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REGULARITY OF MIN IMIZIN G MAPS WITH VALU ES IN 5'2 AND SOME NUMERICAL SIMULATION S

I ntroduction

Let Sl be t he unit ball B ;;(O, 1) of IR;; . Let H 1 (Sl, 5:.~) be th e set of all • u E H 1 (Sl, IR;;) with u.( X) E 5'1. a.e. where s'l. is the unit sphere of IR;; . For A ;::: 0 a nd f E L'l.(n , 5'1.) , let (0.1)

The critical points ofF>.( . , f) satisfy the following Euler-Lagrange equation

-.6.•u = 'U IVul' l. + A [.f-< • u, f > u]
Notice th at F>.. is lower semi-continuous on H 1 (Sl, 5 '1.), so that (0.3) is achieved by some u >.. which 1.lati::>fie1.l ( E >.. ,t) .

In this paper , we are interested in studying the regularity of U >.,. Recall th at in [BB] , Bethuel and Brezis h ave shown that there exists some regular function .f wit h values in IR;; such that U>..(f) = U>.. is not sm oot h on Sl. In [HZ], Hadiji and Zhou considered the same problem and they obtained that there is A 1 > 0 ~uch that for every A ;::: A1, for any function f in H 1 (Sl , 5'1. ) which is not a. 1.ltrong limit of smooth maps, ever y 'U >. is not regular in n, a nd t hey obtained t h at t here is Au > 0 such that for every 0 < /\ :::; Au , u ,x is regular in Sl p rovided t hat f satisfied some conditions. In the first par t, we prove that these conditions are not necessary and we give a nu merical value of /\ u.

Note th at it is well known (see [SUI], [START_REF] Schoen | Bo•undar-y Teg•ulaTity and the D ir•ichlet pmblem of h(tmwnic uwps[END_REF]) t h at 'U>.. i1. l 13rnooth accept a t a finite number of point1.l.

The regularity of rnini rni~ing map~ and ~orne related phenomena are ~tudied by many authors (see [BBL [B87], [B89), [BBC] , [DH], [HKL] and [HL]).

In the second part, we propose a numerical study of the problem (0.3). In order to minimize the energy, we have followed a strategy due to F . Alouges [A], developed to solve the problem ;nin ., f l\?• u(x) 1 £ dx .

uEI-1,, 0 (11,5-) Jn

The principal difficulty is the lack of convexity of the con~traint . The iterative algorithm used allow~ Uf:l to decrease the energy at each step, on the contrary of algorithms developed by others authors [CLL], [CHKLL], [DGL].

The proof of the convergence will be also given and numerical resultf:l will be presented with n = (0, 1) 3 and different functions f.

R egularity of minimizing applications with values in S£

Our main result is the following:

Theorem 1.1 Let f be any measurable function with values into S£ then we have, for every 0 ::; /\ ::; ~~every rninimi~er solution of (0 .3) is regular inn.

Proof o f the theorem 1.1: VVe f:ltart by quoting two ref:lultf:l. The firf:lt lernrna. coucerm; the behavior of •u ,>, uear each :>iugularitie::; aud require::; ::;mue uwdificatiou::; of the result of [BCL].

L e mma 1.1 Suppose that y E Q if:l a. f:lingula.rity of ll>. then, we have ll>.( ~c) '2::

±R ( 1 ~::::~1 ) as ;~: goes to y where R is a rotation of IR;; . In particular, the degree of 'U>. around each singularity is ±1.

The second is a variant of the well known rnonotonicity formula. for standard minimizing harmonic map.

L e mma 1.2 For any a E n and T < dist( a, an) we have

d ( 1 1 ' ) , \ 1 ' ) 8n ')) -- I"V• u>-1-+-. • lu•. A -Jl-+ -,\1--2:: 0 dr-T B(u,• r) T B(u,• r)
3

The proof of the~e lemrnaf:l are contained in [HZ]. Hence, the two proof~ are omitted. IV to. I :::; C 1 \ll• u>. -Pllu .

Sl

In particular , u ,x tends to a constant Po E S ' l. strongly in H 1 (Q, S ' l. ).Since u ,x is a minimizer we have fn • u,x • .f ~ 0. Thus we deduce that ( 1.4) t hen using the fact If I = 1, we have Combining this inequality and ( 1.3), we obtain JVv. ,x J :::; -

1 -T f ~ 2 -r -Jn (u,x -v,x) . f :::; 2V 3-3-)4-2r • ll.fll ' l .•
1 + v A v 2 -r 1 l ' 1.
A 81r ( ~, . ;;::;--:::.)

r ri \B(O,l -7) 3 :::; A 41f g('r) ,
where g('r) = 1 ( 1 + ..J2="T), if we assume A :=:; 1.

Let X E n such that lx I > ~ 0 Define T'x = 1 -lx I' since

B (:~:, r•x) c n \ B (O, 1 -2r-x)
we have by (1.5)

Using the morwtonicity formula (see Lemma 1.2) , we obtain for al11• < T:c

(1.6)

Then, for all x such that lxl 2: au, and we can conclude a~ in Theorem 1.1 (if N is the uniform norm, then we can choose k = 1) .

R e mark on t he e qua tion

Vl/e have seen that any solution of problem (0.3) satisfies weakly, the equation:

'2 -6.u = uiY'u l + >, [.f-< u,f > u].
Then, if we take the exterior product of (E>.,t) by u. we obtain :

(6.u +,\f) X • u = 0.
Conversely, any solution of ( E~,f ) shall be collinear to u thus such a map satisfies :

6.u + >.f = IJV•,
so taking the ~calar product of thi~ equation we find that p had to be equal to -IV' zt.l'l+ < u,f >,thus the equations (E~,J) and (E>.,t) are equivalent.

As a consequence, if ('un) is a solution of (E>-,tJ such that 'Un ----" • u

I :1 '2
weakly in H (B , S ), then • u is a solution of (E>.,t ). \1\lith the formulation (E;,/ ), we have j ust to note that by compact injection of H 1 in L 2 that •un tends strongly to •u in L 2 (B 3 , 5 2 )

then we can pass to the limit in fn x u. 11 , it is well known that .6.u. 11 x U.n tends also to -.Cw x • u (see [BBC], [C]).

R e rnark on t h e solutions

The regularity obtained in Theorem 1.1 (and T heorem 2.1) i~ really a consequence of the rninimi:tation problem and not of the equation.

Indeed, if we consider the following rninimi~ation problem on H 1 ( B 3 , 5 2 ) :

where r.p is a given smooth boundary condition. Any solution of problem (P>.) ~atisfies the equation ( E >.,! ) .

Then, for r.p equal to the identity on the boundary and f constant for example, the solutions u >. of ( P>.) converge to the solution of ( P 0 ) when .\ tends to ~ero, thus there exists singular s olutions of ( E>.,J ) for /\ small.

N ume rical minimization of t h e energy F>.

In this part, we propose a numerical stud y of the problem (0.3). The strategy used here is based on the works of F . Alouges [A] . T he principal difficulties of finding numerically the minimizer are:

• Non convexity of the constraint l• u.( x) I = 1 a.e. which avoid u s to use ~tandard algorithms directly.

• The minirni~er • u >. may be non regular (non continuous) for some .\, f .

• Non uniqueness. For some A, f (iff have symmetries for example), U.>. need not to be unique .

Most of the methods to solve this kind of problems can be split into two ~teps:

1. Let u 0 be an initial guess. 2. For n = 0 ... until convergence:

3.1 Find Vn such that F>.(vn) ::; F>. (un) where Vn may not belong to H 1 (Q, S'l.); ()

~ 3.2 Set Z/,n+l X = 1• n( •) I' v,, , X
The rninirni~ation problem we will solve at the step 3.1 allows us to decrease the energy at the step 3.2. In other words, for all iterations n, we have F,x (un+l) ::; F,x (vn) ::; F,x(u.n) • O t her method~ ( [CLL], [CHKLL], [DGL] for example) do not have thi~ property. In par t icular , F,x c~: 1 ) ::; F,x (vn) i~ not a~~ured for all iter ations n .

The ~tep 3.1 will be ~olved by a conj ugate gradien t method beca.u~e t here i~ no parameter to optim ize (on the contrar y of a saddle-point or relaxation technique for example). Moreover , the numerical tests of F . Alouges seems to prove t hat it i s the better method. So, minimize I (w) is equivalent to minimize J(w) defined by (3.4) a(w, ' l/J )= L ('l/J) for all 'ljJ E Ktl .

1 1' '2 ~ 1 J(w ) = - IVwl + --\lwl d:r: -\7u • \7• w + /\(u-f ) • w dx .

.2 C o nver gen ce o f the a lgorit hm

Now, the algorithm can be wrote a.::; follow :

1. Let u 0 be an init ial guess. 2. For n = 0 ... until convergence: (3.5) 3.1 Find Wn, solution of the problem (3.3) with • u = • un;

'Un(x) -wn(x) 3.2 Set Un+l(x) = lun(a;) _ wn(x) l' and we will prove the convergence of the algorithm by the followin g result:

T heo rem 3.1 The algorithm (3.5) converges in the sense t hat ('un) (up to a !:>ubsequence) weakly converges in H 1 (Q,lRJ ) to a m ap u 00 E H 1 (ft , S 2 ) verifYing Expanding this expression, we obtain 1 \7</ J • (-un X \l(wn-'Un)) + <P • (Vun X \lw,., + AVn X (w,.,-f) ) da; = 0, so •un, Vn satisfy the following Euler-Lagrange equation in the sense of distribution s. Using the facts that 'U.n ___,_ 'u. 00 weakly in H 1 , ' U-n ---7 'U. 00 strongly in L'l. , 'Wn ---7 0 str0ngly in H 1 , V 00 satisfies the Euler-Lagrange equation: div(u 00 x 'Vu 00 ) + >.j x 'U.oo = 0 in the sense of d istributions, which is equivalent to the fact that v 00 verifies the relation (E>.,t) (see section 2) . The di~crete ver~iun of t he Lax-Milgram t heorem allow~ u~ to ~ay that the solution w~ of (3.1) is unique and satisfies t he problem R emark: 'When a u~ is given, at each step n, the solut ion w~ is u nique, so the lim it u~ is a lso unique. But, with an another init ial guess uJ, we can obtain a different lim it u. ~ since the solution of the problem (0.3) may be nut unique.

Fur thermore, t he present algorithm m ay converge~ to a crit ical point (but n ut nece~~ary a global minirni:.::er) ofF: >. .. E xamples of t his phenomena will be given in t he numerical result~.

R esolution of the convex problem : a conjugate gradie nt technique

Here, we follow the algorithm given by F . Aluuge~ [A], based on the rem a rk bellow:

Suppu~e we want t o minimi:.::e F (X) = ~(AX, X )-(b,X) where(., .) is the inner pwduct on IRN, A is a p ositive definite N x N m atrix , b i~ a vector in IRN, a nd X E IRN , su bject to t h e constraint EX = 0.

The solution X may be obtained by applying a cunjugate gr adien t method proced ure to the functional

F(X ) = ~(1r An X , X )-(1rb, X ),
where 1r stan ds fur the ort hogonal pwjectur unto t he linear space ]( = {X E IRN such that EX = 0} provided the a lgmithrn is started with X 0 E K.

N N

In our case, since u 1 '(x) = L ' u~1<pi(x), wh(x) = L wf<pi(x), the projector i=l i=l n h unto the linear space K:h can be wrote i,j=l

N umerica l results

In t his section, numerical results a re given wi th Q = (0, 1 )' 1 and different functions f. T hat allow~ us to have an idea of t he behavior of t he energy F:>.. a nd t he solut ion l l. ).. as a fun ctio n of), a nd .f. T h ree cases will be studied :

1. f(:c) = ~~=~~~ where x u E Q . f has a t : >ingularity of degree 1 int:>ide .Q.

2. fit:> the ~tereographic projection onto (0, 0, 1) t : >hifted to the point (0.5, 0 .5, 1) . Here, f have a singularity of degree 1 on fJ.Q .

3. f is the dipole. f has two singularities into n, one of degree +1, one of degree -1 t:>uch that .f has a global degree 0 (~ee [B87]).

In that thr~~ <:a~~~, 71.>-.. is r~gnlar for r~. /\~mall ~nough r~ncl singular for a larg~ enough one. The t : >ingularitiet:> are alway~ in~ide Q (never on 8S1), of degree ±1, and locally equivalent to ±R( 1 ~::::; 1 ) where R is a rotation and y the point where the ~ingularity appear~.

R e mar k : vVe have al~o used a simulated annealing method to ~olve the problem (0.3). It give~ exactly the t:>arne re~ultt:> but with a CPU time~ much more co~tly.

That is why we have chosen to not present this algorithm here. ) , :c1 , x'2 E 0, 1 , ecause t e pomt xu where t e smgulanty u>.(xh x' 2 , 0.5 may appear is int : >ide thit : > :>ection.

J ,J(x) dx

Figure 2 ~howt:> that the ~olution U>.. tendt:> to a limit P 0 (x) = P 0 = ....:<..f,J'--- ;,; (,.

1 j~ f(x) dxl
, . ) , X 1 , a; 3 E 0 , 1 .

U A x 1 , 0.5,x 3

J j(x) dx

In figure 7, we can see that 'U A tends to ~ as /\ goes to 0 and in figure

I Jn f(x) dx l
8 that when /\ is small enough, tt.A is regular, For ).. large enough, uA becomes t>ingular (figure 9). The singularity of 'i.IA is at a Xu inside n, and of degree +1.

'\IVhen /\ increases, the sing ularity xG draw near to Dfl. but it never reach Dn.

The function f h as two s ingularities inside n

Here, the function f is t he dipole . , x1, X::; E , 1 . . as two stngu an ties, one o egree + 1, f (.rJ, 0 .5, .r;,;) one the degree -1. Figure 12 (the sectiou of 'UA represented is the same as in figure 10) shows that •uA is regular if/\ < Ac. In this example, ).. is much larger than in the previous ones, because the energy increases slowly.

Figure 13 shows that the two singularities appears at the same times, such that the solution u A has always a global d egree equal to 0.

Around the >.. e where the behavior of the solution U,\ changes, we obtain different limit according to the initializ:a.tion. The firt>t initia.liz:ation is 'Uo = f ( u 0 is singular), the second is tt. 0 = (0, 0, -1) and the thir d is u 0 = (0, 0, 1 ).

Conclusion

The algorithm developed here is very efficient and well suited to solve the rninimiz:ation problem (0 .3). The non-linear initial problem has been solved using a sequence of linear problem, much easier to treat (but each iteration requires the resolution of a. linear system ), and the rate of convergence is very good. The numerical results confirm the result of part 1, and the conjecture that the close set I (f) of).. where 'U,\ is regular is an interval of lR+ .

  Setting v.x ( x) = v >. ( ( 1 -r'):~:) then we have ( 1.1) Clnd, Since l/ >. is minimi:.::er , it full ow::write for almost everywhere x in Q 1 ll•>.(x) -u>-((1 -T)x) = 1 x • V'u>.(tx) dt 1 -r and then, for a.e. X E Q using again Poincare inequality t hen Using the cha nge of variable y = tx, and Fubini-Tone lli theorem, we obtain This lea. ds to On the other han d, we have for all P E S ' l. hence 1 ' 1.

Finally

  

1

  E B(O , ~) , we have B(x,!) C B 3 (0 , 1). Using again the monotonicity formula and (1.4), we see for al11• < ~ then ( 1.8) ~ r 1 Vu.xl 2 :::; 2 r 1 Vu.xl 2 + 32 /\7f( ~ -T~) Vx E B(O, 2 ).Direct computations show that for all /\ :=:; ~ the right hand sides in ( 1. 7) and(1.8), are strictly less than 87f, SO, for all X in Q limnote that the right hand side in (1.8) is strictly less than 871" for all A < 1.) Now, applying Lemma 1.1, we obtain the desired conclusion. 2. Remarks and generalizations 2.1 Remark on t he domain n VVe have a ~irnilar re~ult as Theorem 1.1 if we only as~ume that f i ~ a function in L'l(n , lR 3 ) and if we replace the domain n by any unit ball as~ocia.ted to another norm in lR 3 : Theorem 2.1 Let f be any function in L'l(B N, IR 3 ) not nece~sary with value~ into S'l defined on B N = { :c E lR 3 , N (:c) :::; 1} where N i~ a. norm in lR 3 , then there exi~t~ a con~tant Au > 0, depending only on ll.fll'l and N, s uch that every rninimi~er u >-E H 1 ( B N, S'l) of the functional F>. (., f) for /\ :::; J\ 0 ) is regular in B N . The proof i~ the ~ame as for B 3 . u~ing V,>.(x) = U>.((1 -T)x) we obtain inequalitie~ (1. 3) and (1.4) thu~ we prove that there exi~b a function G(• r) = (II Pu ll ~+ ll.fll~) + V( I IPu ll~ + l l.f l l~) • ll.fll'l • /2-T, ~uch that ~ r IV' u>-1'2 :::; /\G(r'). T J n\(1-r')fl 1 Thus for x E n such that N(x) > 2'' if we set rx = 1 -N(x) then we see that there exists a constant k which depends only on the norm N ~uch that (2.1)

  3.1 A n e n e rgy d ecr e a s ing algorithmHere, we want t o ~olve t he p roblem : " F ind Vn ~uch t hat F,x (v n ) ::; F,x (tl.n)" in order t o a~surne that :(3.1) at each step n . T his can be done using t he following proposition given by F . Alouges : Propos ition 3.1 If v E H 1 (D, IR 3 ) verifies lv(x )I > 1 a .e ., then l ~l belongs to H 1 (D, S~) . Moreover , we h ave 1 \7 ( v(;~:) ) ~~:::; l\7v(:c ) I~ v verifies lv(x) l 2: 1 a..e ., one easily have the cond it ion (3.1) . Proof of Propos ition 3 . 1: Thi~ result can be shown by d irect computation~ (See [A]). Now, the following result allows us t o min im ize F.>. wit h a function Vn verifying lv(x)l 2: 1 a .e .: Proposition 3.2 Let K u be t he set: Ku = {wE H 1 (D, IR 3 ) such that w(x) • u(x) = 0 a .e .} Let v = • uw where w belongs to K . u, F).. ( u -w) for w E K 11 possesses an unique solution, called w(u.). Proof o f Pro pos ition 3.2: The proof of (3.2) is obvious because w(x) • u.(x) = 0 a .e. For t he point (3.3), we have I (w) = F)o. (v. -w) = fn 1 Y'(u -w)l~ + --\ luw -fl~ dx . ) = JniY'wl +--\lwl dx-2 Jn \7• u•\7w +--\(u-.f}w dx + Jn IV• u. l +--\l• u.-! 1 dx .

  ~) = { Y'w • Y''I/J +>-w • ~dxand L('I/J) = { Y'u •\7~+>-(u-.f) • 'I/J dx ln ln for all '1/J E K u .Then a is clearly continuous, coercive on K 11 (because/\> 0) , a nd Lis continuous on K 11 • Moreover K 11 is a linear subspace of H 1 (ft, IR 3 ) , so we can use the Lax-Milgram theorem to prove the uniqueness of w . Furthermore, w is also the solution of the variational problem:

3 . 3

 3 DiscretizationvVe use finite elements method because we absolut ely need to have a symmetric matrix. Indeed, because of the lack of Dirichlet conditions on on, finite differences method produces a non-syrnrnetric matrix preventing us using a conjugate gradient technique.The finite elements used are linear on cubes (8 nodes) with a constant spacestep in each d irection. If we call {<pi} i= 1.. . N the set of interpolation functions, and Yh = span{ <pi; i = 1.. .JV}, a function u is approximated by : N v(:c)-:::: • uh(x) = L: • u~'•<pi(x) . i=l vVe can also define the set: \iVith all these notations, the di screti~ed algorithm can be wrote as follow : (3.6) 1. Let u3 be em initial guess. 2. For n = 0 ... until convergence: 2.1 Find 'W~ such that F>. (w~) = rnin F>.(v~w h); wh E [(h .. ~ • uh(x)w 11 (x) 2.2 Set u~+ 1 (x) = I ;1 ( ) 7 (<)I' 'U. . 1 ~ X -' Wr: X

  ) = w 11 (:~:) -(wh(:~:) • • uh(:~:)) • u 11 (x) = wh(x) -L • u~'wj (<pi(x) •<pj(x))uh(x).

4. 1

 1 The fu nction f h as one s ingula rity inside Q In this fir st example we have .f(x) = x-xo where Xu = (0.6 0.8 ) 0.5) E n.' lx-xo l 'Remark : In order to have an idea of the properties of the ~olution U.> 11 we have decided to draw only a section of two components of the solution. Here, the section { u\(:~: 1 ,x:L,0 .5) ( ) (

  as A goet:> to 0 . \iVhen A increa~e~, the ~olution 'U.><. become~ more variable but ~till regular (figure 3) while A is smaller than a certain At; . Then, when /\ > /\e, the solution V>. has a ~ingularity at :to = (0.6, 0.8 , 0.5), and ' U>.(x) ~ ~~=~~~ at:> x goe~ to xu .Notice that the singularities of U>. and fare at the same point xu .

Figure 1

 1 Figure 1 t:>how~ the energy of the minimi~ing function V>. for different valuet:> of A, obtained with two different initializations . The first initialization (init 1) is ' Un=o(x) = (0) -1, 0) (un=O i~ regular), and the second (init 2) is ' Un=O = f (un=U i~ t : >ingular). \iVhen A it : > far from Ae, the two different ~equencet:> (• un) converge to the ~arne limit U>., and we obtain the ~arne energy. On the contrary, when A i~ near from Ae, with the fir~t initiali~ation the ~equence ('un) converget:> to a regular function u\ and with the ~econd initialization, (un) converget:> to a t : >ingular function •u~. If /\ < Ae, we have E>.(u\ ) < E>.(u{ ) ~o the glob<:t.l minimizer it : > ul wherea~ if A> .X e, we have E>.(u\) > E>.(ui ) t:>O the global minirni~er i~ ui .

Figure 6

 6 Figure 6 shows t hat, as above, around a certain Ae, we obtain two different minima according to the initializ:ation, and only one of the two is the global minimum (except of course for /\ = >.. e where the two are global minima. In this case, t he problem (P) have not an unique solution).In order t o represent v A, we have chosen to plot a. section of two components { ui(a; . •J, 0.5,a;3) (•• .. ) ( )~

  Figure 10 represents the section off defined b { fl(xi,0.5 ,x::~) ( ) (0 )~ f

the equation ( E>.,J ) . Moreover, the full ~equence (wn)n2:0 ~trongly converge~ to 0

Proof: The proof is similar to these of F. Alouges (see [A]). vVe first need the lernrna: Since ,\ > 0, fn 1Y'wn l~ + -A iwnl'l dx is equivalent to the usual norm on

H (n, lR ) and Wn -----+ 0 ~trongly in H (Q, lR ).

The proof of the weakly convergence of (tt. 11 ) in H 1 (Sl ,S 2 ) is given in [A]. It i~ based on th e fact that (' un ) i~ bounded in H 1 (Sl, S 2 ) .

Finally we have to prove that the limit 'Uoo i~ a critical point ofF>. . U~ing t he variational formulation (3.4) , and taking 'lj; = ¢ x ' Un where¢ E Ccf'(Sl, lR 3 ) , we have: