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A Numerical Tool for Periodic 1 Introduction |
A great number of recent papers are concerned by the solution

Hetefogeneous Med|a: Apphcatmn of partial differential equations by wavelet baggk,2]). Mainly,
to Interface in A|/SiC Composites these works deal with one-dimensional or scalar two-dimensional
problems. The solution of the elastostatics system by this kind of
method is not usud[3,4]). Boundary problems on open bounded
D. Dumont sets are very difficult to tredf5]). Nevertheless, periodic condi-
, , . , . . tions on elementary bounded sets are natural for the use of wave-
Facultede Mathenatiques et d'Informatique, 33, rue Saint- o yransform. In this paper, we show how to use such a technique
Leu, 80 039 Amiens, France and we give applications to interfaces in Al-SiC composite. In the
e-mail: Serge.Dumont@u-picardie.fr first section we give the notations and the necessary mathematical
background. In the second section we present the mechanical
problem: the homogenization of periodic heterogeneous media.

F. Lebon ; . . o ) ., The third section is concerned with the algorithm: a wavelet-
Laboratoire de Meanique et Geie Civil, Universite Galerkin method using Daubechies wavel6). The determina-

Montpellier 2, PI. E. Bataillon, 34 095 Montpellier Cedex tion of the macroscopic coefficients is treated in the fourth sec-
5, France tion. Applications and numerical results are described in the fifth

e-mail: lebon@Imgc.univ-montp2.fr section. Concluding remarks are given.

A. Ould Khaoua 2 Notations and Mathematical Background
Departamento de Matematicas, Universidad de los Andes, In this section, we present the notations used in the following of
Calle 19 1-11, Bogota, Columbia the paper. The sets of kinematically and statically admissible

fields are denote#l, L, andS. Let
L=(L2(Y))® and H=(H}(Y))?
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S={v el (Y),v(X;+ky, Xp+ ko) =0v(X1,Xp)a.e.ky kye K}
)

A wavelet-Galerkinmethodfor periodic heterogeneousediais
presentedThe advantagesare to removethe meshand to make
adaptivity easier. Numerical results are presented. A specific H;(Y):{v €S, v'ieLz(Y), i=1,2.

tudy of int in a Al-SiC ite is given. . . I .
study of interfaces in a AL-SiC composite is given u; denotes theth partial derivative of the function. We de-

note C the fourth-order elasticity tensagthe strain tensor, and

the stress tensor. In the following=10,1[2. To construct a wave-
let basis ofH, we use the compactly supported wavelets intro-
duced byl. Daubechieg6] which is a basis ofL?(R). These
wavelets are periodized in order to obtain baseS.dBy tensorial
and cartesian products wavelet base$iadre obtained[7]). We

denote¥', =1, 2, 3, and¥° the wavelets and the scale functions
(six degrees-of-freedom for each pointN'=2'—1 and A/
=[0,N]?.

Let V; be the subspace of dimensio” 2* of H generated by
this wavelet at approximation levglAn element ofV; 5 is thus
written as

U(X1,X2) = (U1(X1,X2),Ux(X1,X2))

1=3j
Ug= 2/; U?OOK\I,]QOKJFE Z 2 ujd){’\l,;!( (2)

KA =1 j=]o KEAJ'

jo is a given integerd=1 or 2 andx=(ky,ks).

3 The Mechanical Problem

We consider a multiphase isotropic elastic compo€tig. 1)

and we intend to study the behavior of this heterogeneous media.
We introduce the notion of equivalent material, i.e., we mean that
under the same loadings, this equivalent material has globally the
same response. In former pap€i8,9]) bounds for the bulk and
shear moduli of a two-phase composite have been given. Without
going into further detail, these bounds depend on the shear and
bulk moduli of the two phases and on the volumic fraction of the
two phases in the composite. In the same way, the theory of pe-
riodic homogenizatior([10]) focuses on an idealized composite
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Fig. 1 An example of a composite and its representative volume

consisting of the juxtaposition of identical heterogeneities arféroblem. P,

classically, we need to solve an elastostatics problem on a reps= L be given, findue H such thata,(u,v)=I(v) Vv eH
sentative volumeY (ProblemP):

Problem. P _ with as(u,v)zf o(u):e(v)dy+sf uvdy
EelL be given, findue H such thata(u,v)=1(v) YveH Y Y

. _ . _ . It can be shown that the solution of this problem converges
with a(u,v)= fYa(u).e(v)dy— fYC(y)e(u).e(v)dy toward the solution of problentP) with average equal to zero

([4].
Remarks.
(i) The problem(P) is solved classically by a finite element
method or by fast Fourier transforthl1]). We have chosen to
Because of the nonuniqueness of the solution of proklem introduce wavelet methods in order to eliminate the notion of
(defined within a translationproblem(P) is replaced by problem mesh and to eliminate Gibbs phenomena.
(P,) (“viscous” problem): (i) If the discretization of probleniP) in a orthonormal wave-

and I(v)=—f CE:D(v)dy
Y
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Fig. 2 Wavelet element matrix (jo=J, jmax=J+4)



let basis leads to the systeklU =B, then the discretization of
problem @,) leads to K+eIld)U=B, whereld is the identity
matrix.

(iii) The tensorC could be given by the imaggixels) of the
microstructure.

4 Wavelet-Galerkin Method

The variational problem R,) is discretized by a Galerkin
method. We have introduced a wavelet basis because of their
localization and adaptivity properties. The projection of the plane
elasticity operator into the wavelet bagi3]) is given by a stiff-
ness matrixK where the “elementary matrix” of order 2 is

B [ Fii10t Fasart Farat Fagoe  Frooat Fisiat Fazaot Faslj
| Faoist Fasoot Farirt Fasor Foooot Fosiot Fazort Faa
® N
where

Fig. 3 AI-SiC composite with an interfacial zone (thickness %)

_ | I
quaB_ J Cpqq,jk,a\llj ,K,lB XmdX2 .
Y Table 1 Interface laws

We have chosen to decompose the teri3on a wavelet basis
at levelJ noted . In the numerical applications, Haar wavelet is

used with its compact support equal to the squelg2,(l, #/€—0 uy=007=0 on=7 U 07=0 ,=0

+1)/27X[1,/2,(1,+1)/2]. This wavelet is constant on this sup-

port which is a pixel of the image representation. Thus, the wave- m wo\ I

let coefficientd; is equal to the value of the tens@ on this w/e—u uy=0 Ty Ur ON= ;+2:y Un O'N:Z;UN

pixel. Due to the form of the wavelet€artesian and tensorial

products of one dimensional wavelgthe computation of the w w

coefficients of the matriX leads to the determination of elemen- 0T=;Ur oy Ur

tary terms which are integral of products of three one-dimensional

wavelets and their derivatives: ule— u=0 u=0_ u=
Ne—x Ne—N Ne—0

Lod™pye d™y
0er dax" m,n=0,1. 4)
These terms are obtained by the determination of eigenvect 0.40 ; .
of a low-order matrix[7,12]). The right-hand side of the problem —o(1,05)
corresponding to the teriifv) in problem @) is computed by a E—8(0.50.5)

similar technique([4,5]). Classically, the matriX is a sparse
matrix (Fig. 2). Because of the form of the wavelets bases,
seems natural to solve the linear system which is a discretizg
version of problem P,) by multigrid techniqueg[13,14]). Nev-

ertheless, we have chosen to use a conjugate gradient metho

030

Eceme

020

mp of displ

5 Determination of the Macroscopic Coefficients

The determination of the elastic macroscopic coefficients cc=
responds to the computation of the macroscopic stress t§nsor§

E=f (CE+Ce(u))dx,dx,. (5)
Y

The computation of these terms is in the same way as the n
trix and the right-hand sidgt].
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6 Numerical Results thickness

We present the example of a three-phase fiber-matrix compodiié. 4 Jump of displacement for different values of ~ a and B
(Fig. 3): SiC for the fiber, Al for the matrix and an interface. ThdM=3)
Lame coefficients associated to the interface arg®* and u7?
where 7y is the thickness of the interfaca.and 8 are real posi-
tive parameters ang is a given function with a sufficient regu- Table 1 with respect to the value of the parameteesd 8. « and
larity. We have shown in former papeflsl5-17) that when B determine how the thickness and the rigidity tend to zero. It
tends to zero, i.e., the thickness and the rigidity parameters teadnecessary to quantify the limit, in other words we seek an
to zero, we obtain an elastostatic limit problem with an interfadaterval in which the initial problem could be approximated by
law. This interface law keeps in memory the mechanical and gethe limit problem for which the solution is more easy to obtain.
metrical properties of the layer. The interface law is given i@©n the other hand, it is very important to quantify the influence
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Fig. 5 Homogenized coefficient for different values of aand B
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of the interface on the macroscopic coefficients, i.e., on the elastic

behavior of a structure. Due to the shape and the thickness

the interface this problem is very difficult to treat by classical

techniques.

of

We present, in Fig. 4, a study of the convergence of the jump of

displacement in the interface for the cage 1, for two values of
a and B. A and u are chosen as Aluminum coefficients. In this

case the jump is equal to zero in the interface law. We have found

that for values ofn smaller than 0.4 p.c. of the structure the

interface law could be considered as valid. Note that the displace-

ment in the interface has the forf16]) u(r,8)=ru(6)+ug.

Figure 5 shows the influence of the thickness parameter on the
first component of the homogenized elasticity tensor for different

values ofa and 8. For small values of the thicknegg smaller
than 0.2 p.c. of the structuré is convenient to neglect the inter-

face. Note that for values of the thickness larger than 0.02, the

coefficient depends linearly on the thickness.

7 Concluding Remarks

In this paper, we have shown a robust tool to compute the
overall response of a composite. In particular, our method is able
to compute the influence of an interface even at a very small level.
In the future, we want to investigate more complex materials such

random material$[18]) or other kind of interfaceg 19,20]).
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