
HAL Id: hal-01113808
https://hal.science/hal-01113808

Submitted on 19 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Throughput maximization in multiprocessor
speed-scaling

Eric Angel, Evripidis Bampis, Vincent Chau, Kim Thang Nguyen

To cite this version:
Eric Angel, Evripidis Bampis, Vincent Chau, Kim Thang Nguyen. Throughput maximization in mul-
tiprocessor speed-scaling. ISAAC 2014 - 25th International Symposium on Algorithms and Compu-
tation, Dec 2014, Jeonju, South Korea. pp.247–258, �10.1007/978-3-319-13075-0_20�. �hal-01113808�

https://hal.science/hal-01113808
https://hal.archives-ouvertes.fr

Throughput Maximization in Multiprocessor Speed-Scaling

Eric Angel∗ Evripidis Bampis † Vincent Chau∗ Nguyen Kim Thang∗

April 15, 2014

Abstract

We are given a set of n jobs that have to be executed on a set of m speed-scalable
machines that can vary their speeds dynamically using the energy model introduced in [Yao
et al., FOCS’95]. Every job j is characterized by its release date rj , its deadline dj , its
processing volume pi,j if j is executed on machine i and its weight wj . We are also given
a budget of energy E and our objective is to maximize the weighted throughput, i.e. the
total weight of jobs that are completed between their respective release dates and deadlines.
We propose a polynomial-time approximation algorithm where the preemption of the jobs is
allowed but not their migration. Our algorithm uses a primal-dual approach on a linearized
version of a convex program with linear constraints. Furthermore, we present two optimal
algorithms for the non-preemptive case where the number of machines is bounded by a
fixed constant. More specifically, we consider: (a) the case of identical processing volumes,
i.e. pi,j = p for every i and j, for which we present a polynomial-time algorithm for the
unweighted version, which becomes a pseudopolynomial-time algorithm for the weighted
throughput version, and (b) the case of agreeable instances, i.e. for which ri ≤ rj if and
only if di ≤ dj , for which we present a pseudopolynomial-time algorithm. Both algorithms
are based on a discretization of the problem and the use of dynamic programming.

1 Introduction

Power management has become a major issue in our days. One of the mechanisms used for saving
energy in computing systems is speed-scaling where the speed of the machines can dynamically
change over time. We adopt the model first introduced by Yao et al. [26] and we study the
multiprocessor scheduling problem of maximizing the throughput of jobs for a given budget of
energy. Maximizing throughput, i.e. the number of jobs or the total weight of jobs executed
on time for a given budget of energy is a very natural objective in this setting. Indeed mobile
devices, such as mobile phones or computers, have a limited energy capacity depending on the
quality of their battery, and throughput is one of the most popular objectives in scheduling
literature for evaluating the performance of scheduling algorithms for problems involving jobs
that are subject to release dates and deadlines [14, 24, 13]. Different variants of the throughput
maximization problem in the online speed-scaling setting have been studied in the literature [17,
25, 12, 18]. However, in the off-line context, only recently, an optimal pseudopolynomial-time
algorithm has been proposed for the preemptive1 single-machine case [4]. Up to our knowledge
no results are known for the throughput maximization problem in the multiprocessor case.
In this paper, we address this issue. More specifically, we first consider the case of a set of
unrelated machines and we propose a polynomial-time constant-approximation algorithm for

∗IBISC, Université d’Evry Val d’Essonne, France.
†Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France.
1The execution of a job may be interrupted and resumed later.

1

the problem of maximizing the weighted throughput in the preemptive non-migratory2 setting.
Our algorithm is based on the primal-dual scheme and it is inspired by the approach used in [20]
for the online matching problem. In the second part of the paper, we propose exact algorithms
for a fixed number of identical parallel machines for instances where the processing volumes of
the jobs are all equal, or agreeable instances. Much attention has been paid to these types of
instances in the speed-scaling literature (witness for instance [3]). Our algorithms, in this part,
are for the non-preemptive case and they are based on a discretization of the problem and the
use of dynamic programming.

Problem Definition and Notations In the first part of the paper, we consider the problem
for a set of unrelated parallel machines. Formally, there are m unrelated machines and n jobs.
Each job j has its release date rij , deadline dij , and its processing volume pij on machine i.
Moreover, job j has weight wj which represents its value. If a job is executed on machine i
then it must be entirely processed during its available time interval [rij , dij] on that machine
without migration. The weighted throughput of a schedule is

∑
i,j wj where the sum is taken

over jobs j completed on machine i . At any time, a machine can choose a speed to process a
job. If the speed of machine i at time t is si(t) then the energy power at t is Pi(si(t)) where
Pi is a given convex power energy function of machine i. Typically, one has Pi(z) := zαi where
2 ≤ αi ≤ 3. The consumed energy on machine i is

∫∞
0 Pi(si(t))dt. Our objective is to maximize

the weighted throughput for a given budget of energy E. Hence, the scheduler has to decide the
set of jobs which will be executed, assign the jobs to machines and choose appropriate speeds
to schedule such jobs without exceeding the energy budget.

In the second part of the paper we consider identical parallel machines where the job pa-
rameters (i.e., its release date, deadline, processing volume) are not machine-dependent and the
energy power functions are the same for every machine, i.e., P (z) = zα. We study the problem
on two families of instances: (a) instances with identical processing volumes, i.e. pi,j = p for
every i and j, and (b) agreeable instances, i.e. for which ri ≤ rj if and only if di ≤ dj .

In the sequel, we need the following definition: Given arbitrary convex functions Pi as the
energy power functions, define Γ := maxi maxz>0 zP

′
i (z)/Pi(z). As said before, for the most

studied case in the literature one has Pi(z) = zαi , and therefore Γ = maxi αi.

1.1 Our approach and contributions

In this paper, we propose an approximation algorithm for the preemptive non-migratory
weighted throughput problem on a set of unrelated speed-scalable machines in Section 2. In-
stead of studying the problem directly, we study the related problem of minimizing the consumed
energy under the constraint that the total weighted throughput must be at least some given
throughput demand W .

For the problem of minimizing the energy’s consumption under throughput constraint, we
present a polynomial time algorithm which has the following property: the consumed energy
of the algorithm given a throughput demand W is at most that of an optimal schedule with
throughput demand 2(Γ+1)W . The algorithm is based on a primal-dual scheme for mathemati-
cal programs with linear constraints and a convex objective function. Specifically, our approach
consists in considering a relaxation with convex objective and linear constraints. Then, we
linearize the convex objective function and construct a dual program. Using this procedure, the
strong duality is not necessarily ensured but the weak duality always holds and that is indeed

2This means that the execution of a job may be interrupted and resumed later, but only on the same machine
on which it has been started.

2

the property that we need for our approximation algorithm. The linearization and the dual con-
struction follow the scheme introduced in [20] for online matching. In the relaxation, we also
make use of the knapsack inequalities, presented in [16], in order to reduce the integrality gap in
the multiprocessor environments. The algorithm follows the standard primal-dual framework:
at any time, some dual variables are greedily increased until some dual constraint becomes
tight. Then some job is selected and is dispatched to the corresponding machine revealed by
the dual constraint. Typically, one will bound the primal objective value by the dual one. In
the analysis, instead of comparing the primal and its dual, we bound the primal by the dual of
the same relaxation but with the new demand which is 2(Γ + 1) times larger. An advantage in
the analysis is that the feasible solutions of the dual program corresponding to the primal with
demand W is also feasible for the dual corresponding to the primal with demand 2(Γ + 1)W .

For the problem of maximizing the throughput under a given budget of energy, we apply a
dichotomy search using as subroutine the algorithm for the problem of minimizing the energy’s
consumption for a given weighted throughput demand. Our algorithm is a 2(Γ + 1)(1 + ε)-
approximation for the weighted throughput where ε > 0 is an arbitrarily small constant. The
algorithm’s running time is polynomial in the input size of the problem and 1/ε. Clearly,
one may be interested in finding a tradeoff between the precision and the running time of the
algorithm.

In Section 3, we propose exact algorithms for the non-preemptive scheduling on a fixed
number of speed-scalable identical machines. By identical machines, we mean that pi,j = pj ,
i.e. the processing volume of every job is independent of the machine on which it will be
executed. Moreover, rij = rj and dij = dj for every job j and every machine i. We show that
for the special case of the problem in which there is a single machine and the release dates and
deadlines of the jobs are agreeable (for every jobs j and j′, if rj < rj′ then dj ≤ dj′) the weighted
throughput problem is already weakly NP-hard when all the processing volumes are equal. We
consider the following two cases (1) jobs have the same processing volume but have arbitrary
release dates and deadlines; and (2) jobs have arbitrary processing volumes, but their release
dates and deadlines are agreeable. We present pseudo-polynomial time algorithms based on
dynamic programming for these variants. Specifically, when all jobs have the same processing
volume, our algorithm has running time O(n12m+7W 2) where W =

∑
j wj . Note that when jobs

have unit weight, the algorithm has polynomial running time. When jobs are agreeable, our
algorithm has running time O(n2m+2V 2m+1Wm) where V =

∑
j pj . Using standard techniques,

these algorithms may lead to approximation schemes.

1.2 Related work

A series of papers appeared for some online variants of throughput maximization: the first
work that considered throughput maximization and speed scaling in the online setting has been
presented by Chan et al. [17]. They considered the single machine case with release dates and
deadlines and they assumed that there is an upper bound on the machine’s speed. They are
interested in maximizing the throughput, and minimizing the energy among all the schedules of
maximum throughput. They presented an algorithm which is O(1)-competitive with respect to
both objectives. Li [25] has also considered the maximum throughput when there is an upper
bound in the machine’s speed and he proposed a 3-approximation greedy algorithm for the
throughput and a constant approximation ratio for the energy consumption. In [12], Bansal et
al. improved the results of [17], while in [23], Lam et al. studied the 2-machines environment.
In [19], Chan et al. defined the energy efficiency of a schedule to be the total amount of
work completed in time divided by the total energy usage. Given an efficiency threshold, they
considered the problem of finding a schedule of maximum throughput. They showed that no

3

deterministic algorithm can have competitive ratio less than the ratio of the maximum to the
minimum jobs’ processing volume. However, by decreasing the energy efficiency of the online
algorithm the competitive ratio of the problem becomes constant. Finally, in [18], Chan et al.
studied the problem of minimizing the energy plus a rejection penalty. The rejection penalty
is a cost incurred for each job which is not completed on time and each job is associated with
a value which is its importance. The authors proposed an O(1)-competitive algorithm for
the case where the speed is unbounded and they showed that no O(1)-competitive algorithm
exists for the case where the speed is bounded. In what follows, we focus on the offline case.
Angel et al. [5] were the first to consider the throughput maximization problem in this setting.
They provided a polynomial time algorithm to solve optimally the single-machine problem
for agreeable instances. More recently in [4], they proved that there is a pseudo-polynomial
time algorithm for solving optimally the preemptive single-machine problem with arbitrary
release dates and deadlines and arbitrary processing volume. For the weighted version, the
problem is NP-hard even for instances in which all the jobs have common release dates and
deadlines. Angel et al. [5] showed that the problem admits a pseudo-polynomial time algorithm
for agreeable instances. Furthermore, Antoniadis et al. [8] considered a generalization of the
classical knapsack problem where the objective is to maximize the total profit of the chosen
items minus the cost incurred by their total weight. The case where the cost functions are
convex can be translated in terms of a weighted throughput problem where the objective is
to select the most profitable set of jobs taking into account the energy costs. Antoniadis et
al. presented a FPTAS and a fast 2-approximation algorithm for the non-preemptive problem
where the jobs have no release dates or deadlines.

Up to the best of our knowledge, no works are known for the offline throughput maximization
problem in the case of multiple machines. However, many papers consider the closely related
problem of minimizing the consumed energy.

For the preemptive single-machine case, Yao et al.[26] in their seminal paper proposed an
optimal polynomial-time algorithm. Since then, a lot of papers appears in the literature (see [1]).
Antoniadis and Huang [7] have considered the non-preemptive energy minimization problem.
They proved that the non-preemptive single-machine case is strongly NP-hard even for laminar
instances 3 and they proposed a 25α−4-approximation algorithm. This result has been improved
recently in [10] where the authors proposed a 2α−1(1 + ε)B̃α-approximation algorithm, where
B̃α is the generalized Bell number. For instances in which all the jobs have the same processing
volume, Bampis et al. [9] gave a 2α-approximation for the single-machine case. However the
complexity status of this problem remained open. In this paper, we settle this question even
for the identical machine case where the number of the machine is a fixed constant. Notice
that independently, Huang et al. in [22] proposed a polynomial-time algorithm for the single
machine case.

The multiple machine case where the preemption and the migration of jobs are allowed can
be solved in polynomial time in [2], [6] and [11]. Albers et al. [3] considered the multiple ma-
chine problem where the preemption of jobs is allowed but not their migration. They showed
that the problem is polynomial-time solvable for agreeable instances when the jobs have the
same processing volumes. They have also showed that it becomes strongly NP-hard for general
instances even for jobs with equal processing volumes and for this case they proposed an (αα24α)-
approximation algorithm. For the case where the jobs have arbitrary processing volumes, they
showed that the problem is NP-hard even for instances with common release dates and com-
mon deadlines. Albers et al. proposed a 2(2 − 1/m)α-approximation algorithm for instances
with common release dates, or common deadlines, and an (αα24α)-approximation algorithm for

3In a laminar instance for any pair of jobs Ji and Jj , either [rj , dj] ⊆ [ri, di], [ri, di] ⊆ [rj , dj], or [ri, di] ∩
[rj , dj] = ∅.

4

instances with agreeable deadlines. Greiner et al. [21] proposed a Bα-approximation algorithm
for general instances, where Bα is the α-th Bell number. Recently, the approximation ratio for
agreeable instances has been improved to (2− 1/m)α−1 in [9]. For the non-preemptive multiple
machine energy minimization problem, the only known result is a non-constant approximation
algorithm presented in [9].

2 Approximation Algorithms for Preemptive Scheduling

In Section 2.1, we first study a related problem in which we look for an algorithm that minimizes
the consumed energy under the constraint of throughput demand. Then in Section 2.2 we use
that algorithm as a sub-routine to derive an algorithm for the problem of maximizing throughput
under the energy constraint.

2.1 Energy Minimization with Throughput Demand Constraint

In the problem, there are n jobs and m unrelated machines. A job j has release date rij , deadline
dij , weight wj and processing volume pij if it is scheduled on machine i. Given throughput
demand W , the scheduler needs to choose a subset of jobs, assign them to the machines and
decide the speed to process these job in such a way that the total weight (throughput) of
completed jobs is at least W and the consumed energy is minimized. Jobs are allowed to be
processed preemptively but without migration.

Let xij ’s be variables indicating whether job j is scheduled in machine i. Let sij(t)’s be the
variable representing the speed that the machine i processes job j at time t. The problem can
be formulated as the following primal convex relaxation (P).

min
∑
i

∫ ∞
0
Pi(si(t))dt (P)

subject to si(t) =
∑
j

sij(t) ∀i, t

∑
i

xij ≤ 1 ∀j (1)

∫ dij

rij

sij(t)dt ≥ pijxij ∀i, j (2)∑
i

∑
j:j /∈S

wSj xij ≥W − w(S) ∀S ⊂ {1, . . . , n} (3)

xij , sij(t) ≥ 0 ∀i, j, t

In the relaxation, constraints (1) ensures that a job can be chosen at most once. Constraints
(2) guarantee that job j must be completed if it is assigned to machine i. To satisfy the
throughput demand constraint, we use the knapsack inequalities (3) introduced in [16]. Note
that in the constraints, S is a subset of jobs, w(S) =

∑
j∈S wj and wSj := min{wj ,W − w(S)}.

Intuitively, if S is the set of jobs which will be completed then one need to cover W − w(S)
amount of throughput over jobs not in S in order to satisfy the demand. Those constraints
reduce significantly the integrality gap of the relaxation compared to the natural constraint∑

ij wjxij ≥W .
Define functions Qi(z) := Pi(z)− zP ′i (z) for every machine i. Consider the following a dual

5

program (D).

max
∑
S

(W − w(S))βS +
∑
i

∫ ∞
0

Qi(vi(t))dt−
∑
j

γj (D)

s.t λij ≤ P ′i (vi(t)) ∀i, j, ∀t ∈ [rij , dij] (4)∑
S:j /∈S

wSj βS ≤ γj + λijpij ∀i, j (5)

λij , γj , vi(t) ≥ 0 ∀i, j, ∀t

The construction of the dual (D) is inspired by [20] and is obtained by linearizing the convex
objective of the primal. By that procedure the strong duality is not necessarily guaranteed
but the weak duality always holds. Indeed we only need the weak duality for approximation
algorithms. In fact, the dual (D) gives a meaningful lower bound that we will exploit to design
our approximation algorithm.

Lemma 1 (Weak Duality). The optimal value of the dual program (D) is at most the optimal
value of the primal program (P).

Proof. As Pi is convex, for every t and functions si and vi, we have

Pi(si(t)) ≥ Pi(vi(t)) + (si(t)− vi(t))P ′i (vi(t))
= P ′i (vi(t))si(t) +Qi(vi(t)) (6)

Notice that if vi(t) is fixed then Pi(si(t)) has a lower bound in linear form (since in that
case P ′i (vi(t)) and Q(vi(t)) are constants). We use that lower bound to derive the dual. Fix
functions vi(t) for every 1 ≤ i ≤ m. Consider the following linear program and its dual in the
usual sense of linear programming.

By strong LP duality, the optimal value of theses primal and dual programs are equal.
Denote that value with OPT (v1, . . . , vm).

Let OP be the optimal value of the primal program (P). Hence, for every choice of vi(t),
we have a lower bound on OP , i.e., OP ≥ OPT (v1, . . . , vm) +

∑
i

∫∞
0 Qi(vi(t)) by (6). So

OP ≥ maxv1,...,vm OPT (v1, . . . , vm) +
∑

i

∫∞
0 Qi(vi(t)) where vi(t)’s are feasible solutions for

(D). The latter is the optimal value of the dual program (D). Hence, the lemma follows.

The primal/dual programs (P) and (D) highlights main ideas for the algorithm. Intuitively,
if a job j is assigned to machine i then one must increase the speed of job j in machine i at
arg minP ′i (vi(t)) in order to always satisfy the constraint (4). Moreover, when constraint (5)
becomes tight for some job j and machine i, one could assign j to i in order to continue to raise
some βS and increase the dual objective. The formal algorithm is given as follows.

6

min
∑
i

∫ ∞
0
P ′i (vi(t))

∑
j

sij(t)dt∑
i

xij ≤ 1 ∀j

∫ dij

rij

sij(t)dt ≥ pijxij ∀i, j∑
i

∑
j:j /∈S

wSj xij ≥W − w(S) ∀S

xij , sij(t) ≥ 0 ∀i, j, t

max
∑
S

(W − w(S))βS −
∑
j

γj

λij ≤ P ′i (vi(t)) ∀i, j, ∀t ∈ [rij , dij]∑
S:j /∈S

wSj βS ≤ γj + λijpij ∀i, j

λij , γj , vi(t) ≥ 0 ∀i, j, ∀t

Figure 1: Strong duality for LP

Algorithm 1 Minimizing the consumed energy under the throughput constraint

1: Initially, set si(t), sij(t), vi(t) and λij , γj equal to 0 for every job j, machine i and time t.
2: Initially, T ← ∅.
3: while W > w(T) do
4: for every job j /∈ T and every machine i do
5: Continuously increase sij(t) at arg minP ′i (vi(t)) for rij ≤ t ≤ dij and simultaneously

update vi(t)← vi(t) + sij(t) until
∫ dij
rij

sijdt = pij .

6: Set λij ← minrij≤t≤dij P
′
i (vi(t)).

7: Reset vi(t) as before, i.e., vi(t)← vi(t)− sij(t) for every t ∈ [rij , dij].
8: end for
9: Continuously increase βT until

∑
S:j /∈S w

S
j βS = pijλij for some job j and machine i.

10: Assign job j to machine i. Set si(t)← si(t) + sij(t) and vi(t)← si(t) for every t.
11: Set T ← T ∪ {j}. Moreover, set γj ← pijλij .
12: Reset λi′j ← 0 and si′j(t)← 0 for every i′ 6= i.
13: end while

In the algorithm arg minP ′i (vi(t)) for rij ≤ t ≤ dij is defined as {t : t ∈
[rij , dij] and P ′i (vi(t)) = minrij≤x≤dij P

′
i (vi(x))}, this is usually a set of intervals, and

thus the speed sij is increased simultaneously on a set of intervals. Notice also that since Pi is
a convex function, P ′i is non decreasing. Hence, in line 5 of the algorithm, arg minP ′i (vi(t)) can
be replaced by arg min vi(t); so we can avoid the computation of the derivative P ′i (z). Note
that in the end of the algorithm variables vi(t) is indeed equal to si(t) — the speed of machine
i for every i. Given the assignment of jobs and the speed function si(t) of each machine i
returned by the algorithm, one can process jobs on each machine by the earliest deadline first
order.

7

The algorithm is illustrated by an example given in the appendix.

Lemma 2. The solution βS , γj and vi(t) for every i, j, S, t constructed by Algorithm 1 is feasible
for the dual (D).

Proof. By the algorithm, variables λij ’s and variables vi(t)’s are maintained in such a way that
the constraints (4) are always satisfied. Moreover, by the construction of variables βS ’s, λij ’s
and γj ’s, the constraints (5) are ensured (for every machine and every job).

Theorem 1. The consumed energy of the schedule returned by the algorithm with a throughput
demand of W is at most the energy of the optimal schedule with a throughput demand 2(Γ+1)W .

Proof. Let OPT (2(Γ+1)W) be the energy consumed by the optimal schedule with the through-
put demand 2(Γ + 1)W . By Lemma 1, we have that

OPT (2(Γ + 1)W) ≥
∑
S

(2(Γ + 1)W − w(S))βS +
∑
i

∫ ∞
0

Q(vi(t))dt−
∑
j

γj

where the variables βS , vi, γj satisfy the same constraints in the dual (D). Therefore, it is
sufficient to prove that latter quantity is larger than the consumed energy of the schedule
returned by the algorithm with the throughput demand W , denoted by ALG(W). Specifically,
we will prove a stronger claim. For βS , γj and vi (which is equal to si) in the feasible dual
solution constructed by Algorithm 1 with the throughput demand W , it always holds that

2(Γ + 1)
∑
S

(W − w(S))βS +
∑
i

∫ ∞
0

Q(si(t))dt−
∑
j

γj ≥
∑
i

∫ ∞
0

Pi(si(t))dt.

By the algorithm, we have that∑
i,j

pijλij =
∑

i,j:j∈T
pijλij =

∑
j∈T

∑
S:j /∈S

wSj βS =
∑
S

βS

(∑
j /∈S,j∈T

wSj

)
≤ 2

∑
S

βS(W − w(S)) (7)

By the algorithm in the first sum
∑

i,j pijλij , each term pijλij 6= 0 iff j ∈ T and j is assigned to
i. In the third sum, βS 6= 0 iff S equals T at some step during the execution of the algorithm.
Thus, we consider only such sets in that sum. Let j∗ be the last element added to T . For
S ⊂ T \{j∗} and βS > 0, by the while loop condition w(S)+

∑
j /∈S,j∈T \{j∗}w

S
j < W . Moreover,

wSj∗ ≤ wTj∗ ≤ W − w(T) ≤ W − w(S). Hence,
∑

j /∈S,j∈T w
S
j ≤ 2(W − w(S)) and the inequality

(7) follows.
Fix a machine i and let {1, . . . , k} be the set of jobs assigned to machine i (renaming jobs if

necessary). Let ui1(t), . . . , uik(t) be the speed of machine i at time t after assigning jobs 1, . . . , k,
respectively. In other words, ui`(t) =

∑`
j=1 sij(t) for every 1 ≤ ` ≤ k. By the algorithm, we

have λi` = minr`≤t≤d` P
′
i (ui`(t)) for every 1 ≤ ` ≤ k. As every job ` is completed in machine i,

8

∫ d`
r`
si`(t)dt = pi`. Note that si`(t) > 0 only at t in arg minr`≤t≤d` P

′
i (ui`(t)). Thus,

k∑
`=1

λi`pi` =

k∑
`=1

∫ d`

r`

si`(t)P
′
i

(∑̀
j=1

sij(t)

)
dt

=

k∑
`=1

∫ ∞
0

si`(t)P
′
i

(∑̀
j=1

sij(t)

)
dt

≥
k∑
`=1

∫ ∞
0

[
Pi

(∑̀
j=1

sij(t)

)
−Pi

(`−1∑
j=1

sij(t)

)]
dt

=

∫ ∞
0

[
Pi(uik(t))− Pi(0)

]
dt

=

∫ ∞
0

Pi(si(t))dt (8)

where in the second equality, note that si`(t) = 0 for t /∈ [r`, d`]; the inequality is due to the
convexity of Pi.

As inequality (8) holds for every machines i, summing over all machines we get∑
i,j

pijλij ≥
∑
i

∫ ∞
0

Pi(si(t))dt.

Together with (7), we deduce that

2(Γ + 1)
∑
S

βS(W − w(S)) +
∑
i

∫ ∞
0

Q(si(t))dt−
∑
j

γj

≥
∑
i,j

pijλij + Γ
∑
i

∫ ∞
0

Pi(si(t))dt+
∑
i

∫ ∞
0

Q(si(t))dt−
∑
j

γj

≥
∑
i

∫ ∞
0

Pi(si(t))dt = ALG(W).

where the last inequality is due to the definition of Γ (recall that Γ = maxi maxz zP
′
i (z)/Pi(z)

for every z such that P (z) > 0) and γj =
∑

i λijpij for every job j (by the algorithm).

Corollary 1. If the demand W = minj wj then the energy induced by Algorithm 1 is optimal
(compared to the optimal solution with the same demand).

Proof. If the demand W = minj wj then it is sufficient to complete any job. By Algorithm 1,
it is optimal if one needs only one job completed.

Corollary 2. For single machine setting, the consumed energy of the schedule returned by
the algorithm with a throughput demand of W is at most that of the optimal schedule with a
throughput demand 2Γ ·W .

Proof. For single machine setting, we can consider a relaxation similar to (P) without con-
straints (1) and without machine index i for all variables. The dual construction, the algorithm
and the analysis remain the same. Observe that now there is no dual variable γj . By that point
we can improve the factor from 2(Γ + 1) to 2Γ.

9

Note that a special case of the single machine setting is the minimum knapsack problem.
In the latter, we are given a set of n items, item j has size pj and value wj . Moreover, given
a demand W , the goal is to find a subset of items having minimum total size such that the
total value is at least W . The problem corresponds to the single machine setting where all jobs
have the same span, i.e., [rij , dij] = [r, d] for all jobs j 6= j′; item size and value correspond to
job processing volume and weight, respectively; and the energy power P (z) = z. Carnes and
Shmoys [15] gave a 2-approximation primal-dual algorithm for the minimum knapsack problem.
That result is a special case of Corollary 2 where Γ = 1 for linear function P (z).

2.2 Throughput Maximization with Energy Constraint

We use the algorithm in the previous section as a sub-routine and make a dichotomy search in
the feasible domain of the total throughput. The formal algorithm is given as follows.

Algorithm 2 Maximizing throughput under the energy constraint

1: For a throughput demand W , denote E(W) the consumed energy due to Algorithm 1.
2: Let ε > 0 be a constant.
3: Initially, set W ← minj wj and W ←

∑
j wj where the sum is taken over all jobs j.

4: if E(W) > E then
5: return the total throughput is 0
6: end if
7: while E((1 + ε)W) ≤ E and (1 + ε)W ≤W do
8: W ← (1 + ε)W .
9: end while

10: return the schedule which is the solution of Algorithm 1 with throughput demand W .

Theorem 2. Given an energy budget E, Algorithm 2 is 2(Γ + 1)(1 + ε)-approximation in
throughput for arbitrarily small ε > 0. The running time of the algorithm is polynomial in the
size of input and 1/ε.

Proof. Let W ∗ be the optimal throughput with the energy budget E. Let W be the throughput
returned by Algorithm 2. If the energy budget is not enough for Algorithm 1 to complete any
job, meaning that E(minj wj) > E, then by Corollary 1 optimal solution cannot complete any
job neither. The theorem trivially holds. Now assume that W > 0.

We argue the theorem by contradiction, suppose that W ∗ > 2(Γ+1)(1+ε)W . By Theorem 1,
the consumed energy of the optimal schedule must be at least E((1 + ε)W). By the while loop
condition of the algorithm, either (1 + ε)W > W or E((1 + ε)W) > E. If the former holds then
W ∗ > W , the total weight of jobs in the instance (contradiction). If the latter holds then the
optimal solution violates the energy budget. Therefore, we deduce that W ∗ ≤ 2(Γ+1)(1+ε)W .

In Algorithm 2, the number of iterations in the while loop is proportional to the size of the
input and 1/ε. As Algorithm 1 is polynomial, the running time of Algorithm 2 is polynomial
in the size of input and 1/ε.

3 Exact Algorithms for Non-Preemptive Scheduling

3.1 Preliminaries

Notations In this section, we consider schedules without preemption with a fixed number
m of identical machines. So the parameters of a job j are the same on every machine (so the

10

machine index is dropped out). Without loss of generality, we assume that all parameters of
the problem such as release dates, deadlines and processing volumes of jobs are integer. We
rename jobs in non-decreasing order of their deadlines, i.e. d1 ≤ d2 ≤ . . . ≤ dn. We denote by
rmin := min1≤j≤n rj the minimum release date. Define Ω as the set of release dates and deadlines
(edf), i.e., Ω := {rj |j = 1, . . . , n}∪{dj |j = 1, . . . , n}. Let J(k, a, b) := {j|j ≤ k and a ≤ rj < b}
be the set of jobs among the k first ones w.r.t. the edf order, whose release dates are within a
and b. We consider time vectors a = (a1, a2, . . . , am) ∈ Rm+ where each component ai is a time
associated to the machines i for 1 ≤ i ≤ m. We say that a � b if ai ≤ bi for every 1 ≤ i ≤ m.
Moreover, a ≺ b if a � b and a 6= b. The relation � is a partial order over the time vectors.
Given a vector a, we denote by amin := min1≤i≤m ai.

Observations We give some simple observations on non-preemptive scheduling with the ob-
jective of maximizing throughput under the energy constraint. First, it is well known that due
to the convexity of the power function P (z) := zα, each job runs at a constant speed during
its whole execution in an optimal schedule. This follows from Jensen’s Inequality. Second,
for a restricted version of the problem in which there is a single machine, jobs have the same
processing volume and are agreeable, the problem is already NP-hard. That is proved by a
simple reduction from Knapsack.

Proposition 1. The problem of maximizing the weighted throughput on the case where jobs
have agreeable deadline and have the same processing volume is weakly NP-hard.

Proof. Let Π be the the weighted throughput problem on the case where jobs have agreeable
deadline and have the same processing volume. In an instance of the Knapsack problem we
are given a set of n items, each item j has a value κj and a size cj . Given a capacity C and a
value K, we are asked for a subset of items with total value at least K and total size at most
C.

Given an instance of the Knapsack problem, construct an instance of problem Π as follows.
For each item j, create a job j with rj :=

∑j−1
`=1 c`, dj :=

∑j
`=1 c` = rj+cj , wj := κj and pj := 1.

Moreover, we set E := C, i.e. the budget of energy is equal to C.
We claim that the instance of the Knapsack problem is feasible if and only if there is a

feasible schedule for problem Π of total weighted throughput at least K.
Assume that the instance of the Knapsack is feasible. Therefore, there exists a subset of

items J ′ such that
∑

j∈J ′ κj ≥ K and
∑

j∈J ′ ci ≤ C. Then we can schedule all jobs corresponding
to item in J ′ with constant speed equal to 1. That gives a feasible schedule with total energy
consumption at most C and the total weight at least K.

For the opposite direction of our claim, assume there is a feasible schedule for problem Π
of total weighted throughput at least K. Let J ′ be the jobs which are completed on time in
this schedule. Clearly, due to the convexity of the speed-to-power function, the schedule that
executes the jobs in J ′ with constant speed is also feasible. Since the latter schedule is feasible,
we have that

∑
j∈J ′(dj − rj) ≤ C. Moreover,

∑
j∈J ′ wj ≥ K. Therefore, the items which

correspond to the jobs in J ′ form a feasible solution for the Knapsack.

The hardness result rules out the possibility of polynomial-time exact algorithms for the
problem. However, as the problem is weakly NP-hard, there is still possibility for approxima-
tion schemes. In the following sections, we show pseudo-polynomial-time exact algorithms for
instances with equal processing volume jobs and agreeable jobs.

3.2 Equal Processing Volume

In this section, we assume that pj = p for every job j.

11

Definition 1. Let Θa,b := {a + ` · b−ak | k = 1, . . . , n and ` = 0, . . . , k and a ≤ b}. Moreover,
Θ :=

⋃
{Θa,b|a, b ∈ Ω}.

The following lemma gives an observation on the structure of an optimal schedule.

Lemma 3. There exists an optimal schedule in which the starting time and completion time of
each job belong to the set Θ.

Proof. Let O be an optimal schedule and Oi be the corresponding schedule O on machine i.
Oi can be partitioned into successive blocks of jobs where the blocks are separated by idle-time
periods. Consider a block B and decompose B into maximal sub-blocks B1, . . . , Bk such that
all the jobs executed inside a sub-block B` are scheduled with the same common speed s` for
1 ≤ ` ≤ k. Let j and j′ be two consecutive jobs such that j and j′ belong to two consecutive
sub-blocks, let’s say B` and B`+1. Then either s` > s`+1 or s` < s`+1. In the first case, the
completion time of job j (which is also the starting time of job j′) is necessarily dj , otherwise
we could obtain a better schedule by decreasing (resp. increasing) the speed of job j (resp. j′).
For the second case, a similar argument shows that the completion time of job j is necessarily
rj′ . Hence, each sub-block begins and finishes at a date which belong to Ω.

Consider a sub-block B` and let a, b be its starting and completion times. As jobs have the
same volume and the jobs scheduled in B` are processed non-preemptively by the same speed,
their starting and completion times must belong to Θa,b.

Using Lemma 3 we can assume that each job is processed at some speed which belong to
the following set.

Definition 2. Let Λ := { `·pb−a | ` = 1, . . . , n and a, b ∈ Ω and a < b} be the set of different
speeds.

Definition 3. For 0 ≤ w ≤W , define Ek(a,b, w, e) as the minimum energy consumption of a
non-preemptive (non-migration) schedule S such that

• S ⊂ J(k, amin, bmin) and
∑

j∈S wj ≥ w where S is the set of jobs scheduled in S,

• if j ∈ S is assigned to machine i then it is entirely processed in [ai, bi] for every 1 ≤ i ≤ m,

• a � b,

• for some machine 1 ≤ h ≤ m, it is idle during interval [ah, e],

• for arbitrary machines 1 ≤ i 6= i′ ≤ m, bi′ is at least the last starting time of a job in
machine i.

Note that Ek(a,b, w, e) =∞ if no such schedule S exists.

Proposition 2. One has

E0(a,b, 0, e) = 0

E0(a,b, w, e) = +∞ ∀w 6= 0

Ek(a,b, w, e) = min

{
Ek−1(a,b, w, e)

E′

12

where

E′ = min
u∈Θm
a�u≺b

s∈Λ,1≤h≤m,
e′=uh+ p

s
rk≤uh<e′≤dk
0≤w′≤w−wk

Ek−1(a,u, w′, e)

+ pα

(e′−uh)α−1

+Ek−1(u,b, w − w′ − wk, e′)

a b

umin

a1

a2

a3

a4

b1

b2

b3

b4

amin e e
′

u

k

Figure 2: Illustration of Proposition 2

Proof. The base case for E0 is straightforward. We will prove the recursive formula for
Ek(a,b, w, e). There are two cases: (1) either in the schedule that realizes Ek(a,b, w, e), job
k is not chosen, so Ek(a,b, w, e) = Ek−1(a,b, w, e); (2) or k is chosen in that schedule. In the
following, we are interested by that second case.

We first prove that Ek(a,b, w, e) ≤ E′ Fix some arbitrary time vector a ≺ u ≺ b and
weight 0 < w′ < w − wk and time e′ such that rk ≤ e′ = ui + p

s ≤ dk for some s ∈ Λ and
some machine h. Consider a schedule S1 that realizes Ek−1(a,u, w′, e) and S2 a schedule that
realizes Ek−1(u,b, w−w′ −wk, e′). We build a schedule with S1 from a to u and with S2 from
u to b and job k scheduled within S2 during [ui, e

′] on machine h. Recall that by definition of
Ek−1(u,b, w − w′ − wk, e′), machine h does not execute any job during [uh, e

′]. Obviously, the
subsets J(k − 1, amin, umin) and J(k, umin, bmin) do not intersect, so this is a feasible schedule
which costs at most

Ek−1(a,u, w′, e) +
pα

(e′ − uh)α−1
+ Ek−1(u,b, w − w′ − wk, e′).

As that holds for every time vector a ≺ u ≺ b and weight 0 < w′ < w−wk and time e′ such that
rk ≤ e′ = uh + p

s ≤ dk for some s ∈ Λ and some machine h, we deduce that Ek(a,b, w, e) ≤ E′.

We now prove that E′ ≤ Ek(a,b, w, e) Let S be the schedule that realizes Ek(a,b, w, e)
in which the starting time of job k is maximal. Suppose that job k is scheduled on machine
h and its starting time is denoted as uh. For every machine i 6= h, define ui ≥ uh be the
earliest completion time of a job which is completed after uh on machine i by schedule S. If
no job is completed after uh on machine i then define ui = bi. Hence, we have a time vector
a ≺ u = (u1, . . . , um) ≺ b.

13

We split S into two sub-schedules S1 ⊆ S and S2 = S \ (S1 ∪ {k}) such that j ∈ S1 if it
is started and completed in [ai, ui] for some machine i. Note that such job j has release date
rj ∈ [amin, umin[.

We claim that for every job j ∈ S2, rj ≥ uh where uh = umin by the definition of vector u.
By contradiction, suppose that some job j ∈ S2 has rj ≤ uh, meaning that job j is available
at the starting time of job k. By definition of S1 and S2, job j is started after the starting
time of job k. Moreover, j < k means that dj ≤ dk. Thus, we can swap jobs j and k (without
modifying the machine speeds). Since all jobs have the same volume, this operation is feasible.
The new schedule has the same energy cost while the starting time of job k is strictly larger.
That contradicts the definition of S.

ah bhuh

k

bi

e′

j

i

h

ai

ah bhuh

j
bi

k

i

h

ai

machine

e′

Figure 3: Illustration of the swap argument

Therefore, all jobs in S1 have release dates in [amin, umin[and all jobs in S2 have release
dates in [umin, bmin[. Moreover, with the definition of vector u, the schedules S1 and S2 are
valid (according to Definition 3). Let shk ∈ Λ be the speed that machine h processes job k
in S. Hence, the consumed energies by schedules S1 and S2 are at least Ek−1(a,u, w′, e) and
Ek−1(u,b, w − wk − w′, uh + p

shk
) where w′ is the total weight of jobs in S1. We have

Ek(a,b, w, e) ≥ Ek−1(a,u, w′, e) +
pα

(uh + p
shk
− uh)α−1

+Ek−1(u,b, w − wk − w′, uh +
p

shk
) = E′.

Therefore, we deduce that E′ = Ek(a,b, w, e) in case job k is chosen in the schedule that realizes
Ek(a,b, w, e). The proposition follows.

Theorem 3. The dynamic program in Proposition 2 has a running time of O(n12m+7W 2).

Proof. Denote rmin = min1≤j≤n rj . Given an energy budget E, the objective function is
max{w | En((rmin, . . . , rmin), (dn, . . . , dn), w, rmin) ≤ E}. The values of Ek(a,b, w, e) are stored
in a multi-dimensional array of size O(|Θ|2m|Λ|nW). Each value need O(|Λ||Θ|m mW) time to
be computed thanks to Proposition 2. Thus we have a total running time of O(|Θ|3m|Λ|2nmW 2).
This leads to an overall time complexity O(n12m+7mW 2).

3.3 Agreeable Jobs

In this section, we focus on another important family of instances. More precisely, we assume
that the jobs have agreeable deadlines, i.e. for any pair of jobs i and j, one has ri ≤ rj if and
only if di ≤ dj .

14

Based on Definition 1, we can extend the set of starting and completion times for each job
into the set Φ.

Definition 4. Let Φa,b := {a+ ` · b−ak | k = 1, . . . , V and ` = 0, . . . , k} with V :=
∑

j pj, and
Φ :=

⋃
{Φa,b | a, b ∈ Ω}.

The following lemmas show the structure of an optimal schedule that we will use in order
to design our algorithm.

Lemma 4. There exists an optimal solution in which all jobs in each machine are scheduled
according to the Earliest Deadline First (edf) order without preemption.

Proof. Let O be an optimal schedule. Let j and j′ be two consecutive jobs that are scheduled
on the same machine i in O. We suppose that job j is scheduled before job j′ with dj′ ≤ dj .
Let a (resp. b) be the starting time (resp. completion time) of job j′ (resp. job j) in O. Then,
we have necessarily rj′ ≤ rj ≤ a < b ≤ dj′ ≤ dj . The execution of jobs j and j′ can be swapped
in the time interval [a, b]. Thus we obtain a feasible schedule O′ in which job j′ is scheduled
before job j with the same energy consumption.

Lemma 5. There exists an optimal edf schedule O in which each job in O has its starting
time and its completion time that belong to the set Φ.

Proof. We proceed as in Lemma 3. We partition an optimal schedule O into blocks and sub-
blocks where the starting and completion times of every sub-blocks belong to the set Λ. Consider
an arbitrary sub-block. As all the parameters are integer, the total volume of the sub-block
is also an integer in [0, V] and the total number of jobs processed in the sub-block is bounded
by the total volume. Thus the starting and completion times of any job in the sub-block must
belong to the set Φ.

By Lemma 5, we can assume that each job is processed with a speed that belongs to the
following set.

Definition 5. Let ∆ := { i
b−a | i = 1, . . . , V and a, b ∈ Ω} be the set of different speeds.

Definition 6. For 1 ≤ w ≤ W , define Fk(b, w) as the minimum energy consumption of an
non-preemptive (and a non-migratory) schedule S such that:

• S ⊆ J(k, rmin, bmin) and
∑

j∈S wj ≥ w where S is the set of jobs scheduled in S

• if j ∈ S is assigned to machine i then it is entirely processed in [rmin, bi] for every
1 ≤ i ≤ m.

Note that Fk(b, w) =∞ if no such schedule S exists.
For a vector b and a speed s ∈ ∆, let preck(b, s) be the set of vectors a ≺ b such that there

always exists some machine 1 ≤ h ≤ m with the following properties: rk ≤ah = min{bh, dk} −
pk
s
, ah ∈ Φ

ai = bi ∀i 6= h.

Proposition 3. One has

F0(b, 0) = 0

F0(b, w) = +∞ ∀w 6= 0

Fk(b, w) = min{Fk−1(b, w), F ′}

15

where

F ′ = min
s∈∆

a=preck(b,s)

{
Fk−1(a, w − wk) + pks

α−1
}

rmin b

k

Figure 4: Illustration of Proposition 3

Proof. The base case for F0 is straightforward. We will prove the recursive formula for Fk(b, w).
There are two cases: (1) either in the schedule that realizes Fk(b, w), job k is not chosen, so
Fk(b, w) = Fk−1(b, w); (2) or k is chosen in that schedule. In the following, we are interested
in the case when k is chosen.

We first prove that Fk(b, w) ≤ F ′ Fix some arbitrary time vector a ≺ b and ai such
that rk ≤ ai = min{bi, dk} − pk

s for some speed s ∈ ∆ and some machine i. Then we have
a = (b1, . . . ,min{bi, dk}− pk

s , . . . , bm). Consider a schedule S that realizes Fk−1(a, w−wk). We
build a schedule with S from (rmin, . . . , rmin) to a and job k is scheduled on machine i during
[ai,min{bi, dk}] and an idle period during [min{bi, dk}, bi]. So this is a feasible schedule which
costs at most

Fk−1(a, w − wk) + pks
α−1

As that holds for every time vector a ≺ b and some speed s ∈ ∆ and some machine i, we deduce
that Fk(b, w) ≤ F ′.

We now prove that F ′ ≤ Fk(b, w) Let S be the schedule that realizes Fk(b, w) in which
the starting time of job k is maximal. We consider the sub-schedule S ′ = S \ {k}. We claim
that all the jobs of S ′ are completed before a ∈ preck(b, s) which is the vector obtained from
b after removing job k.

Hence the cost of the schedule S ′ is at least Fk−1(a, w − wk). Thus,

Fk(b, w) ≥ Fk−1(a, w − wk) + pk(s)
α−1 = F ′

Therefore, we deduce that F ′ = Fk(b, w) in case job k is chosen in the schedule that realizes
Fk(b, w). The proposition follows.

Theorem 4. The dynamic programming in Proposition 3 has a total running time of
O(n2m+2V 2m+1Wm).

Proof. Given an energy budget E, the objective function is max{w | Fn(b, w) ≤ E, 1 ≤ w ≤
W, b ∈ Φm : d1 ≤ bi ≤ dn ∀i}. The values of Fk(b, w) are stored in a multi-dimensional array
of size O(n|Θ|mW). Each value need O(|∆|Wm) time to be computed thanks to Proposition 3.
Thus we have a total running time of O(n|Θ|m|∆|Wm). This leads to an overall time complexity
O(n2m+2V 2m+1 Wm).

16

References

[1] S. Albers. Energy-efficient algorithms. Commun. ACM, 53(5):86–96, 2010.

[2] S. Albers, A. Antoniadis, and G. Greiner. On multi-processor speed scaling with migration:
extended abstract. In Proc. 23rd Annual ACM Symposium on Parallelism in Algorithms
and Architectures, pages 279–288. ACM, 2011.

[3] S. Albers, F. Müller, and S. Schmelzer. Speed scaling on parallel processors. In Proc. 19th
Annual ACM Symposium on Parallelism in Algorithms and Architectures, pages 289–298.
ACM, 2007.

[4] E. Angel, E. Bampis, and V. Chau. Throughput maximization in the speed-scaling setting.
to appear in STACS, 2014.

[5] E. Angel, E. Bampis, V. Chau, and D. Letsios. Throughput maximization for speed-scaling
with agreeable deadlines. In Proc. 10th International Conference Theory and Applications
of Models of Computation (TAMC), volume 7876 of LNCS, pages 10–19. Springer, 2013.

[6] E. Angel, E. Bampis, F. Kacem, and D. Letsios. Speed scaling on parallel processors with
migration. In Proc. 18th International Conference Euro-Par, volume 7484 of LNCS, pages
128–140. Springer, 2012.

[7] A. Antoniadis and C.-C. Huang. Non-preemptive speed scaling. J. Scheduling, 16(4):385–
394, 2013.

[8] A. Antoniadis, C.-C. Huang, S. Ott, and J. Verschae. How to pack your items when you
have to buy your knapsack. In MFCS, volume 8087 of LNCS, pages 62–73. Springer, 2013.

[9] E. Bampis, A. Kononov, D. Letsios, G. Lucarelli, and I. Nemparis. From preemptive to non-
preemptive speed-scaling scheduling. In Proc. 19th International Conference, Computing
and Combinatorics (COCOON), pages 134–146, 2013.

[10] E. Bampis, A. Kononov, D. Letsios, G. Lucarelli, and M. Sviridenko. Energy efficient
scheduling and routing via randomized rounding. In FSTTCS, 2013.

[11] E. Bampis, D. Letsios, and G. Lucarelli. Green scheduling, flows and matchings. In Proc.
23rd International Symposium on Algorithms and Computation (ISAAC), pages 106–115,
2012.

[12] N. Bansal, H.-L. Chan, T. W. Lam, and L.-K. Lee. Scheduling for speed bounded proces-
sors. In ICALP (1), volume 5125 of LNCS, pages 409–420. Springer, 2008.

[13] P. Baptiste. An O(n4) algorithm for preemptive scheduling of a single machine to minimize
the number of late jobs. Oper. Res. Lett., 24(4):175–180, 1999.

[14] P. Brucker. Scheduling Algorithms. Springer Publishing Company, Incorporated, 5th edi-
tion, 2010.

[15] T. Carnes and D. B. Shmoys. Primal-dual schema for capacitated covering problems. In
Proc. 13th Conference on Integer Programming and Combinatorial Optimization (IPCO),
pages 288–302, 2008.

17

[16] R. D. Carr, L. Fleischer, V. J. Leung, and C. A. Phillips. Strengthening integrality gaps for
capacitated network design and covering problems. In Proc. 11th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 106–115, 2000.

[17] H.-L. Chan, W.-T. Chan, T. W. Lam, L.-K. Lee, K.-S. Mak, and P. W. H. Wong. Energy
efficient online deadline scheduling. In SODA, pages 795–804. SIAM, 2007.

[18] H.-L. Chan, T. W. Lam, and R. Li. Tradeoff between energy and throughput for online
deadline scheduling. In WAOA, volume 6534 of LNCS, pages 59–70. Springer, 2010.

[19] J. W.-T. Chan, T. W. Lam, K.-S. Mak, and P. W. H. Wong. Online deadline scheduling
with bounded energy efficiency. In TAMC, volume 4484 of LNCS, pages 416–427. Springer,
2007.

[20] N. R. Devanur and K. Jain. Online matching with concave returns. In Proc. 44th ACM
Symposium on Theory of Computing, pages 137–144, 2012.

[21] G. Greiner, T. Nonner, and A. Souza. The bell is ringing in speed-scaled multiprocessor
scheduling. In Proc. 21st Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 11–18. ACM, 2009.

[22] C.-C. Huang and S. Ott. New results for non-preemptive speed scaling. Research report,
Max-Planck-Institut für Informatik, 2013.

[23] T. W. Lam, L.-K. Lee, I. K.-K. To, and P. W. H. Wong. Energy efficient deadline scheduling
in two processor systems. In ISAAC, volume 4835 of LNCS, pages 476–487. Springer, 2007.

[24] E. Lawler. A dynamic programming algorithm for preemptive scheduling of a single machine
to minimize the number of late jobs. volume 26, pages 125–133. Baltzer Science Publishers,
Baarn/Kluwer Academic Publishers, 1990.

[25] M. Li. Approximation algorithms for variable voltage processors: Min energy, max through-
put and online heuristics. Theor. Comput. Sci., 412(32):4074–4080, 2011.

[26] F. F. Yao, A. J. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In
FOCS, pages 374–382. IEEE Computer Society, 1995.

A Execution of Algorithm 1

In this example, we have m = 2 unrelated machines, n = 4 jobs and each job have the same
weight, i.e. wj = 1∀j. We want to compute the energy’s consumption when we have to choose
W = 3 jobs according to our algorithm.

Let P (z) = zα with α = 3 be the power function of the machines. And let the derivative
function P ′(z) = 3z2.

The processing volume of each job is given in the following table.

i\j 1 2 3 4

1 1 3 4 2

2 2 5 3 1

18

1 2 3 4 5 6

1

2

3

4

Figure 5: Instance of 4 jobs with the respective release date and deadline

Step 1 At this step, the set of chosen jobs is T = ∅

We continuously increase the speed sij(t) for each job j and each machine i with rj ≤ t ≤ dj.
Then we obtain the value of λij ← minrj≤t≤dj P

′(vi(t)).

i\j 1 2 3 4

1 P ′(1
2) = 3

4 P ′(3
2) = 27

4 P ′(4
5) = 48

25 P ′(1) = 3

2 P ′(1) = 3 P ′(5
2) = 75

4 P ′(3
5) = 27

25 P ′(1
2) = 3

4

Table 1: Table of λij at Step 1

i\j 1 2 3 4

1 3/4 81/4 192/25 6

2 6 625/4 81/25 3/4

Table 2: Table of λijpij at Step 1

We continuously increase βT until
∑

S:j /∈S w
S
j βS = pijλij for some job j and machine i.

Since βS = 0 ∀S at this step and we can only modify the value of βT = β∅, then we have to
find the maximum value of β∅ such that one of the constraint becomes tight.

w∅jβ∅ = min{pijλij} = 3
4 and γ1 = 3

4
Thus Job 1 is affected to machine 1 and T = {1}

1 2 3 4 5 6

1

1

machine 1

machine 2

speed

speed

1

Figure 6: Speed profile vi(t) at the end of Step 1

19

Step 2 At this step, the set of chosen jobs is T = {1} and the speed profile vi(t) can be found
in Figure 6

i\j 2 3 4

1 P ′(7
4) = 147

16 P ′(1) = 3 P ′(5
4) = 75

16

2 P ′(5
2) = 75

4 P ′(3
5) = 27

25 P ′(1
2) = 3

4

Table 3: Table of λij at Step 2

i\j 2 3 4

1 441/16 12 150/16

2 625/4 81/25 3/4

Table 4: Table of λijpij at Step 2

At this step we have only β∅ which is positive. Then we have β{1} = 0

w∅jβ∅ + w
{1}
j β{1} = min{pijλij}

3

4
+ β{1} = min{pijλij}

β{1} = 0

Job 4 is affected to machine 2, γ4 = 3
4 and T = {1, 4}.

1 2 3 4 5 6

1

1

machine 1

machine 2

speed

speed

1

4

Figure 7: Speed profile vi(t) at the end of Step 2

Step 3 T = {1, 4}

i\j 2 3

1 P ′(7
4) = 147

16 P ′(1) = 3

2 P ′(5
2) = 75

4 P ′(4
5) = 48

25

Table 5: Table of λij at Step 3

20

i\j 2 3

1 441/16 12

2 625/4 144/25

Table 6: Table of λijpij at Step 3

w∅jβ∅ + w
{1}
j β{1} + w

{1,4}
j β{1,4} = min{pijλij}

β∅ + β{1} + β{1,4} = min{pijλij}

β{1,4} =
144

25
− 3

4

β{1,4} =
501

100

Job 3 is affected to machine 2, γ3 = 144
25 and T = {1, 3, 4}.

1 2 3 4 5 6

1

1

machine 1

machine 2

speed

speed

1

4

3

Figure 8: Speed profile vi(t) at the end of Step 3

21

