
HAL Id: hal-01113786
https://hal.science/hal-01113786

Submitted on 31 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representation of plane elastostatics operators in
daubechies wavelets

Serge Dumont, Frédéric Lebon

To cite this version:
Serge Dumont, Frédéric Lebon. Representation of plane elastostatics operators in daubechies wavelets.
Computers & Structures, 1996, 60 (4), pp.561-569. �10.1016/0045-7949(96)00003-X�. �hal-01113786�

https://hal.science/hal-01113786
https://hal.archives-ouvertes.fr


REPRESENTATION OF PLANE ELASTOSTATICS 
OPERATORS IN DAUBECHIES WAVELETS 

S. Dumont and F. Lebon 
Laboratoire de Mecanique et Genie Civil, Universite Montpellier 2. Pl. E. Bataillon, 

34095 Montpellier Cedex 5, France 

Abstract-This paper is devoted to describing representations of the plane elastostatics operators in 
orthonormal bases of compactly supported wavelets. We are interested in giving an alternative numerical 
model to the finite element method and Fourier analysis, because wavelets bases are well-suited to 
adaptivity and discontinuities. The discretization of the elastostatics operators leads to matrices where 
elementary terms are easily computed from integrals of two or three wavelets and their derivatives. These 
integrals are performed as eigenvectors of low order matrices and given in filter banks. Mathematical 
results are worked out in details. A numerical example is presented which demonstrates the efficiency of 
the representation and shows it being consistent with analytical solutions. Copyright ([; 1996 Elsevier 
Science Ltd. 

I. INTRODUCTION 

Daubechies [I] has introduced compactly supported 
wavelets. In Refs [2], [3], Beylkin et a!. find exact and 
explicit representations of several basic operators as 
derivatives, in orthonormal bases of compactly sup­
ported wavelets. In Ref. [4], Beylkin and Torresani 
consider the implementation of these operators via 
filter banks in the framework of the multiresolution 
analysis. These representations need some regularity 
concerning the functions transformed by these 
operators. In elastostatics, displacements are often in 
Sobolev spaces of low order. We present two 
examples. 

Example I: periodic homogenization (local prob­
lem). 

such that divCgrad,u = -divCE. (I) 

Y is a representative part of a given bidimensional 
domain f.l (see Fig. 1). H~(Y) is the Sobolev space 
of first order with periodic conditions on Y (see 
Section 2). C = C(x) is a fourth order tensor 
depending on the materials. 

Example 2: linear elasticity (see Fig. 2 for the 
notations). 

Cgrad,u · n = g on olf.l, (3) 

u = 0 on o0 f.l. (4) 

This paper is devoted to the representation of plane 
elastostatics operators [eqns (I) and (2)] in 
Daubechies bases. This representation is based on a 
wavelet-Galerkin method. The difficulties arise from 
the eventual heterogeneities of the materials and to 
the nature of the differential operator (coupling of the 
derivatives, two-dimensional operators, second and 
fourth order tensors, etc). 

Mathematical results show that the representation 
of the elastostatics operators leads to the compu­
tation of elementary terms which are integrals of two 
or three wavelets or scale functions and their deriva-
tives. These wavelets could have different orders (for 
example Haar basis and Daubechies wavelet of 
order 3). 

These terms are performed via filter banks which 
are the eigenvectors of matrices or eigenmatrices of a 
fourth order tensor. Usually, these matrices have a 
low order and the eigenvectors can be estimated by 
symbolic computational software. 

The paper is organized as follows: in Section 2, 
generalities concerning bases of compactly 
supported wavelets are given; Section 3 is devoted to 
the discretization of the operators using the wavelet­
Galerkin method and to the matrix coefficients 
computations; Section 4 contains a numerical 
example to validate the algorithm. Filter banks are 

such that - divCgrad, u = f in f.l, (2) given in the Appendices. 
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Fig. I. Heterogeneous bi-dimensional domain and a local 

represen ta ti ve part. 

2. BASES OF COMPACTLY SUPPORTED WAVELETS 

2.1. One -dimensional Daubechies wavelets 

In this section, we present a brief summary of 
one-dimensional Daubechies wavelets [I]. Let M be a 
positive integer. There exists a sequence of real 
numberS { h (n)} n ~ 0 •. 2M_ 1 SUCh that 

n =2M -1 

I h(n) = j2, (5) 
n=O 

and 

n ~2M -I 

I h(n)h(n+2k)=Oob Vke7L, (6) 
n=O 

where b;1 = I if i = j, bu = 0 otherwise. 
This sequence defines two compactly supported 

functions cp (scale function) and tjJ (the associated 
wavelet). The function cp is defined by: 

n~ 2M- I 

cp(x)=j2 I h(n)cp(2x-n), Vxe!R1, (7) 
11=0 

and verifies: 

t cp(x)dx =I, (8) 

JR cp(x)cp(x- k) dx = Oob Vk E7L, (9) 

Icp(x-k)=J, VxER (10) 
keZ 

The function tjJ is defined by 

n~2M -I 

t/J(x)=j2 I g(n)cp(2x-n), Vxe!R1, (11) 
n=O 

where 

g(n) = ( -l)"h(2M- n- 1), n = 0, ... , 2M- I. 

(12) 

The compact support of cp and tjJ is included in the 
closed interval [0, 2M - 1]. 

The function tjJ has M vanishing moments: 

JUlt/J(x)x'"dx=O form=O, ... ,M-1, (13) 

and verifies 

(14) 

A representation of the functions cp and tjJ is given 
in Fig. 3 for different order of M. Let 

cp1k(x)=1!f2cp(2ix-k), VxEIR1, Vj,ke7L, (15) 

and 

tjJ1k(x)=1PtjJ(zlx -k), VxEIR1, Vj,kE7L. (16) 

The compact support of cp1k and tjJ1k is included in the 
closed interval [k /21, (k +2M - I )/21]. 

We define V1 as the closure of the space generated 
by { cp1k, k E 7L} and rtj, its orthogonal complementary 
in Vj + 1, aS the clOSUre Of the Space generated by 
{t/11k>ke7L}. 

The sub-spaces V; and W; verify the following 
conditions: 

(17) 

(18) 

L 2(1R1) = V1 EB Wk = EB Wk, 
k ~ i kEZ 

(19) 

n V;= {o} (20) 
jEl_ 

g 

¥l 

Fig. 2. Two-dimensional elasticity problem. 
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Fig. 3. Scale function and wavelet: (a) M = I; (b) M = 3. 

and 

(21) 

The set of spaces V1 is called a multiresolution 
analysis of L 2(1R). These spaces will be used to 
approximate the solutions of the elastostatics 
equations using a Galerkin method. The functions cp 
and ljt give us bases of L 2(1R) and, for certain values 
of M, bases of H 1(1R). 

Note that the polynomials of degree lower than 
M- I are exactly included in the space rj. For 
example, for numerical applications we usually use 
wavelets of order 3, and so, polynomials of degree 2 
are included in the discretization spaces. 

2.2. Periodic one-dimensional wavelets 

It is easy to define periodic wavelets (see Example 
I) and a multiresolution analysis of L~(Y). First, we 
define L~(O, I) and H~(O, I) by: 

L~(O, I)= {v E Lfoc(IR), v(x) = v(x +I) a.e.} (22) 

and 

1 { 2 av 2 } Hp(O, I)= v ELr(O, 1), ox
1 

EL (0, I) . (23) 

We define the function ¢1k such that 

¢1k(x) = 2i12 L cp(2i(x + r)- k). (24) 
rEZ 

One can show [5] that the closure of { ¢1k, k E Z}, 
noted V), defines a multiresolution analysis of 
L~(O, 1). 

2.3. Periodic two-dimensional wavelets 

If Y is the square (0, 1]2, we define L~( Y) and 
H~(Y) by 

= v(x1 , x 2 +I) a.e.}, (25) 
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and 

Furthermore, we can determine the orthonormal 
basis of L~ ( Y). L ~ ( Y) = U 1 \!) where Vf is the closure 
of the space generated by {<P{,k

2
,k1,k2 E&'}, where 

It is clear that { <P{,k,, k 1, k2 E &'} is an orthonormal 
basis of vy. With these notations, we obtain 
(L~(Y))2 = (U1 \1))2

• If we denote {V1,j E &'} the mul­
tiresolution analysis of (L~(Y))2 , an element of V; is 
thus written: 

with 

u;(X1 , x2) = I u7'k'<P{,k,(x1 , x2), 
(k,,kz)EA 1 

with N1 = 2!- I and A1 = [0, N1f 

(28) 

(29) 

For simplicity, we have merely chosen to perform the 
representation on one given level j. Note that the 
dimension of the space vy is equal to 2! and so the 
dimension Of a Space \11 is equaJ to 221 + I, 

3. ELASTOST A TICS DISCRETIZATION 

3.1. General form 

The operator which we represent on Y is dive­
grad,. A variational formulation, using Green's for­
mulae, leads to the term Jra(u):£(v)dy. £ is the 
second order strain tensor,£ = grad,u. t1 is the second 
order Cauchy stress tensor, t1 = C£. Let U;,j =au;/ ax} 
for i,j = 1, 2. The projection of u and v in wavelets' 
bases corresponds to the representation of the plane 
elastostatics operators in compactly supported bases. 
In this case, Proposition 1 is obtained. 

Proposition l: the projection of the plane elasticity 
operators into the wavelet basis with scale equal to j, 
is given by a matrix K of order 221 + 1: K = (Ku1,;2J,(kl.kZl), 

where K(;1,;2J.(kl.k2l) = K1k is an elementary matrix of 
order 2: 

[F" + Fn F'2 + Fz'] K _ " 33 12 33 

u.- Fz' + F'2 F22 + F" ' 
21 33 22 33 

(30) 

where 

with A= (rx, {3), rx, f3 = l, 2 or 3 and n = ('7, 0, 
'7, ~ = 1 or 2. 

Proof: to verify this proposition, we need to define 
the plane strain tensor. For bi-dimensional problems, 
the strain tensor £ is defined by 

£ 11 = u1,1, £22 = u2,2 and £ 12 = l/2(u1_2 + u2,1 ), (32) 

and the symmetric elasticity tensor C = ( C;;) by 
Ci3 = 0 for i ~ 3. In order to discretize the problem, 
we need to express the term a(u):£(v): 

This expression is discretized in the wavelet basis with 
u given by eqns (28, 29) and with v equal to the 
vectors of the wavelet basis. It follows directly that 

a(u):l(V)= I ((C11 u\<P~. 1 + C, 2 u~<P{,2 )<P1p. 1 ) 
i,keA1 

if 

and 

a(u):£(v)= I ((C;zU;;<P~.;+Cnu~<P-tz)<P~.2) 
i.ke~1 

if 

By integration on Y, the proof of Proposition l is 
obtained. Q.E.D. It is clear, from the form of the 
elementary matrix, that the matrix K is symmetric. 

3.2. Matrix coefficients 

In this section, we propose a technique to compute 
the terms of the matrix K. C is usually a piecewise 
constant function (a given constant for each ma­
terial). Two cases appear. C is either a constant 
function on the intersection of the supports of <P~ and 
<P{ or not. 

The first case is more easily tractable. Equation 
(31) gives us 
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F~ = I C':!AikpBikp• (44) 
pEAJ 

(37) with: 

where 

if 11 = I then n I =I and n2 = 0, 

if 11 = 2 then n I = 0 and n 2 = I , 

if¢ = I then m I = I and m2 = 0, 
and 

if¢= 2 then m I= 0 and m2 =I, (38) 

(39) Using a simple change of variables, we obtain 

and f'l is the derivative of order s. 
We note that eqn (38) is a translation of the deri­
vation with respect to the first or second variable. The 
algorithm to compute the terms A;k and B;k is given 
in Section 3.3. 

On the other hand, if C is not constant on the 
intersection of the supports of the two wavelets, this 
function is decomposed into a wavelet basis which is 
not necessarily the same as in Section 2.3. Due to the 
form of C,11 , the best choice seems to be the Haar 
basis. 

Let() be the wavelet basis of decomposition of C,p, 
() is a wavelet basis of L~(O, 1). We obtain the 
following formula: 

c,,,(x,, x2) = I C~)i"20J,,,(x,)OJp,(x2), (41) 
(Pl·P2)EA; 

with NJ = 21
- I and A1 = [0, Nlf 

J is not necessarily equal to j, but usually J?: j is 
chosen to have 2J-; in N. 

Proposition 2: the evaluation of the terms FZ needs 
to compute the elementary terms rtik• p = (n, m), 
where 

(42) 

More precisely, 

FZ = I qi·P2rt;,, rr;,,,, (43) 
(PJ.P:¥AJ 

with r, = i,- k, and s, = p,- 2J-ik,. The same nota­
tions are used as in eqn (31 ). 

Proof: using eqn (41), the different terms F~ of the 
matrix K have the following form: 

with r = i- 21 -ik and s = k- i. Q.E.D. 
Thus, we have to compute elementary terms which 
can be seen as the "product of three wavelets". The 
algorithm to compute these terms is given in Section 
3.4. 

3.3. Evaluation of two wavelets' products 

The evaluation of the integral JA ¢)71(x )¢j;;'1(x) dx is 
a particular case of a theorem given by Beylkin (3]. 

Theorem I : let 

rZ = L q>(x- k)q>("1(x) dx, n EN. (48) 

Then, 

and 

l:k"r% = ( -l)"n', (50) 
k 

with 

2M- I- k 

ak=2 I h(i)h(i+k),k=l,2M-l. (51) 
i=O 

The coefficients h(i) are defined in eqns (5, 6). 
This theorem corresponds to the evaluation of 
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Fig. 4. Elementary composite (I) Young's modulus: 
410000 MPa, Poisson's ratio: 0.19. (2) Young's modulus: 

72 000 MPa, Poisson's ratio: 0.32. 

tors of a simple matrix with eigenvalues equal to 2-". 
Usually, due to the low dimension of the matrix, this 
evaluation can be done by a symbolic computational 
software. Using eqn (24), the evaluation of the terms 
H 4> JJl(x )¢ J2l(x) dx is given by the theorem with n = I 
and the evaluation of the terms H 4>JJl(x)¢)2(x) dx by 
the theorem with n = 2. 

3.4. Evaluation of the three wavelets' products 

To perform the terms r~;k it is necessary to intro­
duce the coefficients yr. where 

where I} is a Daubechies wavelet of order M and cp a 
Daubechies wavelet of order M. These wavelets are 
chosen without periodic conditions. 

The two wavelets verify the following conditions: 

r=2M-I 

IJ(x)=J2 I H(r)IJ(2x-r), \fxE~, (53) 
r=O 

r=ZM-1 

cp(x)=J2 I h(r)cp(2x-r), VxE~. (54) 
r=G 

The following theorem is introduced. 

Theorem 2: the coefficients yr., verify the relation 

(55) 

with 

2M-I 

IB;k•P = J8 I H(r)h 
T-=::. 0 

X (ex- 2i + r)h({J- 2k + r)X[o.2M-IJ 

X (ex- 2i + r)X[o.2M-IJ({J- 2k + r), (56) 

and 

X[a.bJ (x) = I if x E [a, b ], 

XJa.bJ(x) = 0 in all other cases. (57) 

Proof: due to eqns (53, 54), 

r=2M-l 

rl.r2~2M-l 

Yr.= 2" + "'J2 I H(r )h(r l)h(r2)y~, (58) 
r=O 

r1,r2=0 

with q = 2i + r I- rands= 2k + r2- r. The change 
of variables i I = 2i + r I - r and k I = 2k + r2 - r 
and the equality yr.= 0 for i, k ¢[2-2M, 2M-2], 
complete the proof. Q.E.D. 

IB is a fourth order tensor. The coefficients y can 
then be seen as eigenmatrices of the tensor lB. The 
evaluation of these terms is obtained using a well­
chosen numbering. The tensor IB is transformed into 
a matrix and the matrix y into a vector. Then, 
eqn (55) is a problem of the determination of eigen­
vectors with the eigenvalue 2"+"'. Note that this 
problem is solved only once and written in filter 
banks. 
Details and tables concerning the computations of 
the coefficients are given in the Appendix I. 

The evaluation of the coefficients r is obtained 
using the following formula, obtained using a simple 
change of variables in eqn (52) and for J sufficiently 
larger than 0: 

(59) 

Fig. 5. Displacement u(x1, x2 ), M = 3, j = 5. 
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Then, the coefficients r~ik (j < J) are performed from 
eqn (59) by a pyramidal algorithm described for 
example in Refs [2, 6 and 7] (see Appendix 2). 

4. VALIDATION TEST 

The aim of this paragraph is to validate the rep­
resentation from an academic example. We consider 
an elementary composite (see Fig. 4). Let the dis­
placement u be 

u1 (x1 , x 2 ) = sin(2nx1 )cos(2nxJ, (60) 

u2 (x1 , xJ = 10cos(2nx1 )sin(2nx2 ). (61) 

The forces applied on the domain are given on each 
sub-domain by the following formulae: 

The displacement given by eqns (60, 61) is projected 
into the wavelet basis (M = 3) and transformed by 
the representation of the plane strain elastostatics 
operator. The forces obtained are compared with the 
analytical solution given by eqns (62, 63) and with the 
direct decomposition of this solution into the wavelet 
basis. Figures 5 and 6 show the accuracy between the 
numerical and analytical results. Figure 5 represents 
the displacement u = (u1, u2 ) and Fig. 6, the force 
f, (x1 , x2 ) for x2 = 0.5. 

5. CONCLUSION 

The numerical model presented in this paper turns 
out to be a good alternative to the finite element 
methods and Fourier analysis. Several applications 
can be made: periodic homogenization [8], linear 
elasticity using fictitious domains [9], inverse prob­
lems using experimental data, linear and non-linear 
properties of a composite from images of its complex 
microstructure, etc. On the other hand, the first 
improvements to give are the use of adaptivity prop­
erties and the implementation of wavelets with 
Dirichlet and Neumann boundary conditions. 
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Table AI. Coefficients y~ (M =I and M = 3) 

0 
0 
0 
0 
0 
I 
I 
I 
I 
I 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 

k 

-4 
-3 
-2 
-I 

0 
-3 
-2 
-I 

0 
-I 
-2 
-I 

0 
I 
2 

-I 
0 
I 
2 
3 
0 
I 
2 
3 
4 

)' 
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0.123328235 X 10° 
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0 
0.441328283 X (0-3 
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0.123328235 X I O" 

-0.134388718 x 10- 1 

-0.568478777 x 10- 2 

o.3I0635327 x 10· 1 

-0.117675941 X 10° 
-0.187931357 x w- 1 

0.324935170 X I 0 •4 

0.133846091 X 10 2 

-0.568478777 x w-z 
0.189275244 X 10 1 

-0.441328283 X 1()- 1 

0.147791132 X 10 5 

0.324935170 X I 0 4 

-0.134388718 x w- 1 

0.441328283 x w-) 
0 
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APPENDIX I 

Computation of y~ 

To perform the coefficients y?J! it is necessary to determine 
an eigenvector of the matrix IE! with the eigenvalue equal to 
one. Another condition has to be introduced to satisfy the 
uniqueness of this vector. 

The functions 0 and tp verify: 

IO(x-k)=l, 'v'xE~, (AI) 
keZ 

Then 

(A3) 

Table AI gives the values of the vector y?J!. 

Computation of Y~k1 

The coefficients y~( correspond to the determination of an 
eigenvector of the matrix IE! with the eigenvalue equal to 0.5. 
Let 

ijik = t Olll(x)tp(X- i)tp(X -k)dx. (A4) 

Then, y?( and i5,k are two non-colinear eigenvectors of IE!. 
Due to the definition of y~{ and i5,ko then 

0 
0 
0 
0 
0 
I 
I 
I 
I 
I 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 

Table A2. Coefficients y~( (M = I and M = 3) 

k y 

-4 
-3 
-2 
-I 

0 
-3 
--2 
-I 

0 
I 

-2 
-I 

0 
I 
2 

-I 
0 
I 
2 
3 
0 
I 
2 
3 
4 

0.342465753 x 10- 1 

o.ISOS3970I x Jo- 1 

-0.124283163 X 10° 
0.567892841 X 10° 
0.827328955 X 10° 

-0.442097978 X 10-l 
-0.2IIII06II x 10- 1 

0.166483459 X 10° 
-0.752893875 X 10° 
-0.106420845 X 101 

0.188744849 X 10-l 
0.109093267 x 10- 1 

-0.698971276 X 10-\ 
0.293074414 X 10° 
0.246829!48 X 10° 

-0.801477819 X 10-4 

-0.452898781 x 10-2 

0.262518093 X 10-l 
-0.!03068691 X 10° 
-0.960718286 x 10- 2 

-0.896484317 X 10-5 

-0.323247933 X J0- 3 

0.144502219 X J0- 2 

-0.500468928 X JO-l 
-0.342465753 X JO-l 

Table A3. Coefficients y~( (M =I and M = 3) 

0 
0 
0 
0 
0 
I 
I 
I 
I 
I 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 

k 

-4 
-3 
-2 
-I 

0 
-3 
-2 
-I 

0 
I 

-2 
-I 

0 
I 
2 

-I 
0 
I 
2 
3 
0 
I 
2 
3 
4 

-0.535714856 X JO-l 
-0.122693167 X 10° 

0.677531606 X 10° 
-0.225189020 X ]01 

0.17024089] X 101 

0.840745335 x 10-' 
0.203438334 X 10° 

-0.J0JJ8J720 X ]01 

0.305186162 X ]01 

-0.225189020 X ]01 

-0.477946449 X ]0 2 

-0.!28299571 X 10° 
0.467364635 X 10° 

-0.10JJ8J720 X 101 

0.677531606 X 10° 
o.IS3079476 x 10- 2 

0.460236098 X 10- I 

-0.!28299571 X 10° 
0.203438334 X 10° 

-0.]22693167 X JOG 
0.198359243 x 10- 3 

0.153079476 x 10- 2 

-0.477946449 X 10 2 

0.840745335 x 10- 2 

-0.535714856 X 10 2 

k =2M-2 k = 2M - 2 

I kyO:.pk-p=i, I ki5_pk-p=O. 
~z ~z 

k=2-2M k=2-2M 

k =2M-2 

I Y2~ = 0, 'v'kE l. and I ky2~ =!. 
~z ~z 

k =2-2M 

(AS) 

So, the technique to perform the coefficients consists of 
obtaining two non-colinear eigenvectors A and B, and to 
determine tx and {3, such that: 

k=2M- 2 k=2M-2 

(X I kAkp+/3 I kB,P = 0, (A6) 
~z ~z 

b2-2M k = 2--2 .. \1 

k =2M - 2 k = 2.\-1 - 2 

(X I kApk-p+/3 I kB_pk-p=l. (A7) 
~z ~z 

k=2 -2M f..=2-2M 

Therefore, 

y = cxA+/38. (AS) 

Table A2 gives the values of the vector y~). 

Computation of y J) 
The coefficients y i( correspond to the determination of an 

eigenvector of the matrix IE! with the eigenvalue equal to 
0.25. Let 

and 

f;k = t O(x- i)tp(x - k)tp 121 (x) dx. (A10) 
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Fig. AI. Fast wavelet transform for j = -2. 

Then, the vectors o,b l;k andy)) are linearly dependent and 
are the three eigenvectors of lEI with an eigenvalue 0.25. To 
find the vector y, a method similar to the method introduced and 

Let S{ = 2112 J/cptk dy 

in the former section is used. The condition to impose is 

k=2M-2 

L k2y!~=O. (All) 
peZ One can show that 

k=2-2M 

Table A3 gives the values of the vector y )) . S{ = L h(n- 2k)S~+ 1 

neZ 

and 
APPENDIX 2 

The one-dimensional pyramidal algorithm 
D{ = L g(n- 2k)S~+ 1• 

neZ 

(Al3) 

(Al4) 

Let J = 0 and SZ be given. SZ = tfcpOk dy. 

(Al2) 

Then the coefficients at level j are obtained from the 
coefficients at level)+ I using eqn (AI4). This algorithm is 
presented on an elementary example, with j = -2, on 
Fig. AI. 
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