + Zk5 + Zk6

3

and Y
(3)

k =
Zk7 + Zk8 + Zk9

3
;

2. Evolutions of consumption around the disruption period defined by:

Y
(4)

k =
Y

(2)
k − Y

(1)
k

Y
(1)

k

, Y
(5)

k =
Y

(3)
k − Y

(1)
k

Y
(1)

k

and Y
(6)

k =
Y

(3)
k − Y

(2)
k

Y
(2)

k

.

Let I be the random variable taking value 1 if a customer has been affected
by the disruption, 2 otherwise. If we denote by f

(j)
1 and f

(j)
2 the conditional

densities of L(Y (j)|I = 1) and L(Y (j)|I = 2), the problem is to compare

f
(j)
1 with f

(j)
2 for each j ∈ J1, 6K. Even if ERDF can measure consumptions

during the disruption period (between t4 and t6), it does not have the ca-
pacity to identify consumers affected by the perturbation. It means that
random variables Ik, k = 1, . . . , n are not observed. However, we know that
users impacted by the disruption posted a decline in consumption during t4
and t6. Figure 9 provides examples of customers potentially affected by the
disruption (for confidentiality reasons, representations are anonymous and
scales of power are not specified).

8

2 4 6 8 2 4 6 8 2 4 6 8

2 4 6 8 2 4 6 8 2 4 6

Figure 9: Consumptions of users suspected to be affected (up) or not (down)
by the perturbation.

Using the approach developed in this paper, we first have to identify users
impacted by the disruption with a clustering algorithm. As the disruption
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influences the consumptions of user k between t4 and t6 we define Xk =
(Xk1, Xk2), k = 1, . . . , n with

Xk1 = min (vk,54, vk,65) , Xk2 = vk,54 + vk,65

where

vk,ij =
Zkj − Zki

Zki

, 1 ≤ i, j ≤ 9.

Observe that vk,ij measures the relative variation of consumption for user k
between ti and tj. It follows that Xk = (Xk1, Xk2) captures the development
of consumption of user k during the disruption period. We use these covari-
ates to cluster users into two groups: the first contains consumers assumed
to be affected by the disruption, the second contains the others.

Two clustering algorithms have been tested: the hierarchical method stud-
ied in section 3.2 and the k-means algorithm. Since these methods lead to
approximately the same clusters, we only present results for the hierarchical
method. Figures 10 and 11 present kernel density estimates (2.4) of con-

ditional densities f
(j)
1 and f

(j)
2 for j ∈ J1, 6K. Parameters (bandwidth and

kernel) of the kernel estimates are chosen as in the simulation part. For
confidentiality reasons, scales of power are again not specified.
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Figure 10: Kernel estimates f̂
(j)
1 (solid lines) and f̂

(j)
2 (dashed lines) for j = 1

(left), 2 (center) and 3 (right).
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Figure 11: Kernel estimates f̂
(j)
1 (solid lines) and f̂

(j)
2 (dashed lines) for j = 4

(left), 5 (center) and 6 (right).

Figure 10 strongly supports the idea that the clustering procedure allows to
correctly identify users impacted by the disruption. Indeed we observe that
the average consumption during the disruption period is lower for consumers
in the first group (second graph in Figure 10). We can also observe that
average consumptions are quite the same for the two groups before and after
the disruption period. It means that users impacted by the perturbation
do not over-consume after the disruption period. This conclusion is also
supported by the second graph in Figure 11: distributions representing the
evolution of consumptions are similar for the two clusters.

6 Conclusion

This paper provides a new framework to estimate conditional densities in
mixture models in the presence of covariates. To our knowledge, no clear
probabilistic model has been proposed to take into account of the presence
of covariates. The model we consider includes such covariates and Theorem
2.1 precisely describes the interest of a preliminary clustering step on these
covariates to estimate components of the mixture model. It is shown that
the performances of these estimates depend on the maximal misclassification
error (2.3) of the clustering algorithm. This criterion is natural to measure
performances of clustering algorithms but, as far as we know, it has not been
addressed before. We obtain non-asymptotic upper bounds of this error term

27



is section 3.2 for a particular hierarchical algorithm. This algorithm is not
new but it has not been studied in this context. Results obtained for this
algorithm could be extended to other clustering algorithms based on pairwise
distances such as spectral clustering (Arias-Castro (2011)) or on clustering
methods based on neighborhoods graphs (Maier et al. (2009)). Even if main
contributions of this work are theoretical, both the simulation study and the
application on real data enlighten the efficiency of the proposed estimator in
the presence of covariates.
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7 Proofs

7.1 Proof of Theorem 2.1

We first prove inequality (2.5). Since

E

∥∥∥f̂i − fi

∥∥∥
1

≤ E

∥∥∥f̄i − fi

∥∥∥
1

+ E

∥∥∥f̂i − f̄i

∥∥∥
1
,

we need only find an upper bound of the second term in the right-hand side
of the previous inequality. Since f̄i = 0 when Ni = 0 and ‖f̂i‖1 = ‖K‖1, we
have

E

∥∥∥f̂i − f̄i

∥∥∥
1

≤ E

(∥∥∥f̂i

∥∥∥
1
INi=0

)
+ E

∥∥∥(f̂i − f̄i)INi>0

∥∥∥
1

≤ ‖K‖1(1 − αi)
n + E

∥∥∥(f̂i − f̄i)INi>0

∥∥∥
1
.

For the sake of readability, let Ẽ denote the conditional expectation with

respect to (I1, . . . , In) and
˜̃
E the conditional expectation with respect to

(I1, . . . , In, X1, . . . , Xn). Moreover, let

Ai(t) =
(
f̂i(t) − f̄i(t)

)
INi>0

=
n∑

k=1

Kh(t, Yk)

(
I{i}(Îk)

N̂i

− I{i}(Ik)

Ni

)
INi>0.

Using these notations it is easily seen that

E

∥∥∥(f̂i − f̄i)INi>0

∥∥∥
1

= EẼ

∫

R

˜̃
E|Ai(t)|dt. (7.1)
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Since, for all y ∈ R we have
∫
R

|Kh(t, y)|dt = ‖K‖1, we deduce that

∫

R

˜̃
E|Ai(t)| dt ≤

n∑

k=1

˜̃
E

(∫

R

|Kh(t, Yk)| dt
) ∣∣∣∣∣

I{i}(Îk)

N̂i

− I{i}(Ik)

Ni

∣∣∣∣∣

≤ ‖K‖1

n∑

k=1

∣∣∣∣∣
I{i}(Îk)

N̂i

− I{i}(Ik)

Ni

∣∣∣∣∣ .

Thus

Ẽ

∫

R

˜̃
E|Ai(t)| dt ≤ ‖K‖1

Ni

Ẽ

[
1

N̂i

n∑

k=1

|NiI{i}(Îk) − N̂iI{i}(Ik)|
]
. (7.2)

Moreover, inserting N̂iI{i}(Îk) in the previous expectation, we obtain

Ẽ

[
1

N̂i

n∑

k=1

|NiI{i}(Îk) − N̂iI{i}(Ik)|
]

≤ Ẽ|Ni − N̂i| + Ẽ

n∑

k=1

|I{i}(Îk) − I{i}(Ik)|

≤ 2Ẽ
n∑

k=1

|I{i}(Îk) − I{i}(Ik)|. (7.3)

Combining (7.1), (7.2) and (7.3) leads to

E

∥∥∥(f̂i − f̄i)INi>0

∥∥∥
1

≤ 2‖K‖1

n∑

k=1

E

[
INi>0

Ni

|I{i}(Îk) − I{i}(Ik)|
]

≤ 2‖K‖1

nαi

n∑

k=1

E

[
nαiINi>0

Ni

|I{i}(Îk) − I{i}(Ik)|
]
. (7.4)

The expectation on the right-hand side of this inequality can be bounded in
the following way

E

[
nαiINi>0

Ni

|I{i}(Îk) − I{i}(Ik)|
]

≤ E

[
nαiINi>0

Ni

|I{i}(Îk) − I{i}(Ik)|Inαi
Ni

≤2

]

+ E

[
nαiINi>0

Ni

|I{i}(Îk) − I{i}(Ik)|Inαi
Ni

>2

]
.

(7.5)

For the first term of this bound, we have

E

[
nαiINi>0

Ni

|I{i}(Îk) − I{i}(Ik)|Inαi
Ni

≤2

]
≤ 2ϕn, (7.6)

29



while for the second term, we obtain from Hölder inequality that

E

[
nαiINi>0

Ni

|I{i}(Îk) − I{i}(Ik)|Inαi
Ni

>2

]

≤
√√√√
E

[
nαiINi>0

Ni

|I{i}(Îk) − I{i}(Ik)|Inαi
Ni

>2

]2

P

(
nαi

Ni

> 2
)

≤
√√√√E

(
(nαi)2

N2
i

INi>0

)
P

(
Ni − nαi < −nαi

2

)
. (7.7)

Now, it can be easily seen that

E

(
(nαi)

2

N2
i

INi>0

)
≤ 6E

(
(nαi)

2

(Ni + 1)(Ni + 2)

)
≤ 6, (7.8)

where the last inequality follows from Hengartner and Matzner-Løber (2009).
Using Hoeffding’s inequality (see Hoeffding (1963)) we obtain for the second
term in (7.5)

E

[
nαiINi>0

Ni

|I{i}(Îk) − I{i}(Ik)|Inαi
Ni

>2

]
≤

√
6 exp

(
−nαi

2

4

)
. (7.9)

From (7.4) – (7.9), we deduce that

E

∥∥∥(f̂i − f̄i)INi>0

∥∥∥
1

≤ 4‖K‖1

αi

ϕn +
2
√

6‖K‖1

αi

exp

(
−nαi

2

4

)
.

Putting all of the pieces together, we obtain

E

∥∥∥f̂i − f̄i

∥∥∥
1

≤ 4‖K‖1

αi

ϕn +
2
√

6‖K‖1

αi

exp

(
−αi

2

4
· n
)

+ ‖K‖1 exp (−n log(1 − αi)) ,

which concludes the first part of the proof.
Inequality (2.6) is proved as follows

E|α̂i − αi| ≤ E

∣∣∣∣∣
N̂i

n
− Ni

n

∣∣∣∣∣+ E

∣∣∣∣
Ni

n
− αi

∣∣∣∣

≤ 1

n

n∑

k=1

E|I{i}(Îk) − I{i}(Ik)| +
1

n

√
V(Ni)

≤ ϕn +

√
αi(1 − αi)

n
.
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7.2 Proof of Proposition 3.1

Let k be an arbitrary integer in J1, nK. We have to bound P(Îk 6= i|Ik = i)
for i = 1, 2. To do so, we first consider the case i = 2:

P(Îk 6= 2|Ik = 2) = P(Îk 6= 2, 1 − λn < Xk < 1|Ik = 2)

+ P(Îk 6= 2, Xk ≥ 1|Ik = 2)

= P(1 − λn < Xk < 1|Ik = 2)

because, by definition, Îk 6= 2 ⇐⇒ Xk < 1. Thus

P(Îk 6= 2|Ik = 2) =
∫ 1

1−λn

g2,n(x)dx = λn. (7.10)

Next, if i = 1 it is easy to see that P(Îk 6= 1|Ik = 1) = P(Xk ≥ 1− λ̂n|Ik = 1).
Let us consider

µn = λn +
2

α2

· log n

n
and A =

{
1 − λ̂n ≥ 1 − µn

}
.

Using these notations we obtain

{Xk ≥ 1 − λn} =
(
{Xk ≥ 1 − λ̂n} ∩ A

)
∪
{
Xk ≥ 1 − λ̂n} ∩ Ā

)

⊆ {Xk ≥ 1 − µn} ∪
{
λ̂n ≥ µn

}
.

This leads to the following inequality

P(Îk 6= 1|Ik = 1) ≤ µn + P

(
X(n) ≤ 2 − µn|Ik = 1

)
. (7.11)

Since Xℓ and Ik are independent for k 6= ℓ, we obtain the following bound
for the last probability

P

(
X(n) ≤ 2 − µn|Ik = 1

)

= P (∀ℓ,Xℓ ≤ 2 − µn|Ik = 1)

=


∏

ℓ 6=k

P (Xℓ ≤ 2 − µn)


P (Xk ≤ 2 − µn|Ik = 1) .

The independence of the Xℓ’s and simple calculations lead to

P

(
X(n) ≤ 2 − µn|Ik = 1

)
=
(
P(X1 ≤ 2 − µn)

)n−1

= (1 − 2n−1(log n))n−1

≤ n−1, (7.12)
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where the last inequality follows, for n ≥ 2, from the fact that 1 − u ≤ e−u

for all u ≥ 0. Taking together equations (7.11) and (7.12), we finally obtain

P(Îk 6= 1|Ik = 1) ≤ λn + n−1 +
2

α2

· log n

n
. (7.13)

Proposition follows from equations (7.10) and (7.13).

7.3 Proof of Theorem 3.1

Since δn > 2rn we have for all (i, j) ∈ J1,MK2 with i 6= j:


 ⋃

k:Xk∈Si,n

B(Xk, rn)


∩


 ⋃

k:Xk∈Sj,n

B(Xk, rn)


 ⊆ (Si,n + rn) ∩ (Sj,n + rn) = ∅,

(7.14)
where, for S ⊂ R

d and r > 0, we recall that

S + r = {x ∈ R
d : ∃y ∈ S such that ‖x− y‖2 ≤ r}.

Inclusion (7.14) implies M̂rn
≥ M . Moreover, observe that if

rn ∈ RM = {r > 0 : M̂r ≤ M} (7.15)

then M̂rn
= M and the affinity matrices Arn and Ar̂n defined in (3.3) induce

the same clusters X1(rn), . . . ,XM(rn). Furthermore, if (7.15) is verified, it is
easily seen that ∀i ∈ J1,MK,∃j ∈ J1,MK such that

{Xk : Xk ∈ Si,n + rn} ⊆ Xj(rn).

For simplicity, when (7.15) is satisfied, we index clusters X1(rn), . . . ,XM(rn)
such that

{Xk : Xk ∈ Si,n + rn} ⊆ Xi(rn), i ∈ J1,MK.

We deduce that

P(Îk 6= Ik) ≤ P({Îk 6= Ik} ∩ {rn ∈ RM}) + P(rn /∈ RM)

≤ P({Îk 6= Ik} ∩ {rn ∈ RM} ∩ {Xk ∈ (Sn + rn)})

+ P(Xk /∈ (Sn + rn)) + P(rn /∈ RM)

≤
M∑

i=1

P(Xk /∈ (Si,n + rn)|Ik = i)P(Ik = i) + ψn + P(rn /∈ RM)

≤ 2ψn + P(rn /∈ RM) (7.16)
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since P(Xk /∈ (Sn + rn)) ≤ ψn. To complete the proof, we have to find an
upper bound for the probability of the event {rn /∈ RM}. Observe that

P(rn /∈ RM) ≤P


Sn 6⊆

⋃

k∈κn

B(Xk, rn)




+ P


{rn /∈ RM} ∩



Sn ⊆

⋃

k∈κn

B(Xk, rn)








(7.17)

where κn = {k ∈ J1,MK : Xk ∈ Sn}. For the first term on the right hand
side of the above equation, remark that inclusion

Sn ⊆
⋃

k∈κn

B(Xk, rn)

holds when for all ℓ ∈ J1, NK, the balls Bℓ defined in assumption 2 contain
at least one observation among {Xk, k ∈ κn}. Thus

P


Sn 6⊆

⋃

k∈κn

B(Xk, rn)


 ≤ P (∃ℓ ∈ J1, NK,∀k ∈ κn, Xk /∈ Bℓ)

≤
N∑

ℓ=1

P(∀k ∈ κn, Xk /∈ Bℓ)

≤
N∑

ℓ=1

P

(
n⋂

k=1

{{{Xk ∈ Sn} ∩ {Xk /∈ Bℓ}} ∪ {Xk /∈ Sn}}
)

≤
N∑

ℓ=1

(P({Xk ∈ Sn} ∩ {Xk /∈ Bℓ}) + P(Xk /∈ Sn))n

≤
N∑

ℓ=1

(1 − P(Xk ∈ (Bℓ ∩ Sn)) − P(Xk /∈ Sn) + P(Xk /∈ Sn))n

≤
N∑

ℓ=1

(1 − P(Xk ∈ (Bℓ ∩ Sn)))n.

According to assumption 2 and inequality (3.6), we obtain

P


Sn 6⊆

⋃

k∈κn

B(Xk, rn)


 ≤

N∑

ℓ=1

(1 − tnc2r
d
n)n

≤ N
(
1 − c2tnr

d
n

)n

≤ (τc1c2)
−1 n

log n
exp(−c2ntnr

d
n)

≤ (τc1c2)
−1 n

log n
exp(−c2τ log n).

33



Since c2τ ≥ 1 + a we have

P


Sn 6⊆

⋃

k∈κn

B(Xk, rn)


 ≤ (τc1c2)

−1 1

na log n
. (7.18)

For the second term on the right hand side of (7.17), we have

P


{rn /∈ RM} ∩




⋃

k∈κn

B(Xk, rn)






 ≤ P(∃k ∈ J1, nK : Xk /∈ (Sn+rn)) ≤ nψn.

(7.19)
Taking (7.16), (7.18) and (7.19) together, result follows.
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