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On planar random walks in environments

invariant by horizontal translations

Julien Brémont

Université Paris-Est Créteil, novembre 2014

Abstract

We give a recurrence criterion for a model of planar random walk in environment invariant

under horizontal translations. Some examples are next developed, for instance when the

environment is produced by a dynamical system.

1 Introduction

1.1 Presentation

We study the qualitative asymptotic behavior of a discrete time Markov chain (Xn, Yn)n≥0 on
the lattice Z2. Vertical jumps are nearest neighbors, with equal probability, and the environment
is invariant under horizontal translations. To precise the model, introduce parameters (pn)n∈Z and
probability measures (µn)n∈Z with support on Z, such that for some δ > 0 and all n ∈ Z :

δ ≤ pn ≤ 1− δ, µn(0) ≤ 1− δ and
∑

k∈Z

|k|3µn(k) ≤ 1/δ.

The last condition is introduced for having second order expansion of the characteristic functions
uniform in n ∈ Z. Letting X0 = Y0 = 0, the Markovian evolution is given by :

P((n,m) → (n+ k,m)) = pmµm(k) and P((n,m) → (n,m± 1)) = (1− pm)/2.

0

m

(n+ k,m)

(1− pm)/2

(1− pm)/2

pmµm(k)

n

When pm = 1/2 and µm = (δ1 + δ−1)/2, we recover simple random walk in Z2. An important
submodel, a model with oriented horizontal lines, was introduced by Campanino and Petritis [1].
It corresponds to taking pn = p ∈ (0, 1) and µn = δεn , where (εn)n∈Z is a sequence of ±1.

Let us detail known results, principally regarding this last model. For simplicity we say “i.i.d”
for “a typical realization of an i.i.d. sequence”. Campanino and Petritis [1] prove recurrence when
εn = (−1)n and transience for εn = 1n≥0 − 1n<0 and when the (εn) are i.i.d.. Guillotin-Plantard
and Le Ny [5] show transience results when the (εn) form an independent family with marginals
described by some dynamical system. Pene [8] also prove transience when the (εn) are stationary,
under a decorrelation condition. Castell, Guillotin-Plantard, Pene and Schapira [3] consider a
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similar model where the (εn) are i.i.d. and the vertical steps follow some measure µ in the domain
of attraction of a centered stable distribution. A very precise analysis of the annealed return times
to 0 is performed, implying transience in this case. Devulder and Pene [4] consider an extension of
the model with oriented lines and establish transience when the (pn) form an i.i.d. non-constant
sequence and µn = δεn , with arbitrary (εn). Recently Campanino and Petritis [2], still considering
the oriented lines model, study a random perturbation of the periodic case, where the perturbation
decreases via some power law as the vertical coordinate increases. They show the existence of a
critical parameter for the question recurrence/transience.

One may observe that most results on the model with oriented lines concern transience. As we shall
detail later, the asymptotics of the random walk is related to the growth of the sums (ε1+ · · ·+εn)
and the frontier between recurrence and transience lies at logarithmic scales. Recurrence is therefore
rare when the (εn) are stationary and a little of stochasticity is assumed.

1.2 Results

Let us present our results. Let ηi = mipi/(1 − pi), where mi is the expectation of µi. This
quantity can be interpreted when grouping in packets the successive horizontal steps of the random
walk. Precisely, when arriving at the horizontal line i, the number Γi of steps on this line follows
a geometrical law of parameter pi, whereas the displacement is Ji =

∑

1≤k≤Γi
ξk, where the (ξk)

are i.i.d. with law µi and are independent of Γi. Then ηi = E(Ji). For instance, in the context of
the oriented lines model we have ηi = (p/(1− p))εi. Set next :

Rl
k =

∑

k≤i≤l

ηi,

for k ≤ l and Rl
k = 0 when l < k. The main quantities of interest for the sequel are the following.

Definition 1.1 Introduce the strictly increasing functions :

ϕ(n) =

√

n2 +
∑

−n≤k≤l≤n

(Rl
k)

2 and ϕ+(n) =

√

n2 +
∑

−n≤k≤l≤n,kl>0

(Rl
k)

2 .

For large x > 0, let ϕ−1(x) be the unique integer n so that ϕ(n) ≤ x < ϕ(n+1). Idem for ϕ−1
+ (x).

Remark. — In general, n ≤ ϕ+(n) ≤ ϕ(n) ≤ Cn2, so c
√
n ≤ ϕ−1(n) ≤ ϕ−1

+ (n) ≤ n. An

important property, detailed later, is that ϕ−1 and ϕ−1
+ are examples of regularly varying functions

f in the sense that for all C ≥ 1 there exists K > 0 so that f(Cx) ≤ Kf(x).

Theorem 1.2 The random walk is recurrent if and only if :

∑

n≥1

1

n2

(ϕ−1(n))2

ϕ−1
+ (n)

= +∞.

Remark. — For simple random walk, Rl
k = 0, giving ϕ−1

+ (n) = ϕ−1(n) = n. Recurrence hence
follows from the divergence of the harmonic series. Notice that the generic term in the sum is
always less than or equal to n−2ϕ−1

+ (n) ≤ n−1 and that simple random walk realizes equality. In
this rough sense, all other random walks in the class considered are less recurrent.

Remark. — It is quite clear from the theorem that the asymptotics is not modified when changing
a finite number of lines. Indeed, one gets some new (R̃l

k) which check (R̃l
k)

2 ≤ 2(Rl
k)

2 + C. This
gives ϕ̃(n) ≤ C ′ϕ(n), with also a similar symmetric inequality, and the same is true for ϕ+. The
regular variation properties of the inverse functions allow to conclude.

The difference of order between ϕ and ϕ+ is related to symmetry reasons concerning the two
half sequences (ηn)n≥1 and (ηn)n≤−1. Symmetry gives more transience, whereas antisymmetry
implies more recurrence. This appears in the following statement.
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Corollary 1.3

i) In the general case, a sufficient condition for transience is :

∑

n≥1

1
√

n2 +
∑

−n≤k≤l≤n(R
l
k)

2
< +∞.

ii) Antisymmetric model : η−n = −ηn, n ≥ 1. The random walk is recurrent if and only if :

∑

n≥1

1
√

n2 +
∑

1≤k≤l≤n(R
l
k)

2
= +∞.

iii) Symmetric model : η−n = ηn, n ≥ 1. The random walk is transient if :

∑

n≥1

1
√

n2 + n
∑

1≤k≤n(R
k
1)

2
< +∞.

Remark. — Notice that the symmetric model can be seen as a model on Z×N with reflection on
the horizontal axis Z× {0}. Let us point out that the conditions appearing in ii) and iii) are not
equivalent due to the following examples.

Proposition 1.4

i) In the general case, if |Rn
1 |+ |R−1

−n| = O(log1/2 n), then the random walk is recurrent.

ii) In the antisymmetric case, if |Rn
1 | = O(log n), then the random walk is recurrent.

iii) Let 1 < α ≤ 2 and suppose that (ηn)n≥0 satisfies |Rn
1 − logα n| = O(logα−1 n).

• Let (η′n)n∈Z be such that η′n = η|n|. Then the random walk is transient.

• Let (η′′n)n∈Z be such that η′′n = sign(n)ηn, n 6= 0, η′′0 = η0. Then the random walk is recurrent.

Remark. — The second case in item iii) is particularly interesting, because the random walk is
recurrent but, roughly speaking, cannot come back when staying only North or only South. This
implies an oscillating behavior (perhaps of sinusoidal or spiral type) for the random walk which
would be interesting to quantify.

We next investigate the case when the (ηn) are produced by some dynamical system, first of
all of quasi-periodic type and next with more randomness.

Proposition 1.5 Take pn = p ∈ (0, 1) and µn = δεn with εn = 1[0,1/2)(nα)−1[1/2,1)(nα). Suppose
that α 6∈ Q has a continued fraction expansion [a1, a2, · · · ] verifying :

∑

n≥1

log(1 + an)

a1 + · · ·+ an
= +∞.

Then the random walk is recurrent.

Remark. — The proof relies on the antisymmetry of x 7−→ 1[0,1/2)(x) − 1[1/2,1)(x) and works
without change for εn = 1I(nα) − 1T\I(nα), where I is a finite union of intervals on the torus T

with T\I = −I. The case of εn = 1[0,1/2)(nα + x) − 1[1/2,1)(nα + x) for a general x ∈ R\Z, for
example x = 1/4, is more difficult, because we are in the critical zone. A specific study is a priori
required, with finer estimates, especially lower bounds, on the ergodic sums associated to (εn).
Notice that the condition on α is verified when the (an) are bounded. Also, defining the type of α
as η(α) = sup{s ≥ 1 | lim inf nsdist(nα,Z) = 0}, it is possible to have η(α) = a for any a ∈ [1,+∞]
together with the condition of the proposition verified (one may simply choose an arbitrary large
on a very sparse subsequence).

For the other application, we suppose that the (ηn) are a realization of strictly stationary
process (meaning that for any b ≥ 0 the law of (ηn)a≤n≤a+b is independent on a ∈ Z). For n ≥ 1,
let us introduce the strong mixing coefficient :
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α(n) = sup
k≥1,A∈σ(η1,··· ,ηk)
B∈σ(ηl,l≥k+n)

|P(A ∩B)− P(A)P(B)|.

The following proposition extends results in [1] and [4] relying on independence.

Proposition 1.6 Let ηn = ηn(ω), where the (ηn)n∈Z form a strictly stationary process. Suppose
that E(η0) = 0 and that for some β > 1 and γ > 1 :

α(n) = O(log−γ n) and lim inf
1

N

∑

1≤n≤N

P(|Rn
1 | ≥ logβ n) > 0.

Then the random walk is transient for almost-every ω.

Remark. — Mention that if replacing logβ n by nε in the statement of the proposition, then γ > 0
is sufficient in the proof. The second condition is satisfied if a central limit theorem is verified.

1.3 Notations

• The law of a random variable Γ is G(p), 0 < p < 1, if P(Γ = m) = (1− p)pm, m ≥ 0.

• Let χn(t) =
∑

k∈Z
eitkµn(k), mn =

∑

k∈Z
kµn(k), m2,n =

∑

k∈Z
k2µn(k), varn = m2,n−m2

n.

• For n ∈ Z, let ϕn(t) be the characteristic function of
∑

1≤k≤Γ ξk, where the ((ξk)k≥1, Γ) are
independent with ξk ∼ µn and Γ ∼ G(pn). We have :

ϕn(t) =
1− pn

1− pnχn(t)
= rn(t)e

ian(t),

with argument (odd) and modulus (even), with O uniform in n ∈ Z :















an(t) = arctan
(

pnIm(χn(t))

1−pnRe(χn(t))

)

= t pn

1−pn
mn +O(t3),

rn(t) = 1−pn

(1+p2
n|χn|2−2pnRe(χn(t)))1/2

= 1− t2

2
pn

(1−pn)2
(m2,n − pnvarn) +O(t3).

(1)

Acknowledgments. We would like to thank Arnaud Le Ny, Jean-Baptiste Gouéré, Michel Lifshits
for useful discussions on topics related to this paper.

2 Reductions

2.1 A one-dimensional problem

As the second coordinate (Yn)n≥0 is simple random walk on Z (with waiting times at each site),
the random walk is vertically recurrent. Introduce 0 = σ0 < τ0 < σ1 < τ1 < · · · , where:

τk = min{n > σk | Yn 6= 0}, σk+1 = {n > τk | Yn = 0}.

Set Dn = Xσn
− Xσn−1

. The (Dn)n≥1 are independent and identically distributed, because the
environment is invariant under horizontal translations.

Lemma 2.1 The random walk (Xn, Yn)n≥0 is recurrent if and only (
∑n

k=1Dk)n≥1 is recurrent.
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Proof of the lemma :
We follow lemma 2.9 in [1]. If (

∑n
k=1Dk)n≥1 is recurrent, then so is (Xn, Yn), because (Xσn

, Yσn
) =

(
∑n

k=1Dk, 0). In case of transience, using the invariance of the environment by horizontal trans-
lations, there is a constant C so that :

∑

n≥1

P(Xσn = x) ≤ C, x ∈ Z.

Let ((ξk)k≥1,Γ) be independent (and also from the (Xσn
)) such that ξk ∼ µ0 and Γ ∼ G(p0). Set

H =
∑

1≤k≤Γ ξk. We have :

∑

n≥1

P(0 ∈ (Xσn , Xτn−1)) =
∑

n≥1

P(0 ∈ (Xσn , Xσn +H)) ≤
∑

x∈Z

∑

n≥1

P(Xσn = x)P(H ≥ |x|))

≤ C
∑

x∈Z

P(H ≥ |x|)) < +∞,

because H is integrable. As (Xn, Yn) can be 0 only for n in some [σk, τk − 1], we conclude that
(Xn, Yn) is transient and this completes the proof of the lemma.

�

We thus concentrate on the recurrence properties of (
∑n

k=1Dk)n≥1. Set D = D1 and :

χD(t) = E(eitD), t ∈ R.

In case of aperiodicity, i.e. when the support of the law of D generates Z, an analytical recurrence
theorem of Kesten and Spitzer, cf Spitzer [9], says that (

∑n
k=1Dk)n≥1 is transient if and only if :

∫ η

0

Re

(

1

1− χD(t)

)

dt < +∞, for some η > 0. (2)

Our hypotheses imply that the subgroup of (Z,+) generated by the support of the law of D is not
reduced to {0}. Up to considering some sublattice mZ× Z, m > 0, we assume aperiodicity.

We therefore focus on the estimation of χD near the origin, which is now the only singularity
of 1/(1− χD). We fix 0 < t < η and omit the dependence in t to lighten the notations.

2.2 Local time and contour of a Galton-Watson tree

For simplicity, we first change notations. Denote now by (Yn)n≥0 simple symmetric random
walk on Z, starting at 0. Let σ = min{k ≥ 1 | Yk = 0} be the return time to 0. As in [1], we later
make use of the standard properties P(σ > x) = O(1/

√
x ) and :

E(sσ) = 1−
√

1− s2 , 0 ≤ s ≤ 1. (3)

Grouping the successive horizontal steps of the random walk, observe that D can be written as :

D =

σ−1
∑

k=0

(

Γk
∑

u=1

ξ(k)u

)

,

where, conditionally on the (Yl), the ((ξ
(k)
u )u≥1,k≥0, (Γk)k≥0) are independent with ξ

(k)
u ∼ µYk

and
Γk ∼ (G(pYk

)). This furnishes :

χD(t) = E(E(eitD | (Yl))) = E

(

σ−1
∏

k=0

E

(

eit
∑Γk

u=1 ξ(k)
u | (Yl)

)

)

= E

(

σ−1
∏

k=0

ϕYk
(t)

)

(4)

=
1

2
E



ϕ0(t)
∏

n≥1

(ϕn(t))
Nn



+
1

2
E



ϕ0(t)
∏

n≥1

(ϕ−n(t))
Nn



 ,
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where we have distinguished between positive and negative excursions and set :

Nn = #{0 < k < σ, |Yk| = n}.
To detail Nn, recall first that positive excursions of simple random walk can be described via
the contour process of a critical Galton-Watson tree (Zn)n≥1, with root Z1 = 1 and offspring
distribution G(1/2). See for instance Le Gall [6]. This is illustrated by the following picture :

0

1

2

3

4

1

1

2

3

4

σ − 1

As shown in the left-hand side, start from the root of the tree and turn clockwise. We recover a
positive excursion of simple random walk on the right-hand side in the time interval [1, σ − 1], by
associating to each ascending/descending movement a ±1 step. One easily counts that the total
number of visits at level n ≥ 1 is Nn = Zn + Zn+1. This gives :

ϕ0(t)
∏

n≥1

(ϕn(t))
Nn = ϕ0(t)

∏

n≥1

(ϕn(t))
Zn+Zn+1 =

∏

n≥1

[ϕn(t)ϕn−1(t)]
Zn .

We therefore obtain χD(t) = (χ+(t) + χ−(t))/2, with :

χ+(t) = E





∏

n≥0

[ϕn(t)ϕn+1(t)]
Zn+1



 and χ−(t) =
1

2
E





∏

n≥0

[ϕ−n(t)ϕ−n−1(t)]
Zn+1



 . (5)

3 Continued fraction expansions

The Markovian structure of a Galton-Watson tree allows to develop χ+ and χ− in continued
fractions. We first recall some classical facts about general continued fractions.

3.1 SP-continued fractions and their convergents

For sequences (an)n≥1 and (bn)n≥0, we employ the following notation for a generalized finite
continued fraction :

[b0; (a1, b1); (a2, b2); · · · ; (an, bn)] = b0 +
a1

b1 +
a2

b2 +
· · ·

· · ·+ an

bn

.

In the present article, we use this notation for Sleszynski-Pringsheim (SP) continued fractions.
Finite SP-continued fractions are obtained by successively applying to an initial z0 ∈ C in the unit
disc maps of the form z 7−→ a/(b + z), with complex numbers such that |a| + 1 ≤ |b|, therefore
preserving the unit disc. We write [b0; (a1, b1); (a2, b2); · · · ] for infinite SP-continued fractions. The
latter are converging, by the Sleszynski-Pringsheim theorem (see [7]). We won’t use the result
directly, but largely reproduce the ideas from the proof.

For n ≥ 0, the finite SP-continued fraction [b0; (a1, b1); (a2, b2); · · · ; (an, bn)] can be written as
An/Bn, where the (An) and (Bn) satisfy the following recursive relations :
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





An = bnAn−1 + anAn−2, A−1 = 1, A0 = b0,

Bn = bnBn−1 + anBn−2, B−1 = 0, B0 = 1.

In order to study convergence, we also require the classical determinant, for n ≥ 1 :

AnBn−1 −An−1Bn = (−an)(An−1Bn−2 −An−2Bn−1) = · · ·
= (−1)na1 · · · an(A0B−1 −A−1B0) = (−1)n+1a1 · · · an.

3.2 Development of χ+ and χ
−

Focusing on χ+, cf (5), set :

χ
(N)
+ (t) = E

(

N
∏

n=0

[ϕn(t)ϕn+1(t)]
Zn+1

)

.

By dominated convergence (by 1, using that Zn = 0 for large n, a.s.) we have χ
(N)
+ (t) → χ+(t).

Recall now a classical way of describing the Galton-Watson tree (Zn)n≥1 with root Z1 = 1 and
offspring distribution G(1/2). Fixing a bi-indexed collection (Rk,l)k≥1,l≥1 of independent random
variables with distribution G(1/2), one can recursively write :

ZN+1 =

ZN
∑

k=1

Rk,N+1, N ≥ 1.

The generating function of G(1/2) being s 7−→ (2− s)−1, omitting the t, we obtain :

χ
(N)
+ (t) = E

[

N−1
∏

n=0

[ϕnϕn+1]
Zn+1

(

1

2− ϕNϕN+1

)ZN
]

= E

[

N−2
∏

n=0

[ϕnϕn+1]
Zn+1

(

ϕN−1ϕN

2− ϕNϕN+1

)ZN
]

.

Iterating the procedure, this leads to :

χ
(N)
+ (t) = E






ϕ0ϕ1





ϕ1ϕ2

2− ϕ2ϕ3

2− ...
2−ϕNϕN+1





Z2






= [0; (ϕ0ϕ1, 2); (−ϕ1ϕ2, 2); · · · ; (−ϕN−1ϕN , 2− ϕNϕN+1)] = ϕ0(t)f
(N)
+ (t),

with f
(N)
+ (t) = [0; (1, 2/ϕ1(t)); (−1, 2/ϕ2(t)); · · · ; (−1, 2/ϕN (t)− ϕN+1(t))].

In the framework of the previous section, take a1 = 1, an = −1 for n ≥ 2 and b0 = 0, bn = 2/ϕn,
for n ≥ 1. Call hn the continued fraction of length n. As AnBn−1 − An−1Bn = 1, n ≥ 1, and
A0 = 0, we obtain the equality :

hN (t) =
A0

B0
+

N
∑

k=1

(

Ak

Bk
− Ak−1

Bk−1

)

=

N
∑

k=1

1

BkBk−1
.

Idem, with the modified term B̃N = b̃NBN−1 −BN−2, where b̃N = 2/ϕN − ϕN+1, we get :

f
(N)
+ (t) =

N−1
∑

k=1

1

BkBk−1
+

1

B̃NBN−1

. (6)

We now show that both hN (t) and f
(N)
+ (t) converge, as N → +∞, to the same f+(t), where :

7



f+(t) =
∑

k≥1

1

(BkBk−1)(t)
. (7)

This way, from the relation Bn = (2/ϕn)Bn−1−Bn−2, n ≥ 2, and B1 = (2/ϕ1)B0+B−1 we have :

|Bn| ≥ 2|Bn−1| − |Bn−2|, n ≥ 1.

This gives |Bn|−|Bn−1| ≥ |Bn−1|−|Bn−2| ≥ · · · ≥ |B0|−|B−1| = 1. Hence |Bn| ≥ n+1. Similarly
|B̃N | ≥ (2− 1)|BN−1| − |BN−2| ≥ 1. This implies the desired convergence.

Defining symmetrically some f− associated to χ−, we obtain :

χD =
ϕ0

2
(f+ + f−). (8)

4 First estimates

4.1 General lower bound on Re(1− χD)

Proposition 4.1 We have Re(1− χD(t)) ≥ δ2t.

Proof of the proposition :
We suppose δ > 0 small. We have χD = (ϕ0/2)(f+ + f−). Hence :

Re(1− χD(t)) ≥ 1− |χD(t)| ≥ 1− (|f+(t)|+ |f−(t)|)/2.

We prove that |f±(t)| ≤ 1− δ2t. By (1), using m2,n ≥ δ, for small t uniformly in n :

rn(t) ≤ 1− t2

4

δ

(1− δ)2
m2,n(1− (1− δ)) ≤ 1− δ3t2/(4(1− δ)2) ≤ 1− δ4t2.

Therefore for n ≥ 1 :

|Bn| ≥
2

rn
|Bn−1| − |Bn−2| ≥

2

1− δ4t2
|Bn−1| − |Bn−2|.

Introduce the real sequence (un) such that u−1 = 0, u0 = 1 and un = (2/(1− δ4t2))un−1 − un−2.
Define next vn = |Bn| − un, which verifies v−1 = v0 = 0 and :

vn ≥ 2

1− δ4t2
vn−1 − vn−2.

As vn−vn−1 ≥ (2/(1−δ4t2)−2)vn−1+vn−1−vn−2, the condition “vn−1 ≥ vn−2 ≥ 0” is transmitted
recursively. Hence vn is non-decreasing and checks vn ≥ 0, i.e. |Bn| ≥ un. Also :

un =
ρn+1
+ − ρn+1

−

ρ+ − ρ−
= ρn+

n
∑

k=0

ρ−2k
+ , n ≥ −1,

with ρ± = (1− δ4t2)−1(1±
√

1− (1− δ4t2)2 )) = 1± δ2
√
2 t+O(t2), satisfying ρ+ρ− = 1. Then,

remarking that un = ρn+
∑

0≤k≤n ρ
−2k
+ , we obtain :

|f+| ≤
∑

k≥1

1

|BkBk−1|
≤
∑

k≥1

1

ukuk−1
≤

∑

k≥1

1

ρ2k−1
+

(

1
∑k−1

j=0 ρ
−2j
+

− 1
∑k

j=0 ρ
−2j
+

)

1

ρ−2k
+

.

We conclude that |f+| ≤ ρ+(1 − 1/
∑

k≥0 ρ
−2k
+ ) = ρ+(1 − (1 − ρ−2

+ )) = ρ− ≤ 1 − δ2t, for t small
enough. Idem for f−. This concludes the proof of the proposition.

�

Remark. — This general result is independent from the distribution of the (pn) and (µn). It
gives the upper bound Re(1/(1− χD(t))) ≤ 1/Re(1− χD(t)) ≤ 2/(δt), not sufficient to decide the
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question of integrability. This proposition will allow to remove terms of order at most t in the final
part of the proof. One may also notice that the expression of un furnishes :

|Bn| ≥
n+ 1

(1− δ4t2)n

n/2
∑

k=0

1

2k + 1

(

n

2k

)

(1− (1− δ4t2)2)k.

For small t, this gives a lower bound for |Bn| of the form (n+ 1)(1 + αn2t2), α > 0.

4.2 Isolating the main term

Let us start from the relation χD(t) = E(
∏σ−1

k=0 ϕYk
(t)), extracted from (4). Our aim now is to

replace the (ϕn) by the (ψn), where we set :

ψn(t) = eian(t)wn(t), wn(t) = cos an(t)

(

1− ipnIm(χn(t))/(1− pnRe(χn(t))

1− itpnmn/(1− pn)

)

. (9)

First of all, recalling the exact value of an(t) given in (1) and that cos(arctanx) = 1/
√
1 + x2 , we

observe that :

|ψn(t)| =
1

√

1 +
(

pnIm(χn(t))

1−pnRe(χn(t))

)2

√

1 +
(

pnIm(χn(t))

1−pnRe(χn(t))

)2

√

1 +
p2
nm

2
n

(1−pn)2
t2

=

(

1 +
p2nm

2
n

(1− pn)2
t2
)−1/2

≤ 1.

We now set g(t) = E(
∏σ−1

k=0 ψYk
(t)) and estimate the difference g(t)− χD(t) :

|g(t)− χD(t)| =

∣

∣

∣

∣

∣

E

[(

σ−1
∏

k=0

wYk
−

σ−1
∏

k=0

rYk

)

σ−1
∏

k=0

eiaYk

]∣

∣

∣

∣

∣

≤ E

(∣

∣

∣

∣

∣

σ−1
∏

k=0

wYk
−

σ−1
∏

k=0

rYk

∣

∣

∣

∣

∣

)

≤ E

(∣

∣

∣

∣

∣

σ−1
∏

k=0

wYk
− 1

∣

∣

∣

∣

∣

)

+ E

(∣

∣

∣

∣

∣

σ−1
∏

k=0

rYk
− 1

∣

∣

∣

∣

∣

)

= (A) + (B).

From (1), for some constant c > 0 we have 1− ct2 ≤ rn(t). Using also rn(t) ≤ 1 and (3), we get :

(B) = E

(

1−
σ−1
∏

k=0

rYk
(t)

)

≤ E
(

1− (1− ct2)σ
)

=
√

1− (1− ct2)2 =
√
2c t+O(t2).

For (A), denoting by “arg” the principal determination of the argument, write :

(A) ≤ E

(∣

∣

∣

∣

∣

(

σ−1
∏

k=0

|wYk
| − 1

)

σ−1
∏

k=0

eiarg(wYk
)

∣

∣

∣

∣

∣

)

+ E

(∣

∣

∣

∣

∣

σ−1
∏

k=0

eiarg(wYk
) − 1

∣

∣

∣

∣

∣

)

≤ E



1−
∏

0≤k<σ

|wYk
|



+ E

(∣

∣

∣

∣

∣

σ−1
∏

k=0

eiarg(wYk
) − 1

∣

∣

∣

∣

∣

)

.

For the first term, for another constant c > 0 we have for small t, uniformly in n :

|wn(t)| =
(

1 +
p2nm

2
n

(1− pn)2
t2
)−1/2

≥
(

1 + ct2
)−1/2 ≥ 1− ct2,

giving that is this term is bounded from above by E
(

1− (1− ct2)σ
)

=
√

1− (1− ct2)2 ≤
√
2c t+

O(t2). For the second term, observe first that, uniformly in n :
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|arg(wn(t))| =
∣

∣

∣

∣

arctan

(

pnIm(χn(t))

1− pnRe(χn(t)

)

− arctan

(

pnmnt

1− pn

)∣

∣

∣

∣

= O(t3). (10)

From the fact that P(σ > 1/t) = O(
√
t ), as t→ 0, we now get :

E

(∣

∣

∣

∣

∣

σ−1
∏

k=0

eiarg(wYk
) − 1

∣

∣

∣

∣

∣

)

≤ E

(∣

∣

∣

∣

∣

σ−1
∏

k=0

eiarg(wYk
) − 1

∣

∣

∣

∣

∣

1σ≤ 1
t2

)

+ E

(∣

∣

∣

∣

∣

σ−1
∏

k=0

eiarg(wYk
) − 1

∣

∣

∣

∣

∣

1σ> 1
t2

)

.

The second term is thus less than or equal than c′t+ 2P(σ > 1/t2) ≤ c′′t. The conclusion is that :

χD(t) = g(t) +O(t), g(t) = E

(

σ−1
∏

k=0

ψYk
(t)

)

. (11)

The purpose of the previous modification was to obtain, using (1) :

1

ψn(t)
=

1

cos an(t)
e−ian(t)

1− itpnmn/(1− pn)

1− ipnIm(χn(t))/(1− pnRe(χn(t))

= (1− i tan an(t))
1− itpnmn/(1− pn)

1− ipnIm(χn(t))/(1− pnRe(χn(t))

= (1− ipnIm(χn(t))/(1− pnRe(χn(t)))
1− itpnmn/(1− pn)

1− ipnIm(χn(t))/(1− pnRe(χn(t))

= 1− itpnmn/(1− pn).

Now, since |ψn| ≤ 1, in the same way as for χD (cf (8)), we can write :

g(t) =
ψ0(t)

2
(g+(t) + g−(t)), (12)

where both g+ and g− can be developed as infinite SP-continued fractions. As a result, from (11)
and (12) and the fact that ψ0(t) = 1 +O(t) we finally get :

χD(t) =
1

2
(g+(t) + g−(t)) +O(t). (13)

Focusing on g+ (this is symmetric for g−) and setting ρn = 2pnmn/(1− pn), we have :

g+(t) =
∑

n≥1

1

Bn(t)Bn−1(t)
,

where (using that 2/ψn(t) = 2− itρn) the (Bn) satisfy B−1 = 0, B0 = 1, B1 = (2− itρ1)B0 +B−1

and Bn = (2− itρn)Bn−1 −Bn−2, n ≥ 2. We now have the following estimates.

Proposition 4.2

1) |Bn| ≥ 2|Bn−1|−|Bn−2|, n ≥ 1. Also n 7−→ |Bn|−|Bn−1| ≥ 1 is non-decreasing and |Bn| ≥ n+1.

2) We have the upper bound, for n ≥ 1 :
∣

∣

∣

∣

∣

∑

k>n

1

BkBk−1

∣

∣

∣

∣

∣

≤ n+ 1

|Bn|2
.

Proof of the proposition :
The first point is treated as before. For the second one, we first prove that (n + 1)|Bn+1| ≥
(n+ 2)|Bn|, n ≥ 1. We will use it in the equivalent form |Bn|/(|Bn+1| − |Bn|) ≤ n+ 1. Write :

(n+ 1)|Bn+1| − (n+ 2)|Bn| ≥ (n+ 1)(2|Bn| − |Bn−1|)− (n+ 2)|Bn|
= n|Bn| − (n+ 1)|Bn−1|.
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Recursively, (n+ 1)|Bn+1| − (n+ 2)|Bn| ≥ |B1| − 2|B0| = 0. Now :

∣

∣

∣

∣

∣

∑

k>n

1

BkBk−1

∣

∣

∣

∣

∣

≤
∑

k>n

1

|BkBk−1|
≤

∑

k>n

(

1

|Bk−1|
− 1

|Bk|

)

1

|Bk| − |Bk−1|

≤
∑

k>n

(

1

|Bk−1|
− 1

|Bk|

)

1

|Bn+1| − |Bn|
.

Finally |
∑

k>n 1/(BkBk−1))| ≤ 1/(|Bn|(|Bn+1| − |Bn|)) ≤ (n+ 1)/|Bn|2.
�

5 Precise study of the convergents of a continued fraction

We now perform exact computations. Recall that g+(t) = limn→+∞An(t)/Bn(t), where :







An = (2− itρn)An−1 + anAn−2, A−1 = 1, A0 = 0,

Bn = (2− itρn)Bn−1 + anBn−2, B−1 = 0, B0 = 1,

with a1 = 1 and an = −1 for n ≥ 2. Introduce the matrices :

Mt =

(

2− it −1
1 0

)

, A =

(

2 −1
1 0

)

, B =

(

1 0
0 0

)

.

Notice that An =

(

n+ 1 −n
n −n+ 1

)

, n ∈ Z, and Bn = B, n ≥ 0. Rewrite the recursions as :























(

Bn

Bn−1

)

=Mtρn · · ·Mtρ2

(

2− itρ1 1
1 0

)(

1
0

)

=Mtρn · · ·Mtρ1

(

1
0

)

, n ≥ 1,

(

An

An−1

)

=Mtρn
· · ·Mtρ2

(

2− itρ1 1
1 0

)(

0
1

)

=Mtρn
· · ·Mtρ2

(

1
0

)

, n ≥ 1.

Using obvious notations and writing Bn = Bn(t, ρ1, · · · , ρn), remark that :

An = Bn−1(t, ρ2, · · · , ρn). (14)

Hence, we only have to focus on (Bn). Developing according to the positions of the B’s :

(

Bn − (n+ 1)
Bn−1 − n

)

=
n
∑

r=1

(−it)r
∑

1≤k1<···<kr≤n

r
∏

j=1

ρkj
An−krBAkr−kr−1−1 · · ·BAk1−1

(

1
0

)

=

n
∑

r=1

(−it)r
∑

1≤k1<···<kr≤n

r
∏

j=1

ρkj

(

n− kr + 1 0
n− kr 0

)

· · ·
(

k2 − k1 0
k2 − k1 − 1 0

)(

k1
k1 − 1

)

=

n
∑

r=1

(−it)r
∑

1≤k1<···<kr≤n

r
∏

j=1

ρkj

(

n− kr + 1
n− kr

)

(kr − kr−1) · · · (k2 − k1)k1.

Consequently :

Bn −Bn−1 = 1 +

n
∑

r=1

(−it)r
∑

1≤k1<···<kr≤n

k1(k2 − k1) · · · (kr − kr−1)ρk1 · · · ρkr . (15)

We now perform r successive Abel transforms on the right-hand side. This way, for k ≤ l, set
Rl

k = ρk + · · ·+ ρl, with R
l
k = 0 if l < k. Fixing kr−1, n, and as ρkr = Rn

kr
−Rn

kr+1, we write :

11



∑

kr−1<kr≤n

ρkr
(kr − kr−1) =

∑

kr−1<kr≤n

Rn
kr
(kr − kr−1)−

∑

kr−1+1<kr≤n+1

Rn
kr
(kr − 1− kr−1)

=
∑

kr−1<kr≤n

Rn
kr
(kr − kr−1)−

∑

kr−1<kr≤n

Rn
kr
(kr − 1− kr−1)

=
∑

kr−1<kr≤n

Rn
kr
.

We make this transformation in the right-hand side of (15). Repeat next this manipulation with :

∑

kr−2<kr−1≤kr

ρkr−1(kr−1 − kr−2),

fixing this time all variables except kr−1 and taking Rkr−1
kr−1

in place of Rn
kr
. Doing this successively

for all variables kr, · · · , k1, we arrive at :

Bn −Bn−1 = 1 +

n
∑

r=1

(−it)r
∑

1≤k1<···<kr≤n

Rk2−1
k1

Rk3−1
k2

· · ·Rn
kr
. (16)

As a result, summing in n, this furnishes :

Bn = n+ 1 +
n
∑

r=1

(−it)r
∑

1≤k1<···<kr+1≤n+1

Rk2−1
k1

Rk3−1
k2

· · ·Rkr+1−1
kr

. (17)

Similarly, via (14) :

An = n+

n−1
∑

r=1

(−it)r
∑

2≤k1<···<kr+1≤n+1

Rk2−1
k1

Rk3−1
k2

· · ·Rkr+1−1
kr

.

The previous two equalities next furnish :

Bn −An = 1 +
n
∑

r=1

(−it)r
∑

2≤k2<···<kr+1≤n+1

Rk2−1
1 · · ·Rkr+1−1

kr
=

∑

0≤r≤n

(−it)r∆n
r , (18)

where we set :

∆n
r =

∑

1≤k1<···<kr≤n

Rk1
1 R

k2

k1+1 · · ·Rkr

kr−1+1.

We convene that ∆n
0 = 1 and ∆n

r = 0 as soon as r > n or r < 0.

Proposition 5.1 i) |Bn −An|2 =
∑n

r=0 t
2rKr(n), with K0(n) = 1 and :

Kr(n) =
∑

1=k1≤l1<···<kr≤lr≤n

(Rl1
1 R

l2
k2

· · ·Rlr
kr
)2(1 + 2(n− lr))2

N((ki,li)1≤i≤r),

where N((ki, li)1≤i≤r) = #{2 ≤ i ≤ r | ki ≥ li−1 + 2}.
ii) |Bn|2 =

∑n
r=0 t

2rLr(n), with L0(n) = (n+ 1)2 and :

Lr(n) =
∑

1≤k1≤l1<···<kr≤lr≤n

(Rl1
k1
Rl2

k2
· · ·Rlr

kr
)2(2k1 − 1)(1 + 2(n− lr))2

N((ki,li)1≤i≤r).

iii) Re((Bn −An)Bn) =
∑n

r=0 t
2rMr(n), with M0(n) = n+ 1 and :
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Mr(n) =
∑

1≤k1≤l1<···<kr≤lr≤n

(Rl1
k1
Rl2

k2
· · ·Rlr

kr
)2(1 + 2(n− lr))2

N((ki,li)1≤i≤r).

iv) Im((Bn −An)Bn) = −∑n−1
r=0 t

2r+1Nr(n), with :

Nr(n) =
∑

1=k1≤l1<···<kr+1≤lr+1≤n

Rl1
1 (R

l2
k2

· · ·Rlr+1

kr+1
)2(1 + 2(n− lr+1))2

N((ki,li)1≤i≤r+1).

Remark. — Point i) induces a similar formula for |Bn − Bn−1|2, because of the identity (Bn −
Bn−1)(t, ρ1, · · · , ρn) = (Bn −An)(t, ρn, · · · , ρ1), resulting from (16) and (18).

Remark. — It results from ii) that if (Ω,F , T, µ) is an ergodic dynamical system and f ∈ L∞(µ),
then the main Lyapunov exponent of the matrix :

M(ω) =

(

2 + if(ω) −1
1 0

)

,

defined as γmax(M) = limn−1
∫

Ω
‖M(Tn−1ω) · · ·M(ω)‖ dµ(ω) equals :

γmax(M) =
1

2
lim

1

n
sup

1≤r≤n
log

∑

1≤k1≤l1<···<kr≤lr≤n

(Rl1
k1
)2 · · · (Rlr

kr
)2,

with Rl
k =

∑

k≤j≤l f(T
jω). It may possible to deduce some variational formula for this exponent.

5.1 Proof of i)

Starting from Bn −An =
∑

0≤r≤n(−it)r∆n
r , we compute :

|Bn −An|2 =
n
∑

r=0

t2r(∆n
r )

2 + 2
∑

0≤r<r′≤n/2

(−1)r+r′t2r+2r′∆n
2r∆

n
2r′

+ 2
∑

0≤r<r′≤(n−1)/2

(−1)r+r′t2r+2r′+2∆n
2r+1∆

n
2r′+1.

Hence |Bn −An|2 =
∑n

r=0 t
2r(∆n

r )
2 + 2

∑

0≤r<r′≤n, r′−r even(−1)(r−r′)/2tr+r′∆n
r∆

n
r′ . Thus :

|Bn −An|2 =

n
∑

r=0

t2r



(∆n
r )

2 + 2
∑

1≤p≤r

(−1)(r+p)/2−(r−p)/2∆n
r+p∆

n
r−p





=

n
∑

r=0

t2r





∑

−r≤p≤r

(−1)p∆n
r+p∆

n
r−p



 . (19)

Call Kr(n) the term between brackets. We check that it equals the formula given in i). The latter
is a consequence of the recursion :











K1(n) =
∑

1≤k≤n(R
k
1)

2(1 + 2(n− k)),

Kr(n) =
∑

1≤k≤n(R
k
1)

2
[

θkKr−1(n− k) + 2
∑

k<l≤n θ
lKr−1(n− l)

]

, r ≥ 2.

(20)

In the second formula, θ denotes the shift θ((ρn)n≥0) = (ρn+1)n≥0 and for a function ψ((ρn)n≥0)
we write θψ for ψ ◦ θ. For the first relation, simply compute :
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K1(n) = (∆n
1 )

2 − 2∆n
0∆

n
2 =





∑

1≤k≤n

Rk
1





2

− 2
∑

1≤k<l≤n

Rk
1R

l
k+1

=
∑

1≤k≤n

(Rk
1)

2 + 2
∑

1≤k<l≤n

Rk
1(R

l
1 −Rl

k+1).

As Rl
1 −Rl

k+1 = Rk
1 and the number of l in (k, n] is n− k, we get the expression of K1(n).

We turn to the proof of the recursive relation. This needs some preparation. Taking general
p ≥ 1, q ≥ 1, we have :

∆n
p∆

n
q =

∑

1≤k1<···<kp≤n

1≤k′
1<···<k′

q≤n

(Rk1
1 · · ·Rkp

kp−1+1)(R
k′
1

1 · · ·Rk′
q

k′
q−1+1).

Discuss now according to the relative positions of k1 and k′1 :

∆n
p∆

n
q =

∑

1≤k≤n

(Rk
1)

2θk∆n−k
p−1 θ

k∆n−k
q−1

+
∑

1≤k1<···<kp≤n

k1<k′
1<···<k′

q≤n

Rk1
1 (Rk2

k1+1 · · ·R
kp

kp−1+1)(R
k1
1 +R

k′
1

k1+1)(R
k′
2

k′
1+1 · · ·R

k′
q

k′
q−1+1)

+
∑

1≤k′
1<···<k′

q≤n

k′
1<k1<···<kp≤n

(R
k′
1

1 +Rk1

k′
1+1)(R

k2

k1+1 · · ·R
kp

kp−1+1)(R
k′
1

1 · · ·Rk′
q

k′
q−1+1).

Regrouping terms, this can rewritten more concisely as :

∆n
p∆

n
q =

∑

1≤k≤n

(Rk
1)

2



θk∆n−k
p−1

∑

k≤l≤n

θl∆n−l
q−1 + θk∆n−k

q−1

∑

k<l≤n

θl∆n−l
p−1





+
∑

1≤k≤n

Rk
1

[

θk∆n−k
p−1 θ

k∆n−k
q + θk∆n−k

p θk∆n−k
q−1

]

.

Let r ≥ 2. We now plug this expression in Kr(n) =
∑

−r≤p≤r(−1)p∆n
r+p∆

n
r−p :

Kr(n) =
∑

−r+1≤p≤r−1

(−1)p∆n
r+p∆

n
r−p + 2(−1)r∆n

2r

=
∑

1≤k≤n

(Rk
1)

2
∑

−r+1≤p≤r−1

(−1)p



θk∆n−k
r+p−1

∑

k≤l≤n

θl∆n−l
r−p−1 + θk∆n−k

r−p−1

∑

k<l≤n

θl∆n−l
r+p−1





+ 2(−1)r∆n
2r + 2

∑

1≤k≤n

Rk
1





∑

−r+1≤p≤r−1

(−1)pθk∆n−k
r+p−1θ

k∆n−k
r−p



 .

The last line is 2
∑

1≤k≤nR
k
1

[

∑

−r+1≤p≤r(−1)pθk∆n−k
r+p−1θ

k∆n−k
r−p

]

. The inner brackets are 0, so :

Kr(n) =
∑

1≤k≤n

(Rk
1)

2



θkKr−1(n− k) + 2
∑

−r+1≤p≤r−1

(−1)pθk∆n−k
r+p−1

∑

k<l≤n

θl∆n−l
r−p−1



 .

Set m = n− k and Zr(m) =
∑

−r≤p≤r(−1)p∆m
r+p

∑

1≤l≤m θl∆m−l
r−p . We shall show that :
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Zr(m) =
∑

1≤k≤m

θkKr(m− k), r ≥ 1. (21)

To complete the proof of (20), we apply this equality to Zr−1(m). First of all, with 0 ≤ p ≤ r− 1 :

∆m
r+p

∑

1≤l≤m

θl∆m−l
r−p =

∑

1≤k1<···<kr+p≤m
1≤l1<l2<···<lr−p+1≤m

Rk1
1 · · ·Rkr+p

kr+p−1+1R
l2
l1+1 · · ·R

lr−p+1

lr−p+1

=
∑

1≤k1<···<kr+p≤m
k1<l2<···<lr−p+1≤m

Rk1
1 R

k2

k1+1 · · ·R
kr+p

kr+p−1+1R
l2
k1+1 · · ·R

lr−p+1

lr−p+1

+
∑

1≤k1<···<kr+p≤m
k1<l1<···<lr−p+1≤m

Rk1
1 R

k2

k1+1 · · ·R
kr+p

kr+p−1+1R
l2
l1+1 · · ·R

lr−p+1

lr−p+1

+
∑

1≤l1<···<lr−p+1≤m
l1<k1<···<kr+p≤m

(Rl1
1 +Rk1

l1+1)R
k2

k1+1 · · ·R
kr+p

kr+p−1+1R
l2
l1+1 · · ·R

lr−p+1

lr−p+1.

In short :

∆m
r+p

∑

1≤l≤m

θl∆m−l
r−p =

∑

1≤k≤m

Rk
1



θk∆m−k
r+p−1

∑

k≤l≤m

θl∆m−l
r−p + θk∆m−k

r−p

∑

k<l≤m

θl∆m−l
r+p−1





+
∑

1≤k≤m

θk∆m−k
r+p θ

k∆m−k
r−p .

Consequently :

Zr(m) = (−1)r



m∆m
2r +

∑

1≤l≤m

θl∆m−l
2r



+
∑

1≤k≤m

∑

−r+1≤p≤r−1

(−1)pθk∆m−k
r+p θ

k∆m−k
r−p .

+
∑

1≤k≤m

Rk
1

∑

−r+1≤p≤r−1

(−1)p



θk∆m−k
r+p−1

∑

k≤l≤m

θl∆m−l
r−p + θk∆m−k

r−p

∑

k<l≤m

θl∆m−l
r+p−1



 .

Recognizing some θkKr(m− k), we get :

Zr(m) = (−1)r



m∆m
2r −

∑

1≤l≤m

θl∆m−l
2r



+
∑

1≤k≤m

θkKr(m− k)

+
∑

1≤k≤m

Rk
1

∑

−r+1≤p≤r−1

(−1)p



θk∆m−k
r+p−1

∑

k≤l≤m

θl∆m−l
r−p





+
∑

1≤k≤m

Rk
1

∑

−r+2≤p≤r

(−1)p+1



θk∆m−k
r+p−1

∑

k<l≤m

θl∆m−l
r−p



 .

Therefore :
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Zr(m) = (−1)r



m∆m
2r −

∑

1≤l≤m

θl∆m−l
2r −

∑

1≤k≤m

Rk
1



θk∆m−k
2r−1(m− k + 1) +

∑

k<l≤m

θl∆m−l
2r−1









+
∑

1≤k≤m

θkKr(m− k) +
∑

1≤k≤m

Rk
1

∑

−r+1≤p≤r

(−1)p



θk∆m−k
r+p−1

∑

k≤l≤m

θl∆m−l
r−p





+
∑

1≤k≤m

Rk
1

∑

−r+1≤p≤r

(−1)p+1



θk∆m−k
r+p−1

∑

k<l≤m

θl∆m−l
r−p



 .

The last two terms are
∑

1≤k≤mRk
1 [
∑

−r+1≤p≤r(−1)pθk∆m−k
r+p−1θ

k∆m−k
r−p ] and the brackets are equal

to 0. It remains to show that the first bracket above is also 0. It equals :

−
∑

1≤l≤m

θl∆m−l
2r +

∑

1≤k≤m

(k − 1)Rk
1θ

k∆m−k
2r−1 −

∑

1≤k<l≤m

Rk
1θ

l∆m−l
2r−1.

In the last term, write Rk
1 = Rl

1 −Rl
k+1. We conclude from the observation that :

∑

1≤k<l≤m

Rl
1θ

l∆m−l
2r−1 =

∑

1≤k≤m

(k − 1)Rk
1θ

k∆m−k
2r−1 and

∑

1≤k<l≤m

Rl
k+1θ

l∆m−l
2r−1 =

∑

1≤l≤m

θl∆m−l
2r .

This completes the proof of i).

5.2 Proof of ii)

Set ∆̃n
r =

∑

0≤k0<k1<···kr≤nR
k1

k0+1R
k2

k1+1 · · ·Rkr

kr−1+1, with ∆̃n
0 = n + 1 and ∆̃n

r = 0 whenever

r > n or r < 0. From (17), we get :

Bn =

n
∑

0≤r≤n

(−it)r∆̃n
r . (22)

Exactly in the same way as for deriving relation (19), we have :

|Bn|2 =
n
∑

r=0

t2r





∑

−r≤p≤r

(−1)p∆̃n
r+p∆̃

n
r−p



 =:
n
∑

r=0

t2rLr(n).

To compute Lr(n) we first observe that :

∆̃n
r+p∆̃

n
r−p =

∑

0≤k≤n



θk∆n−k
r+p

∑

k≤l≤n

θl∆n−l
r−p + θk∆n−k

r−p

∑

k<l≤n

θl∆n−l
r+p



 .

Replacing in Lr(n), this allows to write, recognizing Kr(n) and Zr(n) given in (21) :

Lr(n) =
∑

0≤k≤n

∑

−r≤p≤r

(−1)p



θk∆n−k
r+p

∑

k≤l≤n

θl∆n−l
r−p + θk∆n−k

r−p

∑

k<l≤n

θl∆n−l
r+p





=
∑

0≤k≤n

θkKr(n− k) + 2
∑

0≤k≤n

θkZr(n− k)

=
∑

0≤k≤n

θkKr(n− k) + 2
∑

0≤k<l≤n

θlKr(n− l) =
∑

0≤k≤n

(1 + 2k)θkKr(n− k).

This completes the proof of ii).
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5.3 Proof of iii)

From (18) and (22), we deduce :

(Bn −An)Bn =





∑

0≤r≤n

(−it)r∆n
r









∑

0≤r≤n

(it)r∆̃n
r



 . (23)

Therefore :

Re((Bn −An)Bn) =
∑

0≤r≤n/2

(−t2)r∆n
2r

∑

0≤r′≤n/2

(−t2)r′∆̃n
2r′

+
∑

0≤r≤(n−1)/2

(−1)rt2r+1∆n
2r+1

∑

0≤r′≤(n−1)/2

(−1)r
′

t2r
′+1∆̃n

2r′+1.

Consequently :

Re((Bn −An)Bn) =
∑

0≤r≤n

t2r∆n
r ∆̃

n
r +

∑

0≤r<r′≤n/2

(−1)r+r′t2r+2r′(∆n
2r∆̃

n
2r′ + ∆̃n

2r∆
n
2r′)

+
∑

0≤r<r′≤(n−1)/2

(−1)r+r′t2r+2r′+2(∆n
2r+1∆̃

n
2r′+1 + ∆̃n

2r+1∆
n
2r′+1)

=
∑

0≤r≤n

t2r∆n
r ∆̃

n
r +

∑

0≤r<r′≤n
r′−r even

(−1)(r
′−r)/2tr+r′(∆n

r ∆̃
n
r′ + ∆̃n

r∆
n
r′)

=
∑

0≤r≤n

t2r





∑

−r≤p≤r

(−1)p∆n
r+p∆̃

n
r−p



 =:
∑

0≤r≤n

t2rMr(n).

As ∆̃n
r = ∆n

r +
∑

1≤k≤n θ
k∆n−k

r , using Kr(n) and the value of Zr(n) in (21), we have :

Mr(n) = Kr(n) + Zr(n) = Kr(n) +
∑

1≤k≤n

θkKr(n− k) =
∑

0≤k≤n

θkKr(n− k).

This ends the proof of iii).

5.4 Proof of iv)

Starting from (23) and (18), we have :

Im((Bn −An)Bn) =
∑

0≤r≤n/2

(−1)rt2r∆n
2r

∑

0≤r′≤(n−1)/2

(−1)r
′

t2r
′+1∆̃n

2r′+1

−
∑

0≤r≤(n−1)/2

(−1)rt2r+1∆n
2r+1

∑

0≤r′≤n/2

(−1)r
′

t2r
′

∆̃n
2r′

=
∑

0≤r≤n/2
0≤r′≤(n−1)/2

t2r+2r′+1(−1)r+r′(∆n
2r∆̃

n
2r′+1 − ∆̃n

2r∆
n
2r′+1).

=
∑

0≤r≤n

0≤r′≤n,r−r′ odd

(−1)r(−1)(r+r′−1)/2tr+r′∆n
r ∆̃

n
r′

= −
∑

0≤r≤n−1

t2r+1





∑

−r−1≤p≤r

(−1)p∆n
r+p+1∆̃

n
r−p



 =: −
∑

0≤r≤n−1

t2r+1Nr(n).

17



Use now that ∆̃n
r = ∆n

r +
∑

1≤k≤n θ
k∆n−k

r and
∑

−r−1≤p≤r(−1)p∆n
r+p+1∆

n
r−p = 0 to get :

Nr(n) = (−1)r+1
∑

1≤k≤n

θk∆n−k
2r+1 +

∑

−r≤p≤r

(−1)p∆n
r+p+1

∑

1≤k≤n

θk∆n−k
r−p

= (−1)r+1
∑

1≤k≤n

θk∆n−k
2r+1 +

∑

1≤l≤n

Rl
1

∑

−r≤p≤r

(−1)pθl∆n−l
r+p

∑

l<k≤n

θk∆n−k
r−p

+
∑

1≤k≤n

∑

−r≤p≤r

(−1)pθk∆n−k
r−p

∑

k≤l≤n

Rl
1θ

l∆n−l
r+p.

As a result :

Nr(n) =
∑

1≤k≤n

Rk
1

[

θkKr(n− k) + θkZr(n− k)
]

+ (−1)r+1
∑

1≤k≤n

θk∆n−k
2r+1

+
∑

1≤k≤n

∑

−r≤p≤r

(−1)pθk∆n−k
r−p

∑

k<l≤n

Rl
1θ

l∆n−l
r+p. (24)

We next define and focus on :

Or(n) = (−1)r+1
∑

1≤k≤n

θk∆n−k
2r+1 +

∑

1≤k≤n

∑

−r≤p≤r

(−1)pθk∆n−k
r−p

∑

k<l≤n

(Rk
1 +Rl

k+1)θ
l∆n−l

r+p

=
∑

1≤k≤n

Rk
1

∑

−r≤p≤r

(−1)pθk∆n−k
r−p

∑

k<l≤n

θl∆n−l
r+p + (−1)r+1

∑

1≤k≤n

θk∆n−k
2r+1

+
∑

1≤k≤n

∑

−r≤p≤r

(−1)pθk∆n−k
r−p θ

k∆n−k
r+p+1

=
∑

1≤k≤n

Rk
1θ

kZr(n− k) +
∑

1≤k≤n





∑

−r≤p≤r−1

(−1)pθk∆n−k
r−p θ

k∆n−k
r+p+1



 .

The terms between brackets are 0. Together with (24), this gives :

Nr(n) =
∑

1≤k≤n

Rk
1



θkKr(n− k) + 2
∑

k<l≤n

θlKr(n− l)



 . (25)

This completes the proof of iv).

6 End the proof of the theorem

6.1 Preliminaries

Let us begin with a lemma on the regular variation of ϕ−1 and ϕ−1
+ .

Lemma 6.1 i) For all C ≥ 1, there exists a constant K > 0 so that for large x :

Kϕ−1(Cx) ≤ ϕ−1(x) ≤ ϕ−1(Cx) and Kϕ−1
+ (Cx) ≤ ϕ−1

+ (x) ≤ ϕ−1
+ (Cx).

ii) There is a constant c > 0 so that for all n : ϕ(n+ 1) ≤ cϕ(n) and ϕ+(n+ 1) ≤ cϕ+(n).

Proof of the lemma :
i) Functions are increasing, giving the second inequalities. For the first ones, consider the case of ϕ,
that of ϕ+ being similar. We take C =

√
2 . If ϕ−1(x) ≥ Kϕ−1(

√
2 x) and now C ≥ 1 is arbitrary,

choose m so that (
√
2 )m ≥ C. Then ϕ−1(x) ≥ Kmϕ−1((

√
2 )mx) ≥ Kmϕ−1(Cx). Now :
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∑

1≤k≤l≤2n

(Rl
k)

2 ≥
∑

1≤k≤l≤n

(Rl
k)

2 +
∑

1≤k≤n<l≤2n

(Rn
k +Rl

n+1)
2

≥
∑

1≤k≤l≤n

(Rl
k)

2 + n
∑

1≤k≤n

(Rn
k )

2 + n
∑

n<l≤2n

(Rl
n+1)

2 + 2
∑

1≤k≤n

Rn
k

∑

n<l≤2n

Rl
n+1.

As a result :

∑

1≤k≤l≤2n

(Rl
k)

2 ≥
∑

1≤k≤l≤n

(Rl
k)

2 + n
∑

1≤k≤n

(Rn
k )

2 −





∑

1≤k≤n

Rn
k





2

+ n
∑

n<l≤2n

(Rl
n+1)

2 −





∑

n+1≤l≤2n

Rl
n+1





2

+





∑

1≤k≤n

Rn
k +

∑

n<l≤2n

Rl
n+1





2

.

Let us now compute n
∑

1≤k≤n(R
n
k )

2 −
(

∑

1≤k≤nR
n
k

)2

. It equals :

(n− 1)
∑

1≤k≤n

(Rn
k )

2 − 2
∑

1≤k<k′≤n

Rn
kR

n
k′ = (n− 1)

∑

1≤k≤n

(Rn
k )

2 − 2
∑

1≤k≤k′≤n

Rn
kR

n
k′+1

= (n− 1)
∑

1≤k≤n

(Rn
k )

2 +
∑

1≤k≤k′≤n

(Rk′

k )2

−
∑

1≤k≤n

(Rn
k )

2(n− k + 1)−
∑

1≤k≤n

(Rn
k+1)

2k.

Remark that
∑

1≤k≤n(R
n
k )

2(n− k + 1) +
∑

1≤k≤n(R
n
k+1)

2k = n
∑

1≤k≤n(R
n
k )

2. Hence :

n
∑

1≤k≤n

(Rn
k )

2 −





∑

1≤k≤n

Rn
k





2

=
∑

1≤k≤l≤n−1

(Rl
k)

2.

Similarly :

n
∑

n<l≤2n

(Rl
n+1)

2 −





∑

n+1≤l≤2n

Rl
n+1





2

=
∑

n+2≤k≤l≤2n

(Rl
k)

2 ≥ 0.

Finally, this furnishes :

∑

1≤k≤l≤2n

(Rl
k)

2 ≥
∑

1≤k≤l≤n

(Rl
k)

2 +
∑

1≤k≤l≤n−1

(Rl
k)

2.

As a result :

ϕ(4n)2 = 16n2 +
∑

1≤k≤l≤4n

(Rl
k)

2 ≥ 2



n2 +
∑

1≤k≤l≤n

(Rl
k)

2



 = 2ϕ(n)2.

This concludes the proof of this item.

ii) Simply remark that :

∑

1≤k≤l≤n+1

(Rl
k)

2 ≤
∑

1≤k≤l≤n

(Rl
k)

2 + 2
∑

1≤k≤n

(Rn
k )

2 + 2
∑

1≤k≤n+1

ρ2n+1

≤ 3
∑

1≤k≤l≤n

(Rl
k)

2 + 2(n+ 1)‖ρ‖∞ ≤ Cϕ2
+(n).
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The case of
∑

1≤k≤l≤n+1(R
−k
−l )

2 is treated similarly, furnishing the result for ϕ+. The case of ϕ is

similar, remarking that (Rn+1
−n−1)

2 ≤ cn2.
�

Recall from (13) that χD(t) = (g+(t)+g−(t))/2+O(t). We have g+(t) = limn→+∞A+
n (t)/B

+
n (t)

and g−(t) = limn→+∞A−
n (t)/B

−
n (t), where we restore the dependency with respect to g+ and g−.

We will apply the Kesten-Spitzer theorem, recalled in (2), using the equality :

Re

(

1

1− χD

)

=
Re(1− χD)

|1− χD|2 .

It will also be important to remember proposition 4.1, furnishing Re(1− χD)(t) ≥ δ2t.

Proposition 6.2 For some constant K ≥ 1, which can be made explicit in terms of ‖ρ‖∞ :

1

Kϕ−1
+ (1/t)

≤ Re(1− χD(t)) ≤ K

ϕ−1
+ (1/t)

and
1

Kϕ−1(1/t)
≤ |1− χD(t)| ≤ K

ϕ−1(1/t)
.

The theorem now follows from the proposition. Indeed, using the Kesten-Spitzer theorem, the
random walk is recurrent if and only if :

∫ η

0

(ϕ−1(1/t))2

ϕ−1
+ (1/t)

dt = +∞.

Cutting the above integral with respect to the intervals [1/(n + 1), 1/n] of length 1/(n(n + 1)) ∈
(n−2/2, n−2) and using that ϕ−1(1/t) (resp. ϕ−1

+ (1/t)) has order exactly ϕ−1(n) (resp. ϕ−1
+ (n)) on

such an interval, by lemma 6.1, we obtain the formulation given in the statement of the theorem.

6.2 Control of the numerator

Fix t > 0 and n. We have g+(t) = A+
n (t)/B

+
n (t) +

∑

k>n(1/(B
+
k B

+
k−1)) and similarly for g−.

This furnishes the equalities :

2Re(1− χD) = Re

(

1− A+
n

B+
n

+ 1− A−
n

B−
n

−
∑

k>n

(

1

B+
k B

+
k−1

+
1

B−
k B

−
k−1

))

+O(t)

=
Re[(B+

n −A+
n )B

+
n ]

|B+
n |2

+
Re[(B−

n −A−
n )B

−
n ]

|B−
n |2

− Re
∑

k>n

(

1

B+
k B

+
k−1

+
1

B−
k B

−
k−1

)

+O(t).

1) Towards proving a lower-bound, we use proposition (4.2) and get :

2Re(1− χD) ≥ Re[(B+
n −A+

n )B
+
n ]− (n+ 1)

|B+
n |2

+
Re[(B−

n −A−
n )B

−
n ]− (n+ 1)

|B−
n |2

+O(t)

≥ 1

n+ 1





∑

1≤r≤n t
2r M+

r (n)
n+1

1 +
∑

1≤r≤n t
2r L+

r (n)
(n+1)2

+

∑

1≤r≤n t
2r M−

r (n)
n+1

1 +
∑

1≤r≤n t
2r L−

r (n)
(n+1)2



+O(t).

Remark that L±
r (n) ≤ 2(n+ 1)M±

r (n) and next use that x 7−→ x/(1 + 2x) is increasing to obtain,
for some constant C > 0 :
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2Re(1− χD) ≥ 1

n+ 1





∑

1≤r≤n t
2r M+

r (n)
n+1

1 + 2
∑

1≤r≤n t
2r M+

r (n)
(n+1)2

+

∑

1≤r≤n t
2r M−

r (n)
n+1

1 + 2
∑

1≤r≤n t
2r M−

r (n)
(n+1)2



− Ct.

≥ 1

n+ 1





t2
M+

1 (n)
n+1

1 + 2t2
M+

1 (n)
(n+1)2

+
t2

M−
1 (n)
n+1

1 + 2t2
M−

1 (n)
(n+1)2



− Ct.

Choose now n so that n/2 = ϕ−1
+ (1/t). For some constant c0 > 0 :

t2 ≥ c0
ϕ2
+(n/2)

=
c0

n2/4 +
∑

1≤k≤l≤n/2(R
l
k)

2 +
∑

1≤k≤l≤n/2(R
−k
−l )

2
.

We may assume that
∑

1≤k≤l≤n/2(R
l
k)

2 ≥∑1≤k≤l≤n/2(R
−k
−l )

2. Next :

M+
1 (n)

n+ 1
= 2

∑

1≤k≤l≤n

(Rl
k)

2

(

1− l + 1/2

n+ 1

)

≥
∑

1≤k≤l≤n/2

(Rl
k)

2.

As a result :

t2
M+

1 (n)

n+ 1
≥ c0

∑

1≤k≤l≤n/2(R
l
k)

2

n2/4 + 2
∑

1≤k≤l≤n/2(R
l
k)

2
.

– Case 1 :
∑

1≤k≤l≤n/2(R
l
k)

2 ≥ n2. Then t2M+
1 (n)/(n+ 1) ≥ c0/4 and this implies that :

2Re(1− χD(t)) ≥ c0/4

4(n+ 1)(1 + c0/2)
− Ct =

c1
n+ 1

− Ct.

If t < c1/(2C(n+1)), then 2Re(1−χD(t)) ≥ c1/(2(n+1)). On the contrary, if t ≥ c1/(2C(n+1)),
then recall that Re(1− χD(t)) ≥ δ2t. This gives Re(1− χD(t)) ≥ δ2c1/(2(n+ 1)).

– Case 2 :
∑

1≤k≤l≤n/2(R
l
k)

2 < n2. We obtain t2 ≥ c0/(4n
2) and conclude that Re(1 − χD(t)) ≥

δ2
√
c0 /(2n). This completes the proof of the lower bound.

2) We now prove the other direction. For some constant C > 0, using proposition (4.2) and that
|B±

n | ≥ n+ 1 we have :

2Re(1− χD(t)) ≤ Re[(B+
n −A+

n )B
+
n ]

|B+
n |2

+
Re[(B−

n −A−
n )B

−
n ]

|B−
n |2

+
1

n+ 1
+

1

n+ 1
+ Ct

≤ 1

n+ 1



1 +
∑

1≤r≤n

t2r
M+

r (n)

n+ 1
+ 1 +

∑

1≤r≤n

t2r
M−

r (n)

n+ 1
+ 2



+ Ct.

Using lemma 6.1, choose now n so that n = ϕ−1
+ (1/(κt)), for some constant κ ≥ 1 so that :

t2 ≤
(

1

4

)

1

n2 +
∑

1≤k≤l≤n(R
l
k)

2 +
∑

1≤k≤l≤n(R
−k
−l )

2
.

From
M+

r (n)
n+1 ≤ 2

(

2
∑

1≤k≤l≤n(R
l
k)

2
)r

and the symmetric inequality for
M−

r (n)
n+1 we obtain :

2Re(1− χD(t)) ≤ 1

n+ 1



1 +
∑

1≤r≤n

2−r + 1 +
∑

1≤r≤n

2−r + 2



+ Ct ≤ 6

n+ 1
+ Ct.

As t ≤ 1/(κn), for some constant K > 0, we have Re(1 − χD(t)) ≤ K/n. We conclude by lemma
lemma 6.1, saying that n has the same order as ϕ−1

+ (t).
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6.3 Denominator

In a first step, let us compute :

∣

∣

∣

∣

1− A+
n

B+
n

+ 1− A−
n

B−
n

∣

∣

∣

∣

2

=
|B+

n −A+
n |2

|B+
n |2

+
|B−

n −A−
n |2

|B−
n |2

+ 2
Re[(B+

n −A+
n )B

+
n ]Re[(B−

n −A−
n )B

−
n ]

|B+
nB

−
n |2

+ 2
Im[(B+

n −A+
n )B

+
n ]Im[(B−

n −A−
n )B

−
n ]

|B+
nB

−
n |2

.

Putting all terms with |B+
n |2|B−

n |2 as denominator, call Wn the numerator :

Wn = |B+
n −A+

n |2|B−
n |2 + |B−

n −A−
n |2|B+

n |2 + 2Re[(B+
n −A+

n )B
+
n ]Re[(B−

n −A−
n )B

−
n ]

+ 2Im[(B+
n −A+

n )B
+
n ]Im[(B−

n −A−
n )B

−
n ].

By proposition 5.1 we get :

Wn =
∑

0≤r≤n
0≤r′≤n

t2r+2r′
(

K+
r (n)L−

r′(n) + L+
r (n)K

−
r′ (n) + 2M+

r (n)M−
r′ (n)

)

+ 2
∑

0≤r≤n−1
0≤r′≤n−1

t2(r+r′+1)N+
r (n)N−

r′ (n).

Consequently :

Wn =
∑

0≤m≤2n

t2m
∑

0≤r≤m

(

K+
r (n)L−

m−r(n) + L+
r (n)K

−
m−r(n) + 2M+

r (n)M−
m−r(n)

)

+ 2
∑

1≤m≤2n−1

t2m
∑

0≤r≤m−1

N+
r (n)N−

m−1−r(n).

We now focus on 2N+
r (n)N−

m−1−r(n). Using (25) and setting (k, k) = 0 and (k, l) = 1 for k < l :

2N+
r (n)N−

m−1−r(n) =
∑

1≤k≤l≤n
1≤k′≤l′≤n

2Rk
1R

−1
−k′2

(k,l)+(k′,l′)θlK+
r (n− l)θ−l′K−

m−1−r(n− l′).

Write 2Rk
1R

−1
−k′ = (R−1

−k′ +Rk
1)

2 − (Rk
1)

2 − (R−1
−k′)2. Then 2N+

r (n)N−
m−1−r(n) equals :

∑

1≤k≤l≤n
1≤k′≤l′≤n

(Rk
1 +R−1

−k′)
22(k,l)+(k′,l′)θlK+

r (n− l)θ−l′K−
m−1−r(n− l′)

−





∑

1≤k≤l≤n

(Rk
1)

22(k,l)θlK+
r (n− l)









∑

1≤k′≤l′≤n

2(k
′,l′)θ−l′K−

m−1−r(n− l′)





−





∑

1≤k≤l≤n

2(k,l)θlK+
r (n− l)









∑

1≤k′≤l′≤n

(R−1
−k′)

22(k
′,l′)θ−l′K−

m−1−r(n− l′)



 .

The latter can be rewritten as :
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∑

1≤k≤l≤n
1≤k′≤l′≤n

(Rk
1 +R−1

−k′)
22(k,l)+(k′,l′)θlK+

r (n− l)θ−l′K−
m−1−r(n− l′)

− K+
r+1(n)





∑

1≤l≤n

(2l − 1)θ−lK−
m−1−r(n− l)



−K−
m−r(n)





∑

1≤k≤n

(2k − 1)θkK+
r (n− k)



 .

As L+
r (n) =

∑

0≤k≤n(2k + 1)θkK+
r (n − k) = 2M+

r (n) −K+
r (n) +

∑

1≤k≤n(2k − 1)θkK+
r (n − k),

using also a similar expression for L−
m−r−1, we get :

2N+
r (n)N−

m−1−r(n) =
∑

1≤k≤l≤n
1≤k′≤l′≤n

(Rk
1 +R−1

−k′)
22(k,l)+(k′,l′)θlK+

r (n− l)θ−l′K−
m−1−r(n− l′)

− K+
r+1(n)

(

L−
m−r−1(n)− 2M−

m−r−1(n) +K−
m−r−1(n)

)

− K−
m−r(n)

(

L+
r (n)− 2M+

r (n) +K+
r (n)

)

.

Denote by Qr,m−r−1(n) the first quantity on the right-hand side. Finally :

Wn =
∑

0≤m≤2n

t2m
∑

0≤r≤m

(

K+
r (n)L−

m−r(n) + L+
r (n)K

−
m−r(n) + 2M+

r (n)M−
m−r(n)

)

+
∑

1≤m≤2n−1

t2m
∑

0≤r≤m−1

Qr,m−r−1(n)

−
∑

1≤m≤2n−1

t2m
∑

0≤r≤m−1

K+
r+1(n)

(

L−
m−r−1(n)− 2M−

m−r−1(n) +K−
m−r−1(n)

)

−
∑

1≤m≤2n−1

t2m
∑

0≤r≤m−1

K−
m−r(n)

(

L+
r (n)− 2M+

r (n) +K+
r (n)

)

.

As a result, separating quantities corresponding to m = 0 and m = 2n in the first term in the
right-hand side :

Wn = 4(n+ 1)2 + t4n(K+
n (n)L−

n (n) +K−
n (n)L+

n (n) + 2M+
n (n)M−

n (n))

+
∑

1≤m≤2n−1

t2m
(

L−
m(n) + L+

m(n)
)

+ 2
∑

1≤m≤2n−1

t2m
∑

0≤r≤m

M+
r (n)M−

m−r(n)

+
∑

1≤m≤2n−1

t2m
∑

0≤r≤m−1

Qr,m−r−1(n)

+
∑

1≤m≤2n−1

t2m
∑

0≤r≤m−1

K+
r+1(n)

(

2M−
m−r−1(n)−K−

m−r−1(n)
)

+
∑

1≤m≤2n−1

t2m
∑

0≤r≤m−1

K−
m−r(n)

(

2M+
r (n)−K+

r (n)
)

.

One notices that (n+ 1)2 +
∑

1≤m≤2n−1 t
2mL+

m(n) = |B+
n |2 and similarly for |B−

n |2. Also :

2M+
r (n)−K+

r (n) =
∑

0≤k≤n

2(0,k)θkK+
r (n− k)

and similarly 2M−
m−r−1(n)−K−

m−r−1(n) =
∑

0≤k≤n 2
(0,k)θ−kK−

m−r−1(n− k). We deduce :
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Wn = 2(n+ 1)2 + 4t4n
∏

1≤k≤n

(ρkρ−k)
2 + |B+

n |2 + |B−
n |2

+ 2
∑

1≤m≤2n−1

t2m
∑

0≤r≤m

M+
r (n)M−

m−r(n)

+
∑

1≤m≤2n−1

t2m
∑

0≤r≤m−1



Qr,m−r−1(n) +K−
m−r(n)

∑

0≤k≤n

2(0,k)θkK+
r (n− k)





+
∑

1≤m≤2n−1

t2m
∑

1≤r≤m

K+
r (n)

∑

0≤k≤n

2(0,k)θ−kK−
m−r(n− k).

In order to regroup term of line two and the first term of line three, introduce :

Sm(n) =

∗
∑

−n≤k1≤l1<···<km≤lm≤n
ki 6=0,li 6=0

(Rl1
k1

· · ·Rlm
km

)22N((ki,li)1≤i≤m)αn(k1, lm),

where
∑∗

means that if for some i we have kili < 0, then we remove the term ρ0 in Rli
ki

and
αn(k1, lm) = (1 + 2(n− lm))(1 + 2(n+ k1)) if k1 < 0, lm > 0, αn(k1, lm) = (1 + 2(n− lm))(n+ 1)
if k1 > 0, lm > 0, and αn(k1, lm) = (1 + 2(n+ k1))(n+ 1) if k1 < 0, lm < 0.

Observing that S2n(n) = 2
∏

1≤k≤n(ρkρ−k)
2, we conclude this preliminary computation with :

∣

∣

∣

∣

1− A+
n

B+
n

+ 1− A−
n

B−
n

∣

∣

∣

∣

2

=
Wn

|B+
n |2|B−

n |2
, (26)

where :

Wn = 2(n+ 1)2 + |B+
n |2 + |B−

n |2 + 2t4n
∏

1≤k≤n

(ρkρ−k)
2 +

∑

1≤m≤2n

t2mSm(n)

+
∑

1≤m≤2n−1

t2m
∑

1≤r≤m

∑

0≤k≤n

2(0,k)
(

K+
r (n)θ−kK−

m−r(n− k) +K−
r (n)θkK+

m−r(n− k)
)

.

6.4 Control of the denominator

1) For the moment, let t > 0 and n be arbitrary. Towards proving a lower bound, for some constant
C > 0, we have, using proposition 4.2 :

2|1− χD| ≥
∣

∣

∣

∣

1− A+
n

B+
n

+ 1− A−
n

B−
n

∣

∣

∣

∣

−
∑

k>n

(

1

|B+
k B

+
k−1|

+
1

|B−
k B

−
k−1|

)

− Ct

≥
∣

∣

∣

∣

1− A+
n

B+
n

+ 1− A−
n

B−
n

∣

∣

∣

∣

− (n+ 1)(|B+
n |/|B−

n |+ |B−
n |/|B+

n |)
|B+

n ||B−
n |

− Ct.

Hence, by (26) :

2|1− χD| ≥
√
Wn − (n+ 1)

(

|B+
n |

|B−
n |

+
|B−

n |

|B+
n |

)

|B+
n ||B−

n |
− Ct.

Remark now that, still using proposition 4.2 :

(n+ 1)2
( |B+

n |
|B−

n |
+

|B−
n |

|B+
n |

)2

= (n+ 1)2
|B−

n |2
|B+

n |2
+ (n+ 1)2

|B+
n |2

|B−
n |2

+ 2(n+ 1)2

≤ |B+
n |2 + |B−

n |2 + 2(n+ 1)2 ≤Wn.
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This gives, via (26) :

2|1− χD| ≥
√
Wn −

√

|B+
n |2 + |B−

n |2 + 2(n+ 1)2

|B+
n ||B−

n |
− Ct

≥ Wn − (|B+
n |2 + |B−

n |2 + 2(n+ 1)2)

2
√
Wn |B+

n ||B−
n |

− Ct ≥
∑

1≤m≤2n t
2mSm(n)

2
√
Wn |B+

n ||B−
n |

− Ct.

We obtain, observing that Wn ≤ 16(n+ 1)2 + 16
∑

1≤m≤2n t
2mSm(n) :

2|1− χD| ≥
(

1

n+ 1

)

∑

1≤m≤2n t
2m Sm(n)

(n+1)2

8
√

1 +
∑

1≤m≤2n t
2m Sm(n)

(n+1)2

× 1
√

1 +
∑

1≤r≤n t
2r L+

r (n)
(n+1)2

√

1 +
∑

1≤r≤n t
2r L−

r (n)
(n+1)2

− Ct.

Remark next that :



1 +
∑

1≤r≤n

t2r
L+
r (n)

(n+ 1)2







1 +
∑

1≤r≤n

t2r
L−
r (n)

(n+ 1)2





= 1 +
∑

1≤m≤2n

t2m





∑

1≤r≤m−r

L+
r (n)L

−
m−r(n)

(n+ 1)4



 ≤ 4



1 +
∑

1≤m≤2n

t2m
Sm(n)

(n+ 1)2



 .

As a result we obtain :

2|1− χD| ≥
(

1

16(n+ 1)

)

∑

1≤m≤2n t
2mSm(n)/(n+ 1)2

1 +
∑

1≤m≤2n t
2mSm(n)/(n+ 1)2

− Ct.

As the map x 7−→ x/(1 + x) is increasing, this gives :

2|1− χD| ≥
(

1

16(n+ 1)

)

t2S1(n)/(n+ 1)2

1 + t2S1(n)/(n+ 1)2
− Ct.

Choose now n so that n/2 = ϕ−1(1/t). As a result, for some constant c0 > 0 :

t2 ≥ c0
ϕ2(n/2)

=
c0

n2/4 +
∑

−n/2≤k≤l≤n/2(R
l
k)

2
. (27)

Remark also that :

S1(n)

(n+ 1)2
≥

∗
∑

−n/2≤k≤l≤n/2,kl 6=0

(Rl
k)

2.

– Case 1 :
∑∗

−n/2≤k≤l≤n/2,kl 6=0(R
l
k)

2 ≥ n2. Observing that (Rl
0)

2 ≤ 2(Rl
1)

2 + C, one easily gets

that
∑

−n/2≤k≤l≤n/2(R
l
k)

2 ≤ c1
∑∗

−n/2≤k≤l≤n/2,kl 6=0(R
l
k)

2 + c2n
2. For generic constants ci > 0 :

t2
S1(n)

(n+ 1)2
≥ c0

∑∗
−n/2≤k≤l≤n/2,kl 6=0(R

l
k)

2

n2/4 +
∑

−n/2≤k≤l≤n/2(R
l
k)

2
≥ c0

∑∗
−n/2≤k≤l≤n/2(R

l
k)

2

c3n2 + c4
∑∗

−n/2≤k≤l≤n/2(R
l
k)

2
≥ c5 > 0.

Hence :
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2|1− χD| ≥
(

1

16(n+ 1)

)

c5
1 + c5

− Ct ≥ c6/n− Ct.

As a result, if t ≤ c6/(2Cn) we get 2|1 − χD| ≥ c6/(2n). If t > c6/(2Cn), then as before, using
proposition 4.1, |1− χD| ≥ δ2t ≥ δ2c6/(2Cn).

– Case 2 :
∑∗

−n/2≤k≤l≤n/2,kl 6=0(R
l
k)

2 < n2. This furnishes
∑

−n/2≤k≤l≤n/2(R
l
k)

2 < c7n
2 and next

from (27), t2 ≥ c8/n
2. Hence |1− χD| ≥ δ2t ≥ δ2

√
c8 /n. This ends the proof of the lower bound.

2) We consider the other direction. Let t > 0 and n be arbitrary. For some constant C > 0, using
proposition 4.2 :

2|1− χD| ≤
∣

∣

∣

∣

1− A+
n

B+
n

+ 1− A−
n

B−
n

∣

∣

∣

∣

+
1

n+ 1
+

1

n+ 1
+ Ct

≤
√
Wn

|B+
n ||B−

n |
+

2

n+ 1
+ Ct ≤

√
Wn

(n+ 1)2
+

2

n+ 1
+ Ct.

Remark also that :

Wn ≤ 16(n+ 1)2



1 +
∑

1≤m≤2n

t2mSm(n)/(n+ 1)2





≤ 32(n+ 1)2



1 +
∑

1≤m≤2n

t2m4m





∑

−n≤k≤l≤n

(Rl
k)

2





m

 .

Using lemma 6.1, choose now n so that n = ϕ−1(1/(κt)), for some constant κ ≥ 1 so that :

t2 ≤
(

1

8

)

1

n2 +
∑

−n≤k≤l≤n(R
l
k)

2
.

This gives Wn ≤ 32(n+ 1)2
(

1 +
∑

1≤m≤2n 2
−m
)

and therefore :

2|1− χD| ≤ 8

n+ 1
+

2

n+ 1
+ Ct.

As t ≤ 1/(κn), using lemma 6.1, |1− χD| ≤ c9/ϕ
−1(1/t). This ends the proof of proposition (6.2).

7 Proof of the applications

7.1 Proof of corollary 1.3

i) As ϕ−1(1/t) ≤ ϕ−1
+ (1/t) we get (ϕ−1(1/t))2/ϕ−1

+ (1/t) ≤ ϕ−1(1/t). A sufficient condition for
transience is therefore :

∫ η

0

ϕ−1(1/t) dt < +∞.

On the interval [1/ϕ(n+1), 1/ϕ(n)], ϕ−1(1/t) has exactly order n, because ϕ(n) and ϕ(n+1) have
the same order, by lemma (6.1), ii). The last condition is therefore equivalent to the finiteness of :

∑

n≥1

∫ 1/ϕ(n)

1/ϕ(n+1)

n dt =
∑

n≥1

n

(

1

ϕ(n)
− 1

ϕ(n+ 1)

)

= lim
N

∑

1≤n≤N

1

ϕ(n)
− N

ϕ(N + 1)
.

As N ≤ ϕ(N + 1), finiteness is equivalent to
∑

n≥1(1/ϕ(n)) < +∞.
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ii), iii) We now consider the symmetric case ρ−n = ρn, n ≥ 1, and the antisymmetric case
ρ−n = −ρn, n ≥ 1. In both situations :

ϕ2
+(n) = n2 + 2

∑

1≤k≤l≤n

(Rl
k)

2.

Next, for some C > 0, we have C−1ψ(n) ≤ ϕ(n) ≤ Cψ(n), where :

ψ2(n) = n2 +
∑

1≤k≤l≤n

(Rl
k)

2 +
∑

1≤k,l≤n

(R−1
−k +Rl

1)
2

= n2 +
∑

1≤k≤l≤n

(Rl
k)

2 + n
∑

1≤k≤n

[(R−1
−k)

2 + (Rk
1)

2] + 2





∑

1≤k≤n

R−1
−k









∑

1≤k≤n

Rk
1



 .

Therefore :

ψ2(n) = n2 +
∑

1≤k≤l≤n

(Rl
k)

2 + n
∑

1≤k≤n

[(R−1
−k)

2 + (Rk
1)

2] +





∑

1≤k≤n

(R−1
−k +Rk

1)





2

−





∑

1≤k≤n

R−1
−k





2

−





∑

1≤k≤n

Rk
1





2

.

= n2 +
∑

1≤k≤l≤n

(Rl
k)

2 + (n− 1)
∑

1≤k≤n

[(R−1
−k)

2 + (Rk
1)

2] +





∑

1≤k≤n

(R−1
−k +Rk

1)





2

− 2
∑

1≤k<l≤n

R−1
−kR

−1
−l − 2

∑

1≤k<l≤n

Rk
1R

l
1.

Observe that :

−
∑

1≤k<l≤n

2Rk
1R

l
1 = −

∑

2≤k≤l≤n

2Rk−1
1 Rl

1 =
∑

2≤k≤l≤n

[(Rl
k)

2 − (Rk−1
1 )2 − (Rl

1)
2]

=
∑

2≤k≤l≤n

(Rl
k)

2 − (n− 1)
∑

1≤k≤n

(Rk
1)

2.

As a result :

ψ2(n) = n2 +
∑

1≤k≤l≤n

2(1,k)[(Rl
k)

2 + (R−k
−l )

2] +





∑

1≤k≤n

(R−1
−k +Rk

1)





2

.

– In the antisymmetric case, we have ϕ(n) ≤ Cψ(n) ≤ C
√
2 ϕ+(n). Hence the random walk is

transient if and only if :

∫ η

0

ϕ−1
+ (1/t) dt < +∞.

Proceeding as for i), this last property is equivalent to
∑

n≥1(1/ϕ+(n)) < +∞.

– In the symmetric case, starting from the beginning of the computation of ψ2(n) we have :

ψ(n) = n2 +
∑

1≤k≤l≤n

(Rl
k)

2 + 2n
∑

1≤k≤n

(Rk
1)

2 + 2





∑

1≤k≤n

Rk
1





2

.
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As (n + 1)
∑

1≤k≤n(R
k
1)

2 =
∑

1≤k≤l≤n(R
l
k)

2 +
(

∑

1≤k≤nR
k
1

)2

, we get ψ(n) and thus ϕ(n) has

exact order :

n2 + n
∑

1≤k≤n

(Rk
1)

2.

From point i), the random walk is therefore transient if :

∑

n≥1

1
√

n2 + n
∑

1≤k≤n(R
k
1)

2
< +∞.

7.2 Proof of proposition 1.4

i) It follows from the hypothesis that both ϕ(n) and ϕ+(n) are O(n
√
log n ). Hence, for some

constant c > 0 we have the lower bound :

1

n2
(ϕ−1(n))2

ϕ−1
+ (n)

≥ c
1

n2
(n/

√
log n )2

n
≥ c

n log n
.

Using theorem 1.2, we deduce recurrence.

ii) We have ϕ+(n) = O(n log n). We next use corollary 1.3, ii).

iii) Using corollary 1.3, ii) and iii), it is enough to show that :

∑

n≥1

1
√

n2 + n
∑

1≤k≤n(R
k
1)

2
< +∞, but

∑

n≥1

1
√

n2 +
∑

1≤k≤l≤n(R
l
k)

2
= +∞.

First of all, making successive integration by parts :

∫ t

1

logα s ds = t logα t− αt logα−1 t+ α(α− 1)t(logα−2 t)(1 + o(1))).

Write now, for some C > 0 :

∑

1≤k≤n

(Rk
1)

2 ≥ 1

2

∑

1≤k≤n

log2α k − Cn log2α−2 n ≥ 1

2
n(log2α n)(1 + o(1)).

The first sum thus converges. On the other hand :

1

2

∑

1≤k≤l≤n

(Rl
k)

2 ≤
∑

1≤k<l≤n

(logα l − logα k)2 +O(n2 log2α−2 n)

≤ n
∑

1≤k≤n

log2α k − 2
∑

1≤k<l≤n

logα k logα l +O(n2 log2α−2 n)

≤ n
∑

1≤k≤n

log2α k −





∑

1≤k≤n

logα k





2

+O(n2 log2α−2 n).

As a result :

1

2

∑

1≤k≤l≤n

(Rl
k)

2 ≤ n

∫ n+1

2

log2α t dt−
(∫ n

1

logα t dt

)2

+O(n2 log2α−2 n).

This finally furnishes :
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1

2

∑

1≤k≤l≤n

(Rl
k)

2 ≤ n

∫ n

1

log2α t dt−
(∫ n

1

logα t dt

)2

+O(n2 log2α−2 n).

≤ n2 log2α n

(

1− 2α

log n
+

2α(2α− 1)

log2 n
(1 + o(1))

)

− n2 log2α n

(

1− α

log n
+
α(α− 1)

log2 n
(1 + o(1))

)2

+O(n2 log2α−2 n)

≤ α2n2(log2α−2 n)(1 + o(1)) +O(n2 log2α−2 n).

Consequently the second series diverges. This completes the proof of the proposition.

7.3 Proof of proposition 1.5

We have ε−n = −εn, n ≥ 1. Let (qp) be the denominators of the convergence of α. Every integer
n < qp+1 can be decomposed as n = b0(n) + b1(n)q1 + · · · bp(n)qp, with 0 ≤ bk(n) ≤ ak+1 − 1. As
x 7−→ 1[0,1/2)(x) − 1[1/2,1)(x) has bounded variation, the Denjoy-Koksma inequality implies that
for any u and any k that |Ru+qk

u | ≤ C. As a result, |Rn
1 | ≤ C(a1+ · · ·+ap+1). Hence, for n < qp+1 :

∑

1≤k≤l≤n

(Rl
k)

2 ≤ 2n
∑

1≤k≤n

(Rk
1)

2 ≤ 2n2(a1 + · · ·+ ap+1)
2.

In the perspective of using corollary 1.3 ii), we have for some C > 0 :

∑

n≥1

1
√

∑

1≤k≤l≤n(R
l
k)

2
≥ C

∑

p≥1

∑

qp≤n<qp+1

1

n(a1 + · · ·+ ap+1)
≥ C

∑

p≥1

log(qp+1/qp)

(a1 + · · ·+ ap+1)
.

Write then :

∑

p≥1

log(qp+1/qp)

(a1 + · · ·+ ap+1)
≥ 1

2

∑

p≥2

[

log(qp+1/qp)

(a1 + · · ·+ ap+1)
+

log(qp/qp−1)

(a1 + · · ·+ ap)

]

.

If ap+1 ≥ 2, then log(qp+1/qp) ≥ log ap+1 ≥ log 2
log 3 log(1 + ap+1). If ap+1 = 1, then :

log(qp+1/qp)

(a1 + · · ·+ ap+1)
+

log(qp/qp−1)

(a1 + · · ·+ ap)
≥ log(qp+1/qp−1)

(a1 + · · ·+ ap+1)
≥ log 2

(a1 + · · ·+ ap+1)
,

because qp+1 ≥ (1 + ap+1ap)qp−1 ≥ 2qp−1. As log 2 = log(1 + ap+1), this concludes the proof of
the proposition. �

7.4 Proof of proposition 1.6

Step 1. One can always decrease γ > 1 to get β > γ > 1. For k ≥ 1, let Dk = [u(k), v(k)], where
u(k) = k logβ k and v(k) = k logβ k + k, of length k. Introduce :

An =
1

n log−β n

n log−β n
∑

k=1

1∣
∣

∣
R

v(k)

u(k)

∣

∣

∣
≥logβ k

.

There exists α > 0 such that for n large enough, E(An) ≥ α. Next :

var(An) ≤
2

n2 log−2β n

∑

0≤k≤l≤n log−β n

∣

∣

∣

∣

cov

(

1∣
∣

∣
R

v(k)

u(k)

∣

∣

∣
≥logβ k

, 1∣
∣

∣
R

v(l)

u(l)

∣

∣

∣
≥logβ l

)∣

∣

∣

∣

.

– The previous sum restricted to indices k ≤ l ≤ k + k log−γ k is less than or equal to :
∑

0≤k≤n log−β n

k log−γ k ≤ cn2 log−2β−γ n.

29



– For indices such that l ≥ k + k log−γ k, the distance between Dk and Dl is at least :

l logβ l − k logβ k − k ≥ k logβ k + k logβ−γ k − k logβ k − k ≥ 1

2
k logβ−γ k.

It results that the corresponding sum is less than or equal to :

∑

0≤k≤n log−β n

n log−β nα((k/2) logβ−γ k) = O
(

n2 log−2β−γ n
)

.

This thus gives var(An) = O(log−γ n). Hence
∑

n≥1 var(A2n) = O(
∑

n≥1 n
−γ) < +∞. Therefore,

almost surely, A2n − E(A2n) → 0 and A2n ≥ α/2 > 0 for n large enough.

Step 2. Denote by k1, · · · , kN the k’s in [1, n log−β n] so that
∣

∣

∣R
v(k)
u(k)

∣

∣

∣ ≥ logβ k. We have :

N ≥ α

2
n log−β n,

for large n along the sequence (2m). For each 1 ≤ r ≤ N , introduce two intervals Ir and Jr of
length logβ kr/(10(1+‖ρ‖∞)) centered in u(kr) and v(kr) respectively. The length of Dkr

∪Ir∪Jr is
equivalent to kr ≤ n log−β n. Choose an interval Kr ⊂ [1, n] of length ≥ n/4 in the complementary
of the latter union.

Observe now that Jr can intersect at most three Ir′ with r
′ > r. Indeed, as r′ increases from the

value r, the center of Ir′ makes steps of size ≥ logβ kr. At most kr log
−β kr steps are necessary to

cross Ir ∪Dkr
∪ Jr. At the end of the crossing, the length of the Ir′ are at most :

logβ(kr + logβ kr + kr log
−β kr) = logβ kr + o(1).

In a similar way, Ir intersects at most three Jr′ with r′ < r. Taking into account these overlaps
and which k or l is in some Ir or Jr, we have :

∑

1≤r≤N





∑

k∈Ir,l∈Kr

(Rl
k)

2 +
∑

k∈Jr,l∈Kr

(Rl
k)

2



 ≤ 6
∑

1≤k≤l≤n

(Rl
k)

2.

In this notation, Kr is supposed for simplicity to be on the right side of Ir ∪Dkr ∪ Jr. For each
l ∈ Kr, either |Rl

u(r)| ≥ (1/2) logβ kr or |Rl
v(r)| ≥ (1/2) logβ kr and when one inequality is true, one

has |Rl
w| ≥ (1/4) logβ kr, w ∈ Ir, in the first case and |Rl

w| ≥ (1/4) logβ kr, w ∈ Jr, in the second
case. As a result, the left-hand side of the previous inequality checks, for constants ci > 0 :

≥ c1

N
∑

r=1

n logβ kr log
2β kr ≥ c2nN log3β N ≥ c3n

2 log2β n.

We now conclude. Cutting in dyadic blocks, for M large enough :

∑

k≥M

1

ϕ+(k)
≤
∑

n≥n0

∑

2n≤k<2n+1

1

ϕ+(2n)
≤ C

∑

n≥n0

2n

2nnβ
< +∞.

Applying corollary 1.3 i), we get the result.
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