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0. Introduction

Let © be the unit ball B*(0,1) of R*. Let H'(9.5?%) be the set of all u €
HY(Q,R?) with u(x) € S% a.e. where S? is the unit sphere of R®. For A\ > 0 and
f e L*(Q,5%), let

(0.1) Fy(u, f) = / |Vul? + A / lu — f|?
Ja Ja
The critical points of Fiy( ., f) satisfy the following Euler-Lagrange equation
(Ex.f) ~Au=u |[Vul? + ) [f— < u, f > u]
Notice that Fy is lower semi-continuous on H'(£2,5%), so that

0.3 inf Fiy(u,
( ) -uEHllI(lﬂ,,S?) A(”"f)

is achieved by some uy which satisfies (E) ).

In this paper, we are interested in studying the regularity of uy. Recall that
in [BB], Bethuel and Brezis have shown that there exists some regular function
f with values in R’ such that ux(f) = ux is not smooth on Q. In [HZ], Hadiji
and Zhou considered the same problem and they obtained that there is Ay > 0
such that for every A > Ay, for any function f in H'(£2,5?) which is not a strong
limit of smooth maps, every uy is not regular in 2, and they obtained that there
is Ag > 0 such that for every 0 < A < Ay, uy is regular in £ provided that f
satisfied some conditions. In the first part, we prove that these conditions are not
necessary and we give a numerical value of .

Note that it is well known (see [SU1], [SU2]) that uy is smooth accept at a

finite number of points.



The regularity of minimizing maps and some related phenomena are studied

by many authors (see [BB], [B87], [B&9], [BBC], [DH], [HKL] and [HL]).

In the second part, we propose a numerical study of the problem (0.3). In

order to minimize the energy, we have followed a strategy due to F. Alouges [A],

developed to solve the problem 1min f |Vu(x)|* da

71 9
ue "U(S! 52)

The principal difficulty is the lack of convexity of the constraint. The iterative
algorithm used allows us to decrease the energy at each step, on the contrary of
algorithins developed by others authors [CLL],[CHKLL],[DGL].

The proof of the convergence will be also given and numerical results will be

presented with Q = (0,1)? and different functions f.
1. Regularity of minimizing applications with values in S
Our main result is the following:

Theorem 1.1 Let f be any measurable function with values into S* then we have,

for every 0 < A < 2, every minimizer solution of (0.3) is regular in Q.

Proof of the theorem 1.1: We start by quoting two results. The first lemma
concerns the behavior of u ) near each singularities and requires some modifications

of the result of [BCL].

Lemma 1.1 Suppose that y € Q is a singularity of uy then, we have uy(x) ~
TR (I* =y

of u) around each singularity is £1.

. . 3 .
as & goes to y where R is a rotation of R”. In particular, the degree

The second is a variant of the well known monotonicity formula for standard

minimizing harmonic map.

Lemma 1.2 For any a €  and r < dist(a, d) we have

1 71 /\
;(— / |Vu,\| / lux — f| + 8—?1-)\ ) >0
dr \r JB(a,r) " JB(ar) 3

In particular & IH(H o [Vual® + + £2Z)\r? is nondecreasing in r.

The proof of these lemmas are contained in [HZ]. Hence, the two proofs are

omitted.

Setting v(2) = ux((1 —r)x) then we have

(1.1) / Voal? = / Va2,
— T JB(0,1—71)

V]



and,

f loa — fI* = ] loa — ux+ux — f|?

Q Q

(1.2) = / loa — ual? —I—Qf('ru —uy) - (ux—f) —|—f lux — fI?
€ LY} €

:2/('u.)\—v,\)-f—|—f lux — f|*.
Q Q

Since wuy is minimizer, it follows that

. ‘ .
/ |V1£,\|2 + 2 /('“-)« —o\)- f 2 / |V1u|z,
1 =7 JB,1-r JQ 4

thus

r

/ |Vual* + 2 / (ur —wyr) - f > / |Vuyl?.
1—r B(0,1—r) y) Q\B(0,1—7)

writing

_— /|\7’u,\|2—/ |Vusl? —1—2/\/('u.)\—v)\)-f2/ |Vl
1—r Q Q\B(0,1—7) Q Q\B(0,1—7)

we obtain

f |Vu.,\|z —|—2/\.( !) 'f('U-A — 'U,\) : f 2 —f |V'U-,\|J-
Q r Q " JO\B(01—r)

Using Poincaré inequality

F =7 < ([ uao) - u(@a =)

We can write for almost everywhere x in

1

1
ur(a) —ux((1 —r)x) = / - Vuy(te) dt

—

and then, for a.e. x € Q

2

ux(x) —ur((1 —r)x)

t_ ( / ’iﬁ) | (/ ""'z(ﬂ)

3

using again Poincaré inequality

ux(x) —ur((1 —r)z) Vuy(te)




then

1 ‘
f |3:|2(f |Vuy|*(tz) d?f) du.
Q 1—r

Using the change of variable y = tx, and Fubini-Tonelli theorem, we obtain

2 1
] dx r] (] ly|* |Vurl(y) dg) dt
Q 1—r M B0,

ux(x) —ux((1 —r)a) ‘2 dr < / r-

€2

IA

ux(z) —ux((1—r)x)

[
SR
~ !
’:

]
\..___/
\-...____}

g

£_

This leads to

1

()

vl

T

1— 7 ‘
(1.3) 2 ! /('u.A —wvp) - f<V4-2r- (/ |v'¢;_A|3)
Ja Ja
On the other hand, we have for all P € §?
Fa(ux) < A [ P fI.
Ja

hence

[ Vsl < Callus Pz
Q2

In particular, uy tends to a constant Py € S* strongly in H'(, 5%).Since uy is a

minimizer we have jﬂ uy - f > 0. Thus we deduce that

(1.4) f Vual? < A f Po— P < A(IRol2 + 17112)
LY LY

then using the fact |f| = 1, we have

/|Vu)\| _/\—

Combining this inequality and (1.3), we obtain

1—r 87
2 ’/WA—myfgg —-VaA=2r-|[f]l.
J4

r
Finally, using | f| = 1, we are led to

1

- / |Vuy|* < (l—l— VA V2 - )
(1.5) I JO\B(0,1-r) 3

< A dwg(r),
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where g(r) = f(l + 12— 'r), if we assume A < 1.
Let a € © such that |z > % Define r, = 1 — |z|, since
B(x,r,) C 2\ B(0.1 - 2r,)

we have

1 . 1 .
/ |Vuy|* < / |Vuy?,
2ry B(z,re) 2ry | Q\B(0,1—2r,)
by (1.5)
1 .
— |[Vual® <\ 8n g(2r,).
"z JB(2,re)

Using the monotonicity formula (see Lemma 1.2), we obtain for all » < r,

. 2 . .
(1.6) 1/ [Vurl® <\ & g(2r,) + 32 Am(r2 —r?).
B(a,r) 3

7

Then, for all « such that |z| > ay,

B

1 . 4
(1.7) lim —f |Vuy* <\ 8n (y(?'r'_.,:) + —r
B(ax,r) 3

r—=0 r

).

Let 2 € B(0,§), we have B(x,+) C B*(0.1). Using again the monotonicity

formula and (1.4), we see for all r < §

1 . 5 32 1 .
—/ |Vuy|* <2 / |Vuyr|> + — (= —r?)
" JB(z,r) B(x,%) 3 4

"_x/ 8w /\'.

then

r—=0 r

1 ; 1
(1.8) lim —/ |Vuy|® < 8rA Va € B(0, <).
B(x,r) 2

Direct computations show that for all A < % the right hand sides in (1.7) and

(1.8), are strictly less than 8z, so, for all z in Q

1 .
lim — / |Vuy|® < 8.
r=0 7 B(a,r)

(We note that the right hand side in (1.8) is strictly less than 8= for all A < 1.)

Now, applying Lemnma 1.1, we obtain the desired conclusion.
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2. Remarks and generalizations

2.1 Remark on the domain (2

We have a similar result as Theoremn 1.1 if we only assuine that f is a function
in L?(2, R?) and if we replace the domain Q by any unit ball associated to another
norm in R? :

Theorem 2.1 Let f be any function in L?(By, R?) not necessary with values
into $% defined on By = {z € R*, N(z) < 1} where N is a norm in R’, then
there exists a constant Ay > 0, depending only on || f|l2» and N, such that every
minimizer uy € H'(By,S?) of the functional Fy(., f) for A < \g) is regular in
By.

The proof is the same as for B®. Using vx(x) = ux((1 — r)x) we obtain
inequalities (1.3) and (1.4) thus we prove that there exists a function G(r) =

(IPoll3 + 11£13) + V(IPoll3 + I £13) - [1£ll2 - V2 =7, such that

1 .
- / [Vux|? < MG(r).
Q\(1-1)Q

T

1
Thus for @ € Q such that N(x) > 5 if we set r, = 1 — N(x) then we see that

there exists a constant k& which depends only on the norm N such that
(2.1) B*(x.kr,) C By\Bn (0.1 —2r,).

and we can conclude as in Theorem 1.1 (if NV is the uniform norm, then we can

choose k = 1).

2.2 Remark on the equation

We have seen that any solution of problem (0.3) satisfies weakly, the equation:
(Exf) —Au = u|Vul* + \[f— < u. f >ul].
Then, if we take the exterior product of (Ey ) by u we obtain :
(Ef\‘f] (Au+Af) xu=0.
Conversely, any solution of ( B f] shall be collinear to u thus such a map satisfies :
Au+ Af = pu,

so taking the scalar product of this equation we find that g had to be equal to
—|Vul*+ < u, f >, thus the equations (E3,f) and (E y) are equivalent.

As a consequence, if (u,) is a solution of (Ey ¢, ) such that
4 4 ole : 1 3 2
up, = u  weakly in H (B”,57),

6



fo— f weakly in L*(B*, 5%).

then w is a solution of (E) y). With the formulation (EY ;). we have just to note
that by compact injection of H' in L? that u, tends strongly to u in L*(B*,5?)
then we can pass to the limit in f, X ug,, it is well known that Awu, X u, tends

also to —Au x u (see [BBC], [C]).

2.3 Remark on the solutions
The regularity obtained in Theorem 1.1 (and Theorem 2.1) is really a conse-
quence of the minimization problem and not of the equation.

Indeed, if we consider the following minimization problem on H'(B?,S%):

(Py) inf / |Vu|* + A / lu — f|?,
B3 J e

u=g¢|gps .

where  is a given smooth boundary condition. Any solution of problem (Pj)
satisfies the equation (Ey 5).

Then, for ¢ equal to the identity on the boundary and f constant for example,
the solutions uy of (Py) converge to the solution of (FPy) when A tends to zero,

thus there exists singular solutions of (E) y) for A small.
3. Numerical minimization of the energy F)

In this part, we propose a numerical study of the problem (0.3). The strategy
used here is based on the works of F. Alouges [A]. The principal difficulties of
finding numerically the minimizer are:

e Non convexity of the constraint |u(x)] = 1 a.e. which avoid us to use
standard algorithms directly.

e The minimizer uy may be non regular (non continuous) for some A, f.

e Non uniqueness. For some A, f (if f have symmetries for example), uy need

not to be unique.

Most of the methods to solve this kind of problems can be split into two

steps:

(1. Let ug be an initial guess.

V]

. For n = 0 ... until convergence:
3.1 Find v, such that Fy(v,) < Fa(uy)
where v,, may not belong to H'(§, 5%);

3.2 Set uyqq(2) = I:_n%;_l

The minimization problem we will solve at the step 3.1 allows us to de-

crease the energy at the step 3.2. In other words, for all iterations n, we have
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Fy(up+1) < Fa(vy) < Fa(uy). Other methods ([CLL], [CHKLL], [DGL] for examn-
|'v: |

ple) do not have this property. In particular, F < Fi(vy) 1s not assured
for all iterations n.

The step 3.1 will be solved by a conjugate gradient method because there is no
parameter to optimize (on the contrary of a saddle-point or relaxation technique
for example). Moreover, the numerical tests of F. Alouges seems to prove that it

is the better method.

3.1 An energy decreasing algorithm

Here, we want to solve the problem: "Find v, such that Fy(v,) < Fa(u,)” in
order to assune that :
Un

[V

(3.1) Fy(up41) = FA( ) < Fa(vn) < Fi(uy)

at each step n. This can be done using the following proposition given by F.
Alouges :

Proposition 3.1 If v € H'(Q,R?) verifies |[v(x)| > 1 a.e., then ﬁ belongs to
H'Y(Q,5%). Moreover, we have

o(x) 2{ o(a)|? a
|V (|U(I]|) < [Volo) -

and for all function f € H'(Q, S?)

v(x) e 2 e
|o(2)] f(@) o

So, if v verifies |v(x)| > 1 a.e., one easily have the condition (3.1).

jo(x) — f(a)[? <

Proof of Proposition 3.1: This result can be shown by direct computations

(See [A]).

Now, the following result allows us to minimize F) with a function v, verifying
lo(z)] = 1 ae.:

Proposition 3.2 Let K, be the set:
K, = {w € H(Q,R?) such that w(z) - u(z) = 0 a.e.}

Let v = u — w where w belongs to I, then

(3.2) lo(x)|* = Ju(z) —w(z)|* =14 |w(@)]* > 1 ae.




and the (convex) problem:
(3.3) Minimize Fy(u — w) for w € K,
possesses an unique solution, called w(u).

Proof of Proposition 3.2: The proof of (3.2) is obvious because w(x)-u(x) = 0
a.e. For the point (3.3), we have

I(w) = Fyx(u—w) = / |V(u—w)* + Au—w — f|* du.
Q

Expanding this expression gives

I{w) = [ |Vw|*+ A |w|* de—2 [ Vu-Vw+Au—f)w d:r—I—/ |Vu|*+Mu—f|* d.
Ja Ja Ja

So, minimize I(w) is equivalent to minimize J(w) defined by

J(w) = /s; |Vw|? + Mw|? dx — /ﬂ Vu-Vw+ AMu— f)-w de.

[NV

Let a(w,y) = / Vw- V4 Aw-¢ de and L(y) = / Vu-V+Mu—f)-¢da

/9 EAY.
for all v € K. Then a is clearly continuous, coercive on K, (because A > 0), and
L is continuous on K, . Moreover K, is a linear subspace of H'(£2, R? ), SO we can
use the Lax-Milgram theorem to prove the uniqueness of w. Furthermore, w is

also the solution of the variational problem:

(3.4) a(w,v) = L(v) for all v € K,.

3.2 Convergence of the algorithm

Now, the algorithm can be wrote as follow:

1. Let ug be an initial guess.
2. For n = 0 ... until convergence:
(3.9) 3.1 Find w,,, solution of the problem (3.3) with u = u,;
Up(x) —wy(x
3.2 Set upqq(a) = n(2) ()

up(x) — wn(2)|

and we will prove the convergence of the algorithm by the following result:

Theorem 3.1 The algorithm (3.5) converges in the sense that (u,) (up to a

subsequence) weakly converges in H' (Q,IR:‘) to a map us € H'(2,5?) verifying

9



the equation (Ey ). Moreover, the full sequence (w,),>o strongly converges to 0

in H'(Q.R?).

Proof: The proof is similar to these of F. Alouges (see [A]). We first need the

lemmas;

Lemma 3.1 We have, for alln >0

)
“dx

W

F,\('u..”) = F)\(“n‘ - 'fb‘n‘) +f |V'u,‘n|2 + A
Q

Proof: Expanding Fj(u, — w,) gives

Fy(up—wy) = FA(HH)—F/ |V'u)'.,,|2—|—/\|w.,3|2 dae—2 [ Vuy-NVw,+Awy, - (u,— f) da,
Ja Ja

and using the variational formulation (3.4), we have

24 NMwp|* da.

/ v'ﬂ-n . V’wn + /\'w-n * ('U--n - j‘) d:{.‘ - / |v'{-‘)n
2 2
So, because Fi(tun41) < Fa(uy — wy),
f |Vwn|* + Mwn|? de < Fax(up) — Fa(ttng)-
Q

Sumuining this relation, we obtain

n=N

E / |Vw.,,|‘£ + /\|w.,,|‘£ dr < Fx(up)
n=y " §2
and this serie converges.

wy|* dr is equivalent to the usual norm on

Since A > 0, / |Vw,|* + A
HY(Q,R’) and w, j) 0 strongly in H'(Q, R?).

The proof of the weakly convergence of (u,) in H'(Q,S5%) is given in [A]. It
is based on the fact that (u,) is bounded in H'(£, S5?%).

Finally we have to prove that the limit u is a critical point of F). Using
the variational formulation (3.4), and taking ¢ = & x u, where ¢ € C5°(Q, R”),

we have:

/ Vw, V(o X u,)+ A, - ¢ Xu, de = / Vi V(¢ xuy)+ My — f) & X u, du.
J A

10



Expanding this expression, we obtain

/ Vo (up x V(wy, —un))+ ¢ (Vup, X Vw, + Aup X (w, — f)) de =0,
Ja

SO Uy, Uy satisfy the following Euler-Lagrange equation

div(w, x V(u, —wy)) = Vw, x Vu, + Mw, — f) X u,

in the sense of distributions. Using the facts that

Uy — oo Weakly in H',
H )
Uy — U strongly in L=,

wy, — 0 strongly in H',

U satisfies the Euler-Lagrange equation:

div(toe X Viioo) + Af X ttoe =0

in the sense of distributions, which is equivalent to the fact that u., verifies the

relation (Ey f) (see section 2).

3.3 Discretization

We use finite elements method because we absolutely need to have a syminetric

matrix. Indeed, because of the lack of Dirichlet conditions on €2, finite differences

method produces a non-syminetric matrix preventing us using a conjugate gradient

technique.

The finite elements used are linear on cubes (8 nodes) with a constant space-

step in each direction.

If we call {p;}i=1..n the set of interpolation functions, and Vj, = span{y,;i =

1...N'}, a function u is approximated by :

N

u(x) > up(x) = Z ulpi(x).

=1

We can also define the set:

If,f;, ={w" eV, : wh(x) u"(x) for all x € Q}.

With all these notations, the discretized algorithin can be wrote as follow:

1. Let ul be an initial guess.
2. For n = 0 ... until convergence:
2.1 Find w” such that Fy(w") = min Fy\(u" —w");
(3'6) .whe_ﬁ'hh
“n

h h
u'(a) —wi(a)
2.2 Set ul, (1) = —=2 i .
‘ ”“'H( t) lul(a) — wh(x)]

T

11



The discrete version of the Lax-Milgram theorem allows us to say that the

h

solution w,, of (3.1) is unique and satisfies the problem

a(wh, ¢") = L(y™) for all " € K"

ho.
T uy

h

» is unique, so the

Remark: When a vl is given, at each step n, the solution w
limit «® is also unique. But, with an another initial guess u}, we can obtain
a different limit u”_ since the solution of the problem (0.3) may be not unique.
Furthermore, the present algorithm may converges to a critical point (but not
necessary a global minimizer) of Fy. Examples of this phenomena will be given in

the numerical results.

3.4 Resolution of the convex problem : a conjugate gradient technique
Here, we follow the algorithmn given by F. Alouges [A], based on the remark

bellow:

%(AX._ X) — (b, X) where (.,.) is the

inner product on IRN, A is a positive dtrﬁnit(?_.-"\" x N matrix, b is a vector in ]RN._

and X € RY, subject to the constraint BX = 0.

The solution X may be obtained by applying a conjugate gradient method

Suppose we want to minimize FI(X) =

procedure to the functional

F(X) = &

5(7rA7rX._X) — (wb, X),

where 7 stands for the orthogonal projector onto the linear space
K = {X € R" such that BX =0}

provided the algorithin is started with Xy € K.

N N
In our case, since u”(x) = E uloi(z), wh(z) = E whpi(x). the projector
=1 =1
7" onto the linear space K::h can be wrote

N
?Th'f_[}'h(:{') = u:""(;r)— ('{u""(;r)-'u_"‘(;r))'t.{""(:g) — 'i'_Uh(;L‘)— Z u:"w;" (‘r’i(il')'ir’)j(l'))'uh(l‘).

4. Numerical results
In this section, numerical results are given with © = (0,1)® and different
functions f. That allows us to have an idea of the behavior of the energy Fy and

the solution uy as a function of A and f. Three cases will be studied :

12



1. flx) = ﬁ where xg € §2. f has a singularity of degree 1 inside €.
. f 1s the stereographic projection onto (0,0, 1) shifted to the point (0.5, 0.5,

1). Here, f have a singularity of degree 1 on 9.

3. f is the dipole. f has two singularities into €2, one of degree +1, one of
degree -1 such that f has a global degree 0 (see [B7]).

In that three cases, uy is regular for a A small enough and singular for a large
enough one. The singularities are always inside © (never on 012), of degree +1,
and locally equivalent to +R( If—:f’;—l) where R is a rotation and y the point where

the singularity appears.

Remark: We have also used a simulated annealing method to solve the problem
(0.3). It gives exactly the same results but with a CPU times much more costly.

That is why we have chosen to not present this algorithin here.

4.1 The function f has one singularity inside Q
In this first example, we have f(x) = Ir- o | where xg = (0.6, 0.8 .0.5) € Q.

Remark: In order to have an idea of the properties of the solution uy, we have
decided to draw only a section of two components of the solution. Here, the section
ol 4 ¢
. uy(ay, 22,0.5)
is ;
uy (. 3, (].55] _ _
may appear is inside this section.

, (x1,29) € (0,1)?, because the point 2y where the singularity

. . .. flz) do
Figure 2 shows that the solution uy tends to a limit Py(x) = Py = m
a ar
452
as A goes to 0.
When A increases, the solution uy becomes more variable but still regular
(figure 3) while A is smaller than a certain A¢. Then, when A > A¢, the solution

T—ig

uy has a singularity at 29 = (0.6, 0.8 ,0.5), and ux(z) ~ roy as T goes to xo.

Notice that the singularities of uy and f are at the same point .

Figure 1 shows the energy of the minimizing function uy for different values
of A, obtained with two different initializations. The first initialization (init 1) is
Un=o(x) = (0,—1,0) (up=¢ is regular), and the second (init 2) is u,=o = f (Un=0
is singular).

When A is far from Ay, the two different sequences (u,,) converge to the same
limit uy, and we obtain the same energy.

On the contrary, when A is near from Ay, with the first initialization the
sequence (uy, ) converges to a regular function «} and with the second initialization,

N * N . 2
(un) converges to a singular function uy.
o have arl w2y > olohs inimizer is ul whereas 3

If A < A, we have Ex(u,) < Ex(uy) so the global minimizer is u, whereas if
A > A, we have Ex(u}) > Ex(u3) so the global minimizer is u3.

13



4.2 The function f has one singularity on 02

This example, where f has a singularity of degree +1 on the boundary Jf2 at
the point ¢ = (0.5,0.5,1) (see figure 5) allows us to numerically verify that for
A large enough, uy have a singularity localized inside € and not on the boundary
o5

Figure 6 shows that, as above, around a certain \,, we obtain two different
minima according to the initialization, and only one of the two is the global min-
imun (except of course for A = Ay where the two are global minima. In this case,
the problem (P) have not an unique solution).

In order to represent uy, we have chosen to plot a section of two components

1
of uy: {u?(xvhﬂﬁ,x;;]f (x1,23) € (0,1)2.
uy(ry,0.5,x3) ‘

J Q fl) da
NG
8 that when A is small enough, wy is regular. For A large enough, uy becomes

In figure 7, we can see that uy tends to as A goes to 0 and in figure

singular (figure 9). The singularity of wy is at a x¢ inside Q, and of degree +1.

When ) increases, the singularity ) draw near to 9 but it never reach 9.

4.3 The function f has two singularities inside 2
Here, the function f is the dipole. Figure 10 represents the section of f defined
Yay,0.5, a:
by {f‘j(i], ,x3)
o (xy,0.5, x3)
one the degree -1. Figure 12 (the section of u) represented is the same as in figure

. (21,23) € (0,1)%. f has two singularities, one of degree +1,

10) shows that wuy is regular if A < A,. In this example, A is much larger than in
the previous ones, because the energy increases slowly.

Figure 13 shows that the two singularities appears at the same times, such
that the solution uy has always a global degree equal to 0.

Around the Ay where the behavior of the solution w)y changes, we obtain
different limit according to the initialization. The first initialization is ug = f (ug

is singular), the second is ug = (0,0, —1) and the third is vy = (0,0, 1).

Conclusion

The algorithm developed here is very efficient and well suited to solve the
minimization problem (0.3). The non-linear initial problem has been solved using
a sequence of linear problem, much easier to treat (but each iteration requires
the resolution of a linear system), and the rate of convergence is very good. The
numerical results confirm the result of part 1, and the conjecture that the close

set I(f) of A where uy is regular is an interval of R,
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