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A wavelet-Galerkin method for periodic heterogeneous media is 
presented. The advantages are to remove the mesh and to make 
adaptivity easier. Numerical results are presented. A specific 
study of interfaces in a Al-SiC composite is given.

1 Introduction
A great number of recent papers are concerned by the solution

of partial differential equations by wavelet bases~@1,2#!. Mainly,
these works deal with one-dimensional or scalar two-dimensional
problems. The solution of the elastostatics system by this kind of
method is not usual~@3,4#!. Boundary problems on open bounded
sets are very difficult to treat~@5#!. Nevertheless, periodic condi-
tions on elementary bounded sets are natural for the use of wave-
let transform. In this paper, we show how to use such a technique
and we give applications to interfaces in Al-SiC composite. In the
first section we give the notations and the necessary mathematical
background. In the second section we present the mechanical
problem: the homogenization of periodic heterogeneous media.
The third section is concerned with the algorithm: a wavelet-
Galerkin method using Daubechies wavelets~@6#!. The determina-
tion of the macroscopic coefficients is treated in the fourth sec-
tion. Applications and numerical results are described in the fifth
section. Concluding remarks are given.

2 Notations and Mathematical Background
In this section, we present the notations used in the following of

the paper. The sets of kinematically and statically admissible
fields are denotedH, L, andS. Let

L5~L2~Y!!3 and H5~Hp
1~Y!!2

S5$vPLloc
2 ~Y!,v~x11k1 ,x21k2!5v~x1 ,x2!a.e.,k1 ,k2PK%

(1)

Hp
1~Y!5$vPS, v ,iPL2~Y!, i 51,2%.

u,i denotes thei th partial derivative of the functionu. We de-
noteC the fourth-order elasticity tensor,e the strain tensor, ands
the stress tensor. In the followingY5]0,1@2. To construct a wave-
let basis ofH, we use the compactly supported wavelets intro-
duced byI. Daubechies@6# which is a basis ofL2(R). These
wavelets are periodized in order to obtain bases ofS. By tensorial
and cartesian products wavelet bases ofH are obtained~@7#!. We
denoteC l , l 51, 2, 3, andC0 the wavelets and the scale functions
~six degrees-of-freedom for each point!, Nj52 j21 and L j

5@0,Nj #2.
Let Vj be the subspace of dimension 22 j 11 of H generated by

this wavelet at approximation levelj. An element ofVj max is thus
written as

u~x1 ,x2!5~u1~x1 ,x2!,u2~x1 ,x2!!

ud5 (
kPL j 0

uj 0k
d0 C j 0k

0 1(
l 51

l 53

(
j 5 j 0

j 5 j max

(
kPL j

uj k
dl C j k

l . (2)

j 0 is a given integer,d51 or 2 andk5(k1 ,k2).

3 The Mechanical Problem
We consider a multiphase isotropic elastic composite~Fig. 1!

and we intend to study the behavior of this heterogeneous media.
We introduce the notion of equivalent material, i.e., we mean that
under the same loadings, this equivalent material has globally the
same response. In former papers~@8,9#! bounds for the bulk and
shear moduli of a two-phase composite have been given. Without
going into further detail, these bounds depend on the shear and
bulk moduli of the two phases and on the volumic fraction of the
two phases in the composite. In the same way, the theory of pe-
riodic homogenization~@10#! focuses on an idealized composite
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consisting of the juxtaposition of identical heterogeneities and
classically, we need to solve an elastostatics problem on a repre-
sentative volumeY ~ProblemP!:

Problem. P
EPL be given, finduPH such thata(u,v)5 l (v) ;vPH

with a~u,v !5E
Y
s~u!:e~v !dy5E

Y
C~y!e~u!:e~v !dy

and l ~v !52E
Y
CE:D~v !dy

Because of the nonuniqueness of the solution of problem~P!
~defined within a translation!, problem~P! is replaced by problem
(P«) ~‘‘viscous’’ problem!:

Problem. P«
EPL be given, finduPH such thata«(u,v)5 l (v) ;vPH

with a«~u,v !5E
Y
s~u!:e~v !dy1«E

Y
uvdy

It can be shown that the solution of this problem converges
toward the solution of problem~P! with average equal to zero
~@4#!.
Remarks.

~i! The problem~P! is solved classically by a finite element
method or by fast Fourier transform~@11#!. We have chosen to
introduce wavelet methods in order to eliminate the notion of
mesh and to eliminate Gibbs phenomena.

~ii! If the discretization of problem~P! in a orthonormal wave-

Fig. 1 An example of a composite and its representative volume

Fig. 2 Wavelet element matrix „j0ÄJ, jmaxÄJ¿4…
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let basis leads to the systemKU5B, then the discretization of
problem (P«) leads to (K1«Id)U5B, where Id is the identity
matrix.

~iii! The tensorC could be given by the image~pixels! of the
microstructure.

4 Wavelet-Galerkin Method
The variational problem (P«) is discretized by a Galerkin

method. We have introduced a wavelet basis because of their
localization and adaptivity properties. The projection of the plane
elasticity operator into the wavelet basis~@7#! is given by a stiff-
ness matrixK where the ‘‘elementary matrix’’ of order 2 is

K j j 8kk8
l l 8

5FF11111F13211F31121F3322 F12211F13111F32221F3312

F12121F23221F31111F3321 F22221F23121F32211F3311
G

(3)

where

Fpqab5E
Y
CpqC j k,a

l C j 8k8,b
l 8 dx1dx2 .

We have chosen to decompose the tensorC on a wavelet basis
at levelJ notedu. In the numerical applications, Haar wavelet is
used with its compact support equal to the square@ l 1/2j ,( l1

11)/2j #3@ l 2/2j ,( l211)/2j #. This wavelet is constant on this sup-
port which is a pixel of the image representation. Thus, the wave-
let coefficientu j l is equal to the value of the tensorC on this
pixel. Due to the form of the wavelets~Cartesian and tensorial
products of one dimensional wavelets! the computation of the
coefficients of the matrixK leads to the determination of elemen-
tary terms which are integral of products of three one-dimensional
wavelets and their derivatives:

E
0

1

uJr

dmC js

dxm

dnC j t

dxn , m,n50,1. (4)

These terms are obtained by the determination of eigenvectors
of a low-order matrix~@7,12#!. The right-hand side of the problem
corresponding to the terml (v) in problem (P«) is computed by a
similar technique~@4,5#!. Classically, the matrixK is a sparse
matrix ~Fig. 2!. Because of the form of the wavelets bases, it
seems natural to solve the linear system which is a discretized
version of problem (P«) by multigrid techniques~@13,14#!. Nev-
ertheless, we have chosen to use a conjugate gradient method.

5 Determination of the Macroscopic Coefficients
The determination of the elastic macroscopic coefficients cor-

responds to the computation of the macroscopic stress tensorS:

S5E
Y
~CE1Ce~u!!dx1dx2 . (5)

The computation of these terms is in the same way as the ma-
trix and the right-hand side@4#.

6 Numerical Results
We present the example of a three-phase fiber-matrix composite

~Fig. 3!: SiC for the fiber, Al for the matrix and an interface. The
Lamé coefficients associated to the interface arelha and mhb

wherehg is the thickness of the interface.a andb are real posi-
tive parameters andg is a given function with a sufficient regu-
larity. We have shown in former papers~@15–17#! that whenh
tends to zero, i.e., the thickness and the rigidity parameters tend
to zero, we obtain an elastostatic limit problem with an interface
law. This interface law keeps in memory the mechanical and geo-
metrical properties of the layer. The interface law is given in

Table 1 with respect to the value of the parametersa andb. a and
b determine how the thickness and the rigidity tend to zero. It
is necessary to quantify the limit, in other words we seek an
interval in which the initial problem could be approximated by
the limit problem for which the solution is more easy to obtain.
On the other hand, it is very important to quantify the influence

Fig. 3 Al-SiC composite with an interfacial zone „thickness h…

Fig. 4 Jump of displacement for different values of a and b
„MÄ3…

Table 1 Interface laws

m/e→0 uN50 sT50 sN5
l̄

g
uN sT50 sn50

m/e→m̄ uN50 sT5
m̄

g
uT sN5Sm̄

g
12

l̄

g
DuN sN52

l̄

g
uN

sT5
m̄

g
uT sT5

m̄

g
uT

m/e→` u50 u50 u50
l/e→` l/e→l̄ l/e→0
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of the interface on the macroscopic coefficients, i.e., on the elastic
behavior of a structure. Due to the shape and the thickness of
the interface this problem is very difficult to treat by classical
techniques.

We present, in Fig. 4, a study of the convergence of the jump of
displacement in the interface for the caseg51, for two values of
a and b. l and m are chosen as Aluminum coefficients. In this
case the jump is equal to zero in the interface law. We have found
that for values ofh smaller than 0.4 p.c. of the structure the
interface law could be considered as valid. Note that the displace-
ment in the interface has the form~@16#! u(r ,u).ru(u)1u0 .
Figure 5 shows the influence of the thickness parameter on the
first component of the homogenized elasticity tensor for different
values ofa and b. For small values of the thickness~h smaller
than 0.2 p.c. of the structure! it is convenient to neglect the inter-
face. Note that for values of the thickness larger than 0.02, the
coefficient depends linearly on the thickness.

7 Concluding Remarks
In this paper, we have shown a robust tool to compute the

overall response of a composite. In particular, our method is able
to compute the influence of an interface even at a very small level.
In the future, we want to investigate more complex materials such
random materials~@18#! or other kind of interfaces~@19,20#!.
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