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Abstract. We introduce a Crank-Nicolson scheme to study numerically the long-
time behavior of solutions to a one dimensional damped forced nonlinear Schrödinger
equation. We prove the existence of a smooth global attractor for these discretized
equations. We also provide some numerical evidences of this asymptotical smoothing
effect.

1. Introduction. Weakly damped nonlinear Schrödinger equations provide examples
of infinite-dimensional dynamical systems, in the framework described in [18], [10], [17].
For these infinite-dimensional dynamical systems the major issues are: does it exist a
global attractor for the dissipative dynamical system under consideration ? does this
global attractor has finite Haussdorf and fractal dimension ? is this global attractor
regular ?

Let us give an overview of the previous results for weakly damped nonlinear
Schrödinger equations, that are equations that read

ut + αu + iuxx + i|u|2u = f. (1)

Here the unknown u(t, x) maps Rt × Tx into C. We mean that u is a periodic function
with respect to x. Actually α > 0 is the damping parameter and the external force f ,
that does not depend to t, belongs to L2(T). The pioneering work [6] proved the existence
of a finite dimensional weak global attractor A for dissipative NLS. By weak attractor
we mean that the attractor attracts the trajectories for the weak topology in the Hilbert
space chosen for the mathematical study. Moreover, due to a famous argument due to J.
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Ball, it turns out that this weak attractor is actually a global attractor in the usual sense.
Hence the two first issues were successfully addressed. For the issue of the regularity of
the attractor, the first result appeared in [7] and states as follows: consider the dynamical
system provided by dissipative NLS in H1(T) with a forcing term in L2(T), then the
global attractor is actually a compact subset of H2(T). In other words dissipative NLS
feature an asymptotical smoothing effect, following the terminology introduced in [12].

In this article we would like to address the same issues for discrete nonlinear
Schrödinger equations. By discrete nonlinear Schrödinger equations, we mean that we
discretize the equation both in time and in space and we consider the associated finite-
dimensional dynamical system. For discrete nonlinear Schrödinger equations some inter-
esting results are available in the literature but mainly for discretization in space of the
equations (nevertheless we refer to the work [3] where a suitable splitting scheme was
used for the damped nonlinear Schrödinger equations). We would like to refer to [19]
and [5] where the authors consider some discretization in space of the Laplace operator
on a finite interval with finite differences and then study the dynamical systems provided
by the associated ODE. On the other hand, we would like also to point out the study
of discrete nonlinear Schrödinger equations as an infinite-dimensional dynamical system
in a lattice in [13]; the authors consider the ODE in the infinite dimensional space l2(Z)
defined at each point j ∈ Z by

(uj)t + γuj + i(2uj − uj+1 − uj−1) + i|uj|2uj = fj. (2)

In our article we discretize the Laplace operator with finite differences on a grid
of mesh size ∆x. We consider also a time discretization provided by a suitable Crank-
Nicolson scheme. We prove below that this new scheme fits with the damping and is
unconditionally stable even for long time. This allow us to prove the existence of a
global attractor A∆x for the discrete dynamical system under consideration. Our aim
was to give some numerical evidence of the regularity of this attractor. This question is
meaningless if one says that we deal with finite dimensional space and that all norms are
equivalent. But this matters if we want to have estimates that are uniform in ∆x and
∆t. Introduce L2

∆x and Hs
∆x spaces as follows. Set A for the discrete Laplace operator

in finite differences. Set, for a vector U in C
N ,

||U ||2L2
∆x

= (∆x)
∑

j

|uj|2, (3)

and
||U ||2Hs

∆x

= ||(A + Id)s/2U ||2L2
∆x

. (4)

Our first result states as follows

Theorem 1. There exists A∆x a compact global attractor for the Discrete Nonlinear

Schrödinger equations in L2
∆x. Moreover A∆x is a bounded subset in H2

∆x, uniformly in

∆t and ∆x.

The results compares with [9] for the continuous case. This results is not obvious since
by the inverse inequality, ||U ||H2

∆x
≤ c(∆x)−2||U ||L2

∆x
, a bounded set in L2

∆x is not

(uniformly) bounded in H2
∆x. We give also some numerical evidence for this result.

Consider an initial data that is not regular (a shock). Our numerical scheme introduces
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no artificial viscosity, and for short interval of times, the solution remains as regular as
the shock. But, for the long range, some smoothing occurs.

After the stability issues, come the consistency. Consider the ODE provided by (2)
on a finite number of js, corresponding to the discretization of (1) in finite differences.
One can prove that this ODE features a global attractor AODE (see [19]). We prove in
the sequel that for a trajectory in this attractor AODE, our scheme is of order 2 in time,
uniformly in ∆x. We prove also the upper continuity of the attractor, that is if both
∆t and ∆x converge to 0 then A∆x converges to A, the continuous attractor. On open
question is to estimate the distance between these two attractors. We cannot conclude
since we do not now the speed of convergence of trajectories towards A.

For this issue and the issue of lower semi-continuity of attractors, one can conclude
only if we now that we have a gradient system and if we know that the continuous flow
satisfies the following property: the stationary points, that are in finite numbers, are
hyperbolic (see [17] and the references therein). To our knowledge, the precise compari-
son between a continuous flow and its time discretization requires this kind of property;
we would like to refer to [1], [2] where the authors compare the flow and its time dis-
cretization in respectively a neighborhood of an hyperbolic fixed point and an hyperbolic
periodic orbit. The hyperbolicity properties mean that the stable and unstable mani-
folds at each point of the invariant set under consideration intersect transversally. This
applies for instance for Ginzburg-Landau equation, that is a parabolic regularization of
Schrödinger equation. For the sake of completeness, we would like also to point out [14]
where the authors gives a complete study of the discretized Ginzburg-Landau equation.

This article is organized as follows. In the second section, we introduce the time
discretization and we prove Theorem 1. In a third section we discuss the upper continuity
and the consistency properties. In a last section we perform some numerics.

2. The discrete Schrödinger equation.

2.1. A new scheme. Consider the ODE provided by a finite difference approximation
(in space) of the periodic NLS equation (1).
Introducing

A =
1

∆x2




2 −1 0 . . . 0 −1

−1 2 −1
. . . 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0
. . . . . . . . . −1

−1 0 . . . 0 −1 2




this ODE reads

Ut + αU − iAU + i|U |2U = F (5)

where (|U |2U)j = |Uj|2Uj , U ∈ CN and where F stands for a finite difference approxi-
mation of f . We assume in the following that ||F ||L2

∆x
is bounded uniformly in ∆x.

At a first glance, the classical time discretization of (5) could be
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Un+1 − Un

∆t
+ α

Un+1 + Un

2
− i A

(
Un+1 + Un

2

)

+
i

4

(
|Un+1|2 + |Un|2

) (
Un+1 + Un

)
= F.

(6)

In this article, we rather introduce a new scheme ; to begin with, let us observe that (5)
is equivalent to

d

dt

(
eαtU

)
− iA

(
eαtU

)
+ i|U |2

(
eαtU

)
= eαtF. (7)

We discretize this equation by an Euler scheme of order two to obtain (after multiplica-
tion by e−α(n+1)∆t

Un+1 − e−α∆tUn

∆t
− iA

(
Un+1 + e−α∆tUn

2

)
+

i

4

(
|Un+1|2 + |Un|2

)
(Un+1 + e−α∆tUn) =

1 + e−α∆t

2
F.

(8)

We would like to point out that if α∆t << 1, then since e−α∆t
⋍ 1 − α∆t, (8) is equal

to (6) up to second order.

2.2. Uniform stability: L2
∆x estimate. We now prove that this new scheme is stable

in L2
∆x, uniformly in ∆x and time (discrete time n∆t), assuming that α∆t << 1.

Proposition 1. Assume that α∆t is small enough. There exists δ = e−α∆t < 1 such

that

‖Un‖2
L2

∆x

≤ δn‖U0‖2
L2

∆x

+ (1 − δn)
8

α2
‖F‖2

L2
∆x

(9)

Proof :

Consider the scalar product of (8) with Un+1 + e−α∆tUn in the real Hilbert space C
N ≃

R
2N (endowed with the scalar product in L2

∆x) to obtain

‖Un+1‖2
L2

∆x

≤ e−2α∆t‖Un‖2
L2

∆x

+ ∆t| < F,Un+1 + e−α∆tUn > |, (10)

where < F,G >= (∆x)
∑

j Re(FjGj).
Therefore, by Young’s inequality

(
1 − α∆t

4

)
‖Un+1‖2

L2
∆x

≤ e−2α∆t

(
1 +

α∆t

4

)
‖Un‖2

L2
∆x

+
2∆t

α
‖F‖2

L2
∆x

(11)

We observe that for α∆t small enough we have δ

(
1 − α∆t

4

)−1 (
1 +

α∆t

4

)
≤ 1. We

then obtain

‖Un+1‖2
L2

∆x

≤ δ‖Un‖2
L2

∆x

+
4∆t

α
‖F‖2

L2
∆x

(12)

The discrete Gronwall’s lemma gives then

‖Un‖2
L2

∆x

≤ δn‖U0‖2
L2

∆x

+ (1 − δn)
4α∆t

α2(eα∆t − 1)
‖F‖2

L2
∆x

, (13)
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 that completes the proof of the Proposition. ¤

2.3. Well-posedeness of scheme. (8) defines an implicit scheme. This problem is
well-posed if we are able to prove that the Picard iteration scheme wk → wk+1 on CN

defined by

wk+1 − e−α∆tUn

∆t
− iA

2

(
wk+1 + e−α∆tUn

)
+

i

4

(
|wk|2 + |Un|2

)
(wk+1 + e−α∆tUn) =

1 + e−α∆t

2
F

(14)

with w0 = 0 is convergent. It is an exercise (proceeding as in section 2.2) to prove that

sup
k

‖wk‖2
L2

∆x

≤ 8

α2‖F‖2
L2

∆x

. (15)

On the one hand, estimates (15) ensures that the non linear mapping wk → wk+1, that

is continuous, send the ball of radius 2
√

2
α ‖F‖L2

∆x
into itself. The Brouwer fixed point

theorem applies and then leads to the existence of a fixed point Un+1.
On the other hand, if one prefers to establish the uniqueness of the fixed point, we rather

use the following statement, assuming some kind of CFL condition on ∆t
∆x

.

Lemma 1. : Assume that ∆t
∆x

is small enough. Then the mapping wk → wk+1 is a

contraction and the Banach fixed point theorem applies. Then we have the existence and

uniqueness of a fixed point Un+1.

Proof :

Consider (14) at step k− 1 and subtract this equation to (14) at step k. We thus obtain
the following equation for Zk = wk+1 − wk

Zk − i∆t
2 AZk + i∆t

4 (|Un|2)Zk

+ i∆t
4 (|wk|2 − |wk−1|2)Une−α∆t

+ i∆t
4 (|wk|2Zk + (|wk|2 − |wk−1|2)wk) = 0.

(16)

Let us now multiply this equation by Zk in the real Hilbert space L2
∆x and to obtain

||Zk||2L2
∆x

= ∆t
4 < wkZk−1U

ne−α∆t, iZk >

+ ∆t
4 < wk−1Zk−1U

ne−α∆t, iZk >

+ ∆t
4 < wkZk−1w

k, iZk > +∆t
4 < wk−1Zk−1w

k, iZk >

(17)

and then, by straightforward inequalities

||Zk||2L2
∆x

≤ (∆t||Zk||L2
∆x
||Zk−1||L2

∆x
)

.
(
||wk−1||L∞

∆x
+ ||wk||L∞

∆x

) (
||Un||L∞

∆x
+ ||wk||L∞

∆x
+ ||wk−1||L∞

∆x

) (18)

We now recall the following well-known inverse inequality
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Lemma 2. : ||f ||L∞

∆x
≤ 1

(∆x)
1

2

||f ||L2
∆x

.

Then, the uniform upper bound for wk, Un on L2
∆x leads to : there exists c > 0 such

that

||Zk||L2
∆x

≤ c

(
∆t

∆x

)
||Zk−1||L2

∆x
(19)

The results follows promptly. ¤

2.4. Existence for the discrete global attractor. At this stage we have defined a
nonlinear mapping S : Un → Un+1 that maps continuously L2

∆x ≃ CN into itself and
that possesses a bounded absorbing set in L2

∆x.
Since we are dealing with finite dimensional space, we have that the continuous map S
is compact, then Theorem I.1.1 in [18] applies and we obtain

Proposition 2. There exists A∆x a compact set in L2
∆x that is a global attractor for

the dynamical system defined by the Discrete Nonlinear Schrödinger Equation.

At this point, we would like to emphasize the following point : the ”size” of the global
attractor does not depend on the mesh size of the space discretization ∆x. This contrasts
with the following fact : when we deals with the classical scheme (6), one can prove the
existence of an absorbing ball whose size tends to infinity when ∆x → 0.

2.5. Discrete regularity for the attractor. We first state and prove

Proposition 3. : A∆x is a bounded subset in H1
∆x, uniformly in ∆x.

Proof :

Multiply (8) by i(Un+1 − e−α∆tUn) in the Hilbert space L2
∆x to obtain

‖A 1

2 Un+1‖2
L2

∆x

− e−2α∆t‖A 1

2 Un‖2
L2

∆x

= 1
2 < (|Un|2 + |Un+1|2)(Un+1 + e−α∆tUn), Un+1 − e−α∆tUn >

+ (1 + e−α∆t) < iF, Un+1 − e−α∆tUn > .

(20)

Let us observe that the first therm in the r.h.s. of (20) reads also

N∑

j=1

∆x
(
|Un+1

j |4 − e−2α∆t|Un
j |4

)

+ (1 − δ2)
N∑

j=1

∆x(|Un
j |2|Un+1

j |2).
(21)

Introducing

J(Un+1) = ‖A 1

2 Un+1‖2
L2

∆x

− 1

2
‖Un+1‖4

L4
∆x

+ (1 + δ) < iF, Un+1 >, (22)

We thus obtain

J(Un+1) ≤ δ2J(Un) + 1−δ2

2

N∑

j=1

∆x(|Un
j |2|Un+1

j |2). (23)
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We now use the following discrete Gagliardo-Niremberg inequality :

Lemma 3. : ∀v ∈ CN , ‖v‖4
L4

∆x

≤ 2‖v‖3
L2

∆x

‖v‖H1
∆x

.

Now and in the sequel we denote by K a constant that depends only on α and ‖F‖L2
∆x

;
K may vary from one line to one another.
We infer from the uniform upper bound in L2

∆x and from (22) that there exists K such
that

J(Un+1) ≥ 1

2
‖A 1

2 Un+1‖2
L2

∆x

− K. (24)

On the other hand, there exists (another) K such that

(1 − δ2)
N∑

j=1

∆x(|Un
j |2|Un+1

j |2) ≤ K∆t(1 + ‖A 1

2 Un+1‖1/2

L2
∆x

‖A 1

2 Un‖1/2

L2
∆x

). (25)

We now infer from (23)-(25) that

J(Un+1) ≤ δJ(Un) + K∆t. (26)

Then, proceeding as in the proof of Proposition 1 (see (9)), we obtain

J(Un) ≤ δnJ(U0) +
K∆t

1 − δ
≤ δnJ(U0) +

2K

α
. (27)

We now consider a discrete trajectory Un that belongs to the global attractor A∆x

that is bounded in L2
∆x. Let us recall that the global attractor consists in complete

orbits and that therefore we can go backward in time.
There exists then K that depends only on α, ‖F‖L2

∆x
such that, due to inverse inequality,

J(U0) ≤ δnJ(U−n) + K ≤ K

(
δn(1 +

1

(∆x)2
) + 1

)
. (28)

Let n → +∞ concludes the proof of the Proposition, using once again (24). ¤

Remark 1. The proof of this proposition shows that there exists an absorbing ball in

H1
∆x that captures all the trajectories in L2

∆x, but with a discrete time that depends on

∆x.

We now complete the proof of Theorem 1 by the following statement

Proposition 4. A∆x is a bounded subset in H2
∆x, uniformly in ∆x.

Proof : Introduce Zn+1 = Un+1 − e−α∆tUn

∆t
that plays the role of the time deriv-

ative of Un. We infer from (8) that

Zn+1−e−α∆tZn

∆t
− i

2
A

(
Zn+1 + e−α∆tZn

)

+ i
4 (|Un+1|2 + |Un|2)

(
Un+1 + e−α∆tUn

)

− i
4 (|Un−1|2 + |Un|2)

(
Un + e−α∆tUn−1

)
= 0.

(29)
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Multiply this equation by Zn+1 + e−α∆tZn in the Hilbert space L2
∆x to obtain

‖Zn+1‖2
L2

∆x

≤ e−2α∆t‖Zn‖2
L2

∆x

+ c(∆t)
(
‖Un‖2

L∞

∆x

+ ‖Un−1‖2
L∞

∆x

) (
‖Zn+1‖L2

∆x

+ e−α∆t‖Zn‖L2
∆x

) (
‖Un−1‖L2

∆x
+ ‖Un‖L2

∆x
+ ‖Un+1‖L2

∆x

)
.

(30)

Since we know that A∆x is bounded in H1
∆x, uniformly in ∆x, proceeding as in the proof

of Proposition 1 (see (9)) we obtain that there exists K that depends on α, ‖F‖L2
∆x

such
that

‖Zn+1‖2
L2

∆x

≤ δ‖Zn‖2
L2

∆x

+ K∆t, (31)

since

Lemma 4. ∀v ∈ CN , ‖v‖L∞

∆x
≤ c‖v‖H1

∆x
.

Therefore Un+1 − e−α∆tUn

∆t
remains in a bounded set of L2

∆x. Then Un+1 + e−α∆tUn

remains bounded in H2
∆x, uniformly in ∆x, i.e. ∃K = K(α, ‖F‖L2

∆x
) ;

K ≥ ‖Un+1 + e−α∆tUn‖H2
∆x

≥
[
‖Un+1‖H2

∆x
− e−α∆t‖Un‖H2

∆x

]
.

(32)

Then, for any n

‖Un+1‖H2
∆x

≤ e−α∆t‖Un‖H2
∆x

+ K, (33)

and then
‖U0‖H2

∆x
≤ e−nα∆t‖U−n‖H2

∆x
+ K

≤ e−nα∆t

(
1 + 4

(∆x)2

)
‖U−n‖L2

∆x
+ K.

(34)

If Un is a complete trajectory that is bounded in L2
∆x , n → +∞ completes the proof

of the Theorem.

Remark 2. This result is sharp. The assumption ‖F‖L2
∆x

< +∞ uniformly in (∆x)

implies that the stationary solutions belongs only to H2
∆x.

3. Consistency and convergence of the attractors.

3.1. Existence and regularity of the attractor for the ODE. To begin with, we
recall some results for the continuous attractor that were established in [8].

Theorem 2. Consider a trajectory u(t) that is included in the continuous attractor A.

Then there exists a constant K that depends only on α, ||f ||L2(T) such that for any t in

R

||u(t)||H2(T) + ||ut(t)||H4(T) + ||utt(t)||H4(T) ≤ K. (35)

At a first glance, this result is surprising and means that along the invariant set
the time derivative of the solution is more regular than the solution itself. Actually, one
can go further in the regularity in t of the solutions of a PDE along an invariant set
(see [11]). On the other hand, the estimate (35) provides upper bound for the distance
between approximate inertial manifolds and A (see [8] and the references therein).
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We now go back to our numerical scheme. Consider (5) as a dynamical system in
L2

∆x. One can prove the existence of a global attractor AODE as in [19] for instance.
Moreover, in the spirit of Theorem 2, one can prove

Theorem 3. Consider a trajectory U(t) that is included in the attractor AODE. Then

there exists a constant K that depends only on α, ||F ||L2
∆x

such that for any t in R

||AU(t)||L2
∆x

+ ||A2Ut(t)||L2
∆x

+ ||A2Utt(t)||L2
∆x

≤ K. (36)

Since the proof of the this theorem is just a suitable adaptation of the article [8]
using discrete norms as in previous section, we omit it for the sake of conciseness.

3.2. Consistency. Consider U(t) a complete trajectory that is embedded in the attrac-
tor AODE. Set V n = U(n∆t). We define the consistency error as

ηn =
V n+1 − e−α∆tV n

∆t
− iA

(
V n+1 + e−α∆tV n

2

)
+

i

4

(
|V n+1|2 + |V n|2

)
(V n+1 + e−α∆tV n) − 1 + e−α∆t

2
F.

(37)

We now state and prove

Proposition 5. There exists K that depends only on the data α, ||F ||L2
∆x

and that does

not depend on ∆x such that

||ηn||L2
∆x

≤ K(∆t)2.

Proof: Integrate (5) between n∆t and (n+1)∆t to obtain (recalling that δ = e−α∆t)

V n+1 − δV n =

∫ (n+1)∆t

n∆t

es−α(n+1)∆t
(
F + iAU(s) − iU2(s)U(s)

)
ds. (38)

We now invoke the well-known trapezoid formula to estimate the r.h.s of (38)

Lemma 5. Consider g(t) a smooth function. Then |
∫ b

a
g(s)ds − b−a

2
(g(b) + g(a))| ≤

c(b − a)3 supt |g̈(t)|.
We thus obtain

∫ (n+1)∆t

n∆t

eαs−α(n+1)∆t
(
F + iAU(s) − iU2(s)U(s)

)
ds =

∆t

2

(
F + iAV n+1 − i|V n+1|2V n+1 + δ(F + iAV n − i|V n|2V n)

)
+ ζn,

(39)

where

||ζn||L2
∆x

≤ c(∆t)3e−α(n+1)∆t sup
t∈[n∆t,(n+1)∆t]

||∂2
t

(
eαt(−iF + AU − |U |2U)(t)

)
||L2

∆x

.
Therefore, using Theorem 3, it is an exercise to prove that

e−α(n+1)∆t sup
t∈[n∆t,(n+1)∆t]

||∂2
t

(
eαt(−iF + AU − |U |2U)(t)

)
||L2

∆x
≤ K

.
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To complete the consistency estimate, we have to majorize in L2
∆x the difference

(|V n+1|2V n+1+δ|V n|2V n)−(
|V n+1|2 + |V n|2

2
)(V n+1+δV n) =

1

2
(|V n+1|2−|V n|2)(V n+1−δV n).

(40)
Since by Theorem 3the time derivative Ut is uniformly bounded, we bound this term by
K(∆t)2.
This completes the proof of the proposition. ¤

3.3. Upper semi-continuity of the attractors. Introduce I the interpolation opera-

tor that maps the continuous space into the discrete one by (Iu)j = 1
∆x

∫ (j+1/2)∆x

(j−1/2)∆x
u(y)dy.

We rather use this ”L2” interpolation operator instead of the classical one since we only
assume that f belongs to L2(T) . Anyway (Iu)j ∼ u(j∆x) if u is regular enough. The
aim of this section is to establish that when both ∆t and ∆x converges to 0, then the
Hausdorff semi-distance supa∈A infb∈A∆x

||Ia − b||L2
∆x

converges to 0.
The idea is to use AODE and the following triangle inequality

sup
a∈A

inf
b∈A∆x

||Ia − b||L2
∆x

≤ sup
c∈AODE

inf
b∈A∆x

||c − b||L2
∆x

+ sup
a∈A

inf
c∈AODE

||c − Ia||L2
∆x

. (41)

Consider the first term in the r.h.s of (41). Consider U(t) a complete trajectory in
AODE. Set G(Un, Un+1) = F − i

4
(|Un|2 + |Un+1|2)(δUn + Un+1). Then, if V n = U(n∆t)

and εn = Un − V n,

εn+1 − δεn

∆t
+

i

2
A(εn+1 + δεn) = G(Un, Un+1) − G(V n, V n+1) + ηn, (42)

where ηn is the consistency error. Using the upper bounds on the attractors given in
Theorems 1 and 3, one can prove that ||G(Un, Un+1) − G(V n, V n+1)||L2

∆x
≤ K||εn+1 +

δεn||L2
∆x

. Actually Un is not in the discrete attractor, but since U0 = V 0 is in H2
∆x

and since the equation features also an H2
∆x absorbing set, we may assume that Un is

bounded in H2
∆x.

Considering then the scalar product of 42 with εn+1 + δεn in L2
∆x we thus obtain

||εn+1||2L2
∆x

− δ2||εn||2L2
∆x

≤ K∆t
(
||εn+1 + δεn||2L2

∆x

+ ||ηn||2L2
∆x

)
, (43)

and then, by the consistency estimate of Lemma 5,

||εn+1||L2
∆x

≤ δ2 1 + K∆t

1 − K∆t
||εn||L2

∆x
+ K(∆t)3. (44)

Using δ2 1+K∆t
1−K∆t

≤ e2(K−α)∆t = β for ∆t small enough, we then have by the discrete
Gronwall lemma, (and with ε0 = 0)

||εn||L2
∆x

≤ βnK
(∆t)3

β − 1
≤ K̃βn(∆t)2. (45)

We now infer from (45)
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Proposition 6.

lim
∆t→0

sup
c∈AODE

inf
b∈A∆x

||c − b||L2
∆x

= 0. (46)

Proof: Consider U(t) a complete trajectory in AODE as above. Consider estimate (45)
between U(0) and Un = Sn(U(−n∆t)), where S stands for the discrete semi-group that
is defined by Un+1 = SUn where Un+1 solves (8). Consider ε > 0. To the very definition
of a global attractor we know that there exists b in A∆x

such that for n large enough

||b − Sn(U(−n∆t))||L2
∆x

≤ ε. (47)

Fix then n in (45) and let ∆t → 0 that gives ||b−U(0)||L2
∆x

≤ ε. Since ε is arbitrary
the proof of the Proposition is completed. ¤

It remains to compare the attractors A and AODE. We give an overview of this process
that is more or less standard. Consider a complete trajectory u(t) in the global attractor
A. We apply the interpolation operator I to the equation (1). This gives,

(Iu)t + αIu + iI(uxx) + iI(|u|2u) = If = F. (48)

Let us point out that the operator I and ∂x do not commute; this shows in the
consistency error as follows

η(t) = i(AIu − I(uxx)) + i(|Iu|2Iu − I(|u|2u)); (49)

observe that due to standard results and since u(t) is bounded in H2(T), then ||η(t)||L2
∆x

=

O(1) when ∆x → 0, uniformly in t.
Introduce now V (t) = U(t) − Iu(t) that solves

Vt + αV − iAV = η + i(|Iu|2Iu − |U |2U). (50)

Considering the scalar product in L2
∆x with w, we thus obtain, since |||Iu|2Iu −

|U |2U ||L2
∆x

≤ K||V ||L2
∆x

in the global attractor that ||V (t)||L2
∆x

≤ eKtsupt||η(t)||2
L2

∆x

. We

conclude then as in the proof of Proposition 6.

4. Numerical experiments.

4.1. Implementation of the scheme. The implementation of the Crank-Nicolson
scheme needs a fixed point problem to be solved at each time step. Let Id be the
Identity matrix. If we set

Φ(U,Un) =
(
Id − i∆t

2 A
)−1

{ǫ−α∆t(Id + i∆t
2 A)Un − i∆t

4 (|U |2 + |Un|2)
(
U + e−α∆tUn

)

+
(

1 + e−α∆t

2 F
)
}

then the time marching scheme reduces to solve the fixed point problem

U = Φ(U,Un) (51)

at the n-th time step. Lemma 1 insures that there exists a unique fixed point if α∆t

is small enough, the proof uses the classical Banach fixed point theorem. In practice,
for this NLS equation, the convergence of the Picard iterates is obtained by taking only
very small values of ∆t, typically ∆t ≃ 10−4. This is dramatic since we are looking to
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the long time numerical behavior of the solution. Anyway, this effective restriction on
the time step is really artificial because the scheme is supposed to be unconditionally
stable. For this reason, we propose to solve (51) by accelerating the (Picard) sequence

U (0) = Un

for m = 0, · · ·
U (m+1) = Φ(U (m), Un),

(52)

enhancing in that way the stability region, allowing then to take larger values of ∆t. To
this end, we use the ∆k acceleration procedure, see [4] and the references therein. In
two words, the ∆k procedure consists in replacing the Picard iterates by

U (0) = Un

for m = 0, · · ·
U (m+1) = U (m) − (−1)kαk

m∆k
ΦU (m);

(53)

where ∆k
ΦU (m) =

k∑

j=0

Ck
j (−1)k−jΦ(j)(U (m), Un), Ck

j = k!
j!(k − j)!

is the binomial coef-

ficient and Φ(j) denotes the j-th composition of Φ with itself. The parameter αk
m is

computed such as minimizing the euclidian norm of the linearized part of the residual
r(m+1) = u(m+1) − Φ(U (m), Un). We have

αk
m = (−1)k

< ∆1
φU

(m), ∆k+1
Φ U (m) >

< ∆k+1
Φ U (m), ∆k+1

Φ U (m) >
(54)

see [4]. These acceleration procedure have been applied with success for solving nonlinear
eigenvalue problem and presently, for the NLS scheme, we obtain good results with
the ∆1 (Lemaréchal’s) and the ∆2 (Marder-Weitzner) methods; we can take ∆t up to
1.10−1 and after a transient time very few iterations are needed for solving (51) with
a good accuracy. To achieve the description of the implementation of the scheme (8),
we mention that the evaluation of Φ necessitates the solution of a linear system with

the matrix Id − i∆t
2 A. Since this matrix is independant of t, this is done by a QR

factorization method.

4.2. Discrete smoothing. We address here the following issue : consider U ∈ CN , that
could be the sampling of a function at points j∆x. How to check that this sampling
corresponds to a function that belongs to H1 ?
In a perfect world, we just have to check that the sequence :

αN =
1

∆x

N∑

j=1

(uj+1 − uj)
2 (55)

remains bounded when N → +∞. In the real world of numerics, we can deal with large

N’s but hardly pretend that ∆x = 1
N

→ 0.

Therefore we shall use in the sequel the following ansatz : consider a periodic function
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 that expands as a Fourier series

u(x) =
+∞∑

k=1

û(k)ek(x), (56)

where e2k(x) = sin(2kπx) , k ≥ 1 , e2k+1(x) = cos(2kπx) , k ≥ 0.
The smoothness of the function u(x) shows on the decay of the high frequency modes.

In the numerical computations we shall use the following criteria, that is standard
in multilevel signal analysis (see [16]). A function u that is in L2 belongs to Hs, s > 0
iff

+∞∑

N=1

N2s−1||u − uN ||2L2 < +∞. (57)

where
uN =

∑

|k|>N

û(k)ek(x). (58)

The last issue to address is to implement this criterion on U ∈ CN , pretending
that U = (Uj) is the sampling of a periodic function at points j∆x. For that purpose
we use the Discrete Fourier Transform

U = (Uj)1≤j≤N
DFT−→ yk =

N∑

j=1

Uje
−ikj∆x , 1 ≤ k ≤ N.

Then DFT
(
UN − UN

2

)
is ỹk =

3N

4∑

j=N

4
+1

Uje
−ikj∆x.

V = UN − UN

2

DFT−1

←− ỹk

UN plays the role of u, UN

2
is the first approximation of UN , and the other ones are

computed recursively.

4.3. Discrete smoothing : a multigrid approach.

X −−−X −−− X −−− X −−− X −−− X −−− X −−− X −−− X

0 fine grid point 1

Consider a fine grid with N = 2m points. Consider a sampling U = (Uj)1≤j≤N ∈ CN .
Let us pretend that U is represented by

u(x) =
N∑

j=1

Ujσ
( x

∆x
− j

)
, (59)

where σ(x) = max(0, 1 − |x|) is the classical hat function. Proceeding as above, one
may pretend that u is smooth if u is accurately represented by its approximation on the
coarser grid with m points defined as follows :

⊙ −−−X −−− ⊙−−−X −−− ⊙−−−X −−− ⊙−−−X −−− ⊙

0 coarser grid point 1
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to compute the coarser grid approximation, we make use of the formula

σ(x) = σ(2x) +
1

2
(σ(2x + 1) + σ(2x − 1)). (60)

Therefore U expands / splits as follows

u(x) =

(
m∑

j=1

U2jσ
( x

∆x
− 2j

))
+

(
m∑

j=1

U2j+1σ
( x

∆x
− 2j − 1

))

=
m∑

j=1

U2jσ
( x

2∆x
− j

)
− 1

2

m∑

j=1

U2j

(
σ

( x

∆x
− 2j + 1

)
+ σ

( x

∆x
− 2j − 1

))

+
m∑

j=1

U2j+1σ
( x

∆x
− 2j − 1

)

=

(
m∑

j=1

U2jσ
( x

2∆x
− j

))

︸ ︷︷ ︸
approximation on the coarse grid

+

(
m∑

j=1

(
U2j+1 −

U2j + U2j+2

2

)
σ

( x

∆x
− 2j − 1

))

︸ ︷︷ ︸
difference

(61)
This corresponds to

⊗
−−− X −−−

⊗
−−− X −−−

⊗

↓ 1 −1
2
ց ↓ 1 ւ −1

2

⊙ −−− X −−− ⊙ −−− X −−− ⊙

We now define the incremental unknown as

zj = U2j+1 −
U2j + U2j+2

2
, (62)

We compute recursively the incremental unknowns corresponding to nested grids from
a coarser grid to the finest one. The criterion reads

∑

k=1

4ks||wk||2L2 , < +∞ (63)

where wk is the incremental unknown corresponding to the grid of mesh size 2−k. Ac-
tually, if we compute the convergence radius ρ of the series

∑ ||wk||2L2Z
k in C, then

ρ = 4s.

4.4. Preliminary tests. Before to go further on the investigation of the discrete regu-

larity of the solutions of our discrete nonlinear Schrödinger equations, we will check that
both the Fourier and multigrid approach allow us to compute successfully the discrete
regularity of the following test functions:
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• f1(x) =

{
−1 if x ∈ [0, 1

2
[

1 if x ∈ [1
2
, 1[

• f2(x) = |x − 1
2
|

• f3(x) = x2(1 − x)2

• f4(x) = sin(2πx).

We proceed to the computations on a grid with N=128 points (xi, yi) for 1 ≤ i ≤ N

such that xi = ih, ∆x = 1
N

, and yi = fl(xi) with the four functions fl; l = 1, 2, 3, 4.
defined above. We aim to compute the regularity index sl of each function fl, both with
Fourier analysis and multigrid approaches. Then fl belongs to Hs

∆x with

Fourier Multigrid
analysis approach

f1 s=0.6049 s=0.50
f2 s=1.6357 s=1.50
f3 s=3.7917 s=2.00
f4 s=10.000 s=1.9834

These results show that we are able to give a satisfactory measurement of the
regularity index for a given function, but with a limitation of our multigrid approach.
Actually, since our incremental unknowns behaves as wavelet coefficients with a wavelet
that has two vanishing moments, we cannot go further than 2 in the regularity measure-
ment process. Moreover, we can explain the error on the measurement of the regularity
of the analytical function f4 in the Fourier analysis setting by round up errors in the
numerical computations.

4.5. Numerical evidences for the regularity of solutions to discrete Schrödinger

equation. We compute below the discrete regularity of a solution of (8) and we plot
the evolution of this discrete regularity with respect to time. The computations are per-
formed for different forcing terms f and for various initial data u0. In the computations
below α = 0.01 and the time step ∆t is equal to 10−2.

The figures in the sequel represent the regularity of the solution as a function of
time, both with Fourier and multigrid approaches. All the example below give evidence
of robustness and stability of our Crank-Nicolson scheme for long-time computations.

• To begin with, we are given a smooth forcing term f = 0 and a smooth initial data
u0 = sin(2πx). We observe that in that case there is no loss of regularity along
the process (see Fig 1). Once again, the measurement of regularity is limited when
using multigrids.

• We now introduce a forcing term f that is the Heaviside function (regularity H
1

2

+

).
α = 0.01. For u0 = 1, we observe that after a transient time the regularity of
the solution converges to the predicted regularity of the attractor that should be
s = 2, 5+.

• In the next example with keep the Heaviside function as forcing term and we chose
an initial data that has very low regularity (say L2); to plot a low regular initial
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Figure 1. Regularity of u(t, ·) when α = 0.01, f = 0, u0(x) = sin(2πx).
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Figure 2. Regularity of u(t, ·) when α = 0.01, f = Heaviside, u0 ≡ 1.

data we perform a random function u0. The results are very interesting. After
a transient time the solution forget the low regular initial data and its regularity
converges to the expected regularity of the attractor as in the example above.
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Figure 3. Regularity of u(t, ·) when α = 0.01, f Heaviside, u0 ∈ L2.
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• In that example the forcing term is a L2 function obtained with a random procedure
and the initial data is smooth. The regularity of the solution converges towards
the expected value of the regularity of the attractor that is 2 in this case.
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Figure 4. Regularity of u(t, ·) when α = 0.01, f ∈ L2, u0 ≡ 1.

• This example is similar with the previous one, but we are given here a non-smooth
initial data u0 that is the Heaviside function. Once again, the regularity of the
solution converges towards the expected value of the regularity of the attractor
that is 2 in this case.
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Figure 5. Regularity of u(t, ·) when α = 0.01, f ∈ L2, u0 Heaviside.
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