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This paper is devoted to a new algorithm to solve elastostatics problems on any shape domain. Our approach is based on a wavelet-Galerkin method. Due to the form of the wavelet bases, the general domain is included in a square Ectitious domain, and the initial problem is extended over this square. The boundary conditions are imposed by an augmented Lagrangian method. Numerical examples are presented. Comparisons are done with analytic solutions and with Enite element computations.

INTRODUCTION

Solving hard problems in computational structure mechanics, requires conceiving accurate, robust and high performance algorithms. Classically, this kind of problem is solved by finite element methods, but, it may be very difficult to generate the grid, for example when the geometry of the solid is complex or in the study of localized phenomena. Moreover, the localization of high gradient zones is not easy, and usually needs stress tensor computation.

We propose a~ original alternative method, based on wavelet transform. The advantages of this wavelet-Galerkin method are, in particular: localization, adaptativity and the fact that there is no creation of a grid. This kind of method has already been used by the authors to solve periodic homogenization problems and permits us studying very inhomogeneous materials [START_REF] Dumont | Wavelet-Galerkin method for heterogeneous media[END_REF], [START_REF] Dumont | Homogeneisation periodique et Elasticite[END_REF].

On the other hand, there is no fast wavelet transform on general domains. We have therefore been interested in a fictitious domain method consisting of including the general domain in a larger square or rectangle.

This method is already used with the finite element method or with the finite difference method when the shape of the domain is too complex.

The paper is organized as follows: in section 2, we introduce the method that is used to solve a bidimensional elastostatics problem on any shape domain with the wavelet transform, and we give mathematical results. Section 3 is a brief summary of wavelets' theory and of the wavelet-Galerkin method. Section 4 is devoted to the boundary conditions and the way we take them into consideration. In section 5, we give the numerical algorithms that we use to solve the linear system. Finally, section 6 contains some numerical examples whose validity is shown by comparing the results with analytical solutions and with solutions given in the literature.

MATHEMATICAL FORMULATION OF THE PROBLEM

Some Functional Spaces

In this first section, we define some functional spaces which will be used in the following.

We consider an open bounded domain w in JR. 2 • We suppose that the boundary Bw of w can be written as aw = awD u awF where IBwDI > 0 (IBwvl = faw ds).

D

The displacements on w are in the space, [START_REF] Attouch | Viscosity solutions of minimization problems[END_REF] and the associated contraints are in the space,

L = ( L~ym(w)) 4 = { a;j, i, j = 1, 2, 3 : a;j E £ 2 (w), a;j = aji a.e.} (2)
We will also consider the square domain n = (0, 1) x (0, 1), and the functional spaces,

v = (H~(n)f = {v E L;(n) with the scalar product, 2 '"" 8u; 8u; ] d + L..J----X. k= 1

QXk QXk

• On the parts aw D and aw F of the boundary aw' we define the trace:

(4) ( 1/2 ) 2 ( 1/2 ) 2 'Yo : V >---t H 00 (8w 0 ) 'YF : V >---t H 00 (8wF) . (5) 
• On awD, let us define,

( 1/2( )2 M1 = Hoo awD)
and its dual:

for the duality product: (w,J.ti), = fawD WJ.li ds.

M 1 has the scalar product,

(u,v) 8 w = { uv ds, D law D and the norm: llwiiM, = inf{llvllv : v E H~(!1) "'f 0 (v) = w} . • On awF, let us define, .M2 = (H~6 2 (8wF)/
and its dual:

for the duality product: (~t2, g)

2 = faw F 1t2Y ds. (6) (7) 
The scalar product on M 2 , and the norms on M 2 and M~ are defined as those on M 1 and M~.

The Elasticity Problem

In this part, we consider a bidimensional elastic material with rigid tensor IK, occupying the open bounded domain w in JR 2 • We want to find the displacement u solution of the equilibrium problem:

Problem 1. j, u 0 , and g be given, find u and u such that:

div u + f = 0 in w u= uo u.n = g u = IKe( u) On QWD On QWF (behaviour law) (8)
where n is the unit vector of the outward normal to 8w, e(u) is the deformation tensor associated to u, e(u) = grad,(u) i.e. e;j(u) = !(ui,j + Uj,i), i,j = 1 or 2.

Classically, iff E (L 2 (w)r, uo E M 1 , gEM~ and l8w 0 1 > 0, this elasticity problem has an unique solution (u, u) with u E L, u E H [START_REF] Fichera | Existence theorems in elasticity[END_REF].

The Fictitious Domains

We want to solve this problem using the wavelet transform. Due to the form of the wavelets, it is necessary to introduce an associated method. Then, we include the domain w in a larger square domain n, and we extend the problem (Pw) on 0: Problem 2. j, u 0 , and g be given, find u and iT such that:

(Pn) div iJ + j = 0 ii=uo a.n=g iJ=lKe(ii)
u n -periodic where j is an extension of f on n. Remark. The condition ii 0-periodic is not necessary but in the following only periodic wavelets are used.

From a given function f, the computation of the periodic extention f off may be done by different ways according to the properties of f and w (by periodizing f or extending f by a constant, etc.). n

Fig.1: The fictitious domains

If i E ( L 2 (f2) r, Uo E Ml, g E M!z and J8wD I > 0, this problem has an unique solution (iJ,u) (with u E V) equal to the solution (a,u) of (Pw) on w [START_REF] Khalfaoui | Contact unilateral et ondelettes: formulation du probleme[END_REF], [START_REF] Fichera | Existence theorems in elasticity[END_REF]. This solution can be written as a problem of minimization under constraint: Problem 3. Let J, uo and g be given. Find u such that,

(Pm) u E Argmin ¢ { u = u 0 a.n=g (10) 
where [START_REF] Dumont | Elasticite et ondelettes : Formulations mathematiques et mise en oeuvre numerique, 2nd Colloque de Calcul des structures[END_REF] 2 Jn ln 2 Jn ln is the potential energy of the system.

tj>(v) = ~ r u(v): e(v) dx-r iv dx = ~ r JKe(v) : e(v) dx-r iv dx
Ifu 0 E (L 2 (8wv)) 2 , g E (L 2 (8wF)) 2 , j E (£ 2 (!1)) 2 
, this problem has an unique solution (u, u) with u E H [START_REF] Dumont | Homogeneisation periodique et Elasticite[END_REF], [START_REF] Khalfaoui | Contact unilateral et ondelettes: formulation du probleme[END_REF]. •

The Augmented Lagrangian

In order to solve this problem, we have chosen to use the augmented Lagrangian method.

The interests of this method are that the displacement solution of problem (Pr) is exact for all r (contrary to a penalty method for example), and the term depending on r acts as a preconditioner of a simply Lagrangian method. This augmented Lagrangian method consists in adding a new variable A; for each constraint i, called the Lagrangian multiplier. With those variables, we build a function called Lagrangian such that the solution is a saddle point of the Lagrangian (minimum for the displacement, maximum for the multipliers).

More precisely, we define the augmented Lagrangian of the problem of minimization under constraint (Pm) by,

Lr(v, Jtl, /t2) = tf>(v) + (Jtl, v-uo) 1 + (Jt2, u( v).n-g) 2 + ~llv-uoll;,, (12) 
and we have the theorem.

Theorem 1. [START_REF] Brezzi | On the existence, uniqueness and approximation of saddle point problems arising from Lagmnge multipliers[END_REF] The point (u, A1, .A2) in V x M; x M2 solution of {Pm) is a saddle point of Lr. In other words, (u, .A1, .A2) is the unique solution of the problem:

(

Remark. The augmented Lagrangian is a partial augmented Lagrangian, only the first constraint is concerned.

The Variational Problem

To find the saddle point solution of problem (Pr ), we take the derivative of the augmented Lagrangian equal to zero. In other words, we have,

for all (v, Jtl, Jt2) in V x M; x M2. ( 14 
)
Then, we have to solve the following linear problem.

Problem 4. Let j, U 0 , and g be given. Find (u, AI, A 2 ) in V X M1 X M2 such that, with 

(P/v) { ar(u, v) + bi(v, AI)+ b2(v, A2) = h(v) bi ( u, JJI) = ei (JJI) b2( u, /J2) = e2 (JJ2) \fv E V VJJI E M1 "'JJ2 E M2 { ar(u, v) =In <7(u): e(v) dx + r(u, v) 8 ..,D; h(v) =In fv dx + r(uo, v) 8 ..,v bi(v,JJI) = (v,JJI) 1 ;ei(JJI) = (uo,JJI) 1 b2(v,JJ2) = (JJ2,<7(v).n).;e2(JJ2) = (iJ2,9)
Using the LBB theorem [START_REF] Babuska | The finite element method with Lagmngian multipliers[END_REF], [START_REF] Brezzi | On the existence, uniqueness and approximation of saddle point problems arising from Lagmnge multipliers[END_REF], [START_REF] Dumont | Elasticite et ondelettes : Formulations mathematiques et mise en oeuvre numerique, 2nd Colloque de Calcul des structures[END_REF], [START_REF] Khalfaoui | Contact unilateral et ondelettes: formulation du probleme[END_REF], it is easy to show the existence and unicity of the triplet (u,AI,A 2 ) in V X M1 X M2.

The problem (P/v) is similar to the classical mixed formulations as presented by Babuska in [START_REF] Babuska | The finite element method with Lagmngian multipliers[END_REF].

THE WAVELET-GALERKIN METHOD 3.1. One Dimensional Daubechies Wavelets

In this section, we present a brief summary of one dimensional Daubechies wavelets [START_REF] Daubecides | Orthonormal bases of compactly supported wavelets[END_REF].

Let M be a positive integer. There exists a sequence of real numbers {h(n)}.~o, ... ,•M-1>

a function <p called the scaled function and a function 1/J, orthogonal to the first one called the associated wavelet, such that,

2M-I <p(x) = v'2 L h(n) <p(2x-n) Vx E JR, ( 17 
) n=O 2M-I 1/J(x) = v'2 L g(n) <p(2x-n) Vx E JR, ( 18 
) n=O where g(n) = ( -1)n h(2M-1-n), n = 0, ... , 2M-1.
The support of <p and 1/J are included in the closed and compact interval [0, 2M-1].

Let

\fx E iR, \fj,k E Z (19) 
The functions ' P,. and 1/J,. verify,

We define Vj the closure of the space generated by {'P;•' k E Z}. For all j E Z, this subspace Vj verifies the following conditions,

n Vj = {0} L2(1R.) = u Vj. ( 21 
)
jEZ jEZ

The set of spaces {Vj, j E Z} is called a multiresolution analysis of L 2 (1R.).

Periodic Wavelets

Due to the form of the problem, it is necessary to define periodic wavelets and a multiresolution analysis of (£~(!1)) 2

• First, we define the periodic scaled function ¢;• by, ¢;.(x)=2il 2 L'f'(2i(x+n)-k) j ::::::

0 j k = 0, ... , 2j -1, (22) 
nEZ and the same for the periodic associated wavelet 1/J. Then, we can define the periodic scale function on JR. 2 by,

The closure spaces l'iP generated by { <P1 • ; k,, k 2 = 0, ... , 2i -1} is a multiresolution where dis the direction (d = 1, 2). The dimension of a space V; is equal to 2 2 i+ 1 •

Remark. If we denote by {W;,j 2::: 0} the subspace of (£~(0)) 

Elastostatics Discretization

In this section, we discretize the problem (Pfv) using a Galer kin method written in the wavelet basis defined above. We first need to compute the projection into a space Vj of the plane elasticity operator,

a(u,v) = LJK e(u): e(v) dx forall u,vEV (31) 
Then we obtain the proposition below.

Proposition 1. The projection of the plane elasticity operotor into the wavelet basis with

scale equal to j is given by a matrix lC of order 2 2 i+l defined by [IC(i,,i,)(e,,e,)] = [/Ci,.di,!EA;

where /Ci,! is an "elementary matrix" of order 2, where with K = (p,q)

.6. = (a,/3) J = (j., j,)

For the proof, see [START_REF] Dumont | Representation of plane elastostatics operators in Daubechies wavelets[END_REF].

[ F" F,

IC• _ u + 33 !,! - 21 12
F,, + F 33 (36) if f3 = 2 then (m., m 2 ) = (0, 1), tl.

1 = (numJ; ~ = (n,m 2 ), and f(n) is the derivative of order n. Thus, we have to compute the scalar product of two wavelets and their derivatives. The algorithm to compute these terms is based on theorems given by G. Beylkin [START_REF] Beylkin | On the Representation of Opemtors in Bases of Compactly Supported Wavelets[END_REF], [START_REF] Beylkin | Fast wavelet Transform and Numerical Algorithms I[END_REF] and Dahmen-Micchelli [START_REF] Dahmen | Using the refinement equation for evaluating integmls of wavelets[END_REF]. These terms are computed via filter banks as eigenvectors of a low order matrix.

In the case of several materials, see [START_REF] Dumont | Representation of plane elastostatics operators in Daubechies wavelets[END_REF] for the computation of ~::.!. As before, these terms are computed via filter banks as eigenmatrices of a low order tensor.

WAVELETS AND BOUNDARY CONDITIONS

We now have to compute the function and operators defined in ( 16) and especially the boundary terms. This computation is based on the works of Wells-Zhou [START_REF] Wells | Wavelet solutions for the Dirichlet problem[END_REF]. The main idea here will be the following: We can represent the function and the measure defined on the boundary in terms of wavelet series defined in a square region and the coding is independent of the geometry of the domain w.

First, assume that w is a bounded domain in JR 2 whose boundary ow can be written as, ow= {x E IR 2 : F(x) = 0}

(37)

for some Lipschitz function F. Then, the unit normal vector n along the boundary ow can be written as,

'i!F n = IV Fl. ( 38 
)
The idea is now to compute an integral defined on ow from an integral defined on IR 2 • Let assume we can extend f (defined on ow) to JR 2 , then we have,

r f ds = -r f llowll Jaw JJR.2 (39) 
where llowll is the boundary measure defined by,

II ow II = -'ilx~ .n ( 40 
)
(X~ is the characteristic function of w: X~ (x) = 1 if x E w, = 0 otherwise). For more details, see [START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF]. The functions X~ are decomposed in the wavelet basis and so it is not difficult to compute coefficients of the measure ll8wll are obtained, the computation of the terms fiR.' f Y'xw .n are similar to the computation of the terms of the stiffness matrix [START_REF] Wells | Wavelet solutions for the Dirichlet problem[END_REF].

Remark. The wavelets used in the discretizations of the measure ll8wjj, u 0 and g are the same of those used in the discretization of f and the matrix K..

NUMERICAL ALGORITHMS 5.1. The Uzawa Method

The Uzawa algorithm is an iterative method to solve a linear system like [START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF]. It consists of: first, finding the wavelet coefficients of the displacement associated with given mutipliers coefficients by solving a linear system; then, reactualizing the multipliers coefficients with those of the displacement; and finally, going to the first step while the residuous is greater than a chosen threshold e. In our example, this algorithm can be summarized by the following diagram:

, 0 L.
(1) 'Y E JR. ' be given;

(2) minimization on v, which leads to solve (k 2: 1):

Find uk ( E JR.N; ) such that:

(3) Actualization of the multiplier:

(4) If 1Juk+ 1 -ukll N. 2: e, go to (2).

'2 (R. J )

Remark. The parameter Pk will be constant equal to p, and we can show that if 0 < p:::; 2r/IIPJII 2 where P 2 is the projection from H into M~, the method converges to the solution [START_REF] Fortin | Methode de Lagrangien augmente -Applications a la resolution numerique de problemes aux limites[END_REF].

On each step, we solve the linear system with the conjugate gradient method, described below.

The Conjugate Gradient

The conjugate gradient method is an iterative method to solve symmetric linear system. This method can be described with the following schema:

We initiate with, { xo be chosen;

Po = ro = b -Axo ( 41)
Fork= 0, 1, ...

-l!r.ll' .

-(Ap• ,N)'

(42)

Remark. The algorithm needs 2cN operations for each step, where N is the order of the matrix A, and c the average number of not vanishing coefficients by line.

The conjugate gradient converges in at most N iterations if the matrix's order is equal

to N, and the rate of the convergence depends on the condition number of the matrix A.

From the second step onward of the Uzawa method, the conjugate gradient initialization is made with the displacement coefficients solution of the previous step.

In order to evaluate the condition number of matrix K and the convergence of the conjugate gradient method, we have chosen not to use a preconditioner (diagonal for example, as it is done in works of Dahmen [START_REF] Dahmen | Multilevel preconditioning[END_REF]).

NUMERICAL RESULTS

Boundary Integrals

We present in this section the computation of perimeters for different geometries: a circle, a diamond, and a square. These results enable us to validate the computations of the terms on the boundary given by equations (38), (39), ( 40).

The geometries are, -a circle defined by (x-0.5) 2 + (y-0.5) 2 < R;

-a diamond defined by lx-0.51 -IY-0.51 < R;

-a square defined by Sup(lx-0.51, IY-0.51) < R.

with the value of the radius ranging from R = 0.2 to R = 0.45. For the computations, the different geometries are included in a squared box with the edge equal to 1. In all the following, we will use the Daubechies wavelets of order 3 at the level j equal to 5 (2048 degrees of freedom). The results are given in table 1.

The results obtained for the circle are quite precise. We observe on the one hand that we need to choose a step sufficiently small to correctly describe the circle and on the other hand it is necessary to chose a sufficiently large box to avoid problems on the edges of the circle. The maximum of the precision is obtained for a ratio disc radius-square edge equal to 0.4.

A Numerical Example

We present the example of a circle with radius equal to 0.25 included in a squared box with edge equal to 1. The problem is given by the following equations, { -div(JKe( u)) = 0 u=an E = 72GPa, v = 0.32 (Aluminium).

We present in figures 2 to 4 the numerical results. It is well known that the Uzawa algorithm has only a linear convergence [START_REF] Fortin | Methode de Lagrangien augmente -Applications a la resolution numerique de problemes aux limites[END_REF].

The linear system is solved by a preconditioned (SSOR) conjugate gradient method. We show in the figure 3 the computed displacement with Daubechies wavelets of order 3. 

CONCLUSION

We have developped an original algorithm to solve elastostatics problems: a wavelet-Galerkin method coupled with augmented Lagrangian. Numerical results show the efficiency of the method and the difficulty in optimizing the different parameters. The method seems to be less efficient near the boundary than a finite elements computation, but adaptativity inside the domain w can be obtained very easily. Other ad vantages of the wavelets are the. lack of mesh and that the structure has only to be defined by a function characteristic of the boundary. This algorithm is promising and will permit us to treat more complex problems (real structures, non linear problems, ... ).
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 26 The Unicity of the Solution[START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF] 
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 2 Fig.2: Section of the computed displacement u 1 (x 1 , 0.5)

in w on ow with a= 0. 1 (Fig. 3 :

 13 Fig. 3: Residuum along the Uzawa iterations
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 44 Fig. 4: Computed displacement
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 5 Fig. 5: Section of the displacement

Table 2

 2 Number of iterations and error (r = 10 6 , p = 5.10\t:uzawa = 10-4 ) 

	Ray	Uzawa	e.G. iterations	Error iterations
	R=0.2	31	241		uo-2
	R=0.3	29	152		5.10-3
	R=0.4	20	197		4.10-3
	.....			
	"-20	IZI. !50	IZI. 7:i	J... IlliZI

'ilx~ and n with the coefficients A defined in (35), then 'ilx~.n. Finally, when the wavelet

Results are less precise for the two other cases due to the nondifferentiability of the boundary. These results are similar to those obtained in [START_REF] Wells | Wavelet solutions for the Dirichlet problem[END_REF].

An Analytical Example

We present the following example, 

where w is a disc with the radius ranging from R = 0.2 to R = 0.4, included in a squared box with the edge equal to 1. The solution u (in n) of this problem is, Table 2 and figure 2 show the efficiency and the precision of the method.