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On a dual formulation for the growing
sandpile problem
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LAMFA, Université de Picardie Jules Verne, CNRS UMR 6140, 33, rue Saint-Leu, 80 039 Amiens, France

email: [serge.dumont,noureddine.igbida]@u-picardie.fr

In this paper, we are interested in the mathematical and numerical study of the Prigozhin

model for a growing sandpile. Based on implicit Euler discretization in time, we give a simple

improvement of theoretical and numerical analyses of the dual formulation for the problem.

By using this model, we also give some application to the Monge–Kantorovich problem for

optimal mass transportation.

1 Introduction

We are interested in the mathematical and numerical study of a sandpile which builds up

when sand is dropped on a table. Sand might fall off the sides of the table. If a sand grain

falls to a position where the slope of the pile is steep, it will slide down, and eventually

cause sand grains of the existing pile to slide down as well. Since the work of Prigohzin

(cf. [20]), this has been well known (see also [2, 3, 16] and the references therein) that the

evolution of the surface of the sandpile when the angle of stability is equal to π/4, can be

described by the following PDE:



























ut − ∇ · (m ∇u) = f

m ! 0, |∇u| " 1, m(|∇u| − 1) = 0

∣

∣

∣

∣

∣

in Q := (0, T ) × Ω,

u = 0 on Σ := (0, T ) × ∂Ω,

u(0) = u0

(P )

where Ω ⊂ !
D (D equal to 1 or 2 in practical situations) is a bounded open domain

describing the table, ∂Ω is its boundary from which the sand may fall out. Solution u is

the height of the surface that grows up (resp. grows down) under sand addition (resp.

sand removal) by a source called f. Actually, this equation is obtained by assuming that

(1) the flow of the granular material is confined in a thin boundary layer moving down

the slopes of a growing pile and

(2) the density of the material is constant.

So, we can use conservation law

∂tu + ∇ · q = f (1.1)
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where q is the horizontal projection of the material flux of the moving layer. Then, by

neglecting the inertia and supposing that the surface flow is directed towards the steepest

descent, we have

q = −m∇u, (1.2)

where m = m(x, t) ! 0 is an unknown scalar function. So, equation (1.1) implies

∂tu − ∇ · (m∇u) = f. (1.3)

The initial free surface is given by

u(x, 0) = u0.

The surface slope cannot exceed repose angle α of the material, i.e.

|∇u(t, x)| " γ = tan(α).

Moreover, there is no pouring over the parts of angle less than α; so that

|∇u(x, t)| < γ =⇒ m(x, t) = 0. (1.4)

To close the problem, one needs to add boundary condition. In this paper, we consider

the open table problem; i.e. Dirichlet boundary condition

u(t, x) = 0 for (t, x) ∈ (0, T ) × ∂Ω.

At last, assuming that α = π/4, then γ = 1 and the evolution problem (P ) follows.

It is clear that the stationary problem associated with (P ) is















−∇ · (m ∇u) = f

m ! 0, |∇u| " 1, m(|∇u| − 1) = 0

∣

∣

∣

∣

∣

in Ω,

u = 0 on ∂Ω,

(S1)

where f is assumed to be not depending on t. It is well known by now, that (S1)

appears in the study of the optimal mass transport problem of the Monge–Kantorovich

type with the Euclidean distance as a cost function (cf. [1, 14, 15] and the references

therein). Indeed, functions u solving (S1) together with m are meaningful in the context

of the transport problem. More precisely, (S1) is a dual problem associated with the

relaxed variational formulation by Kantorovich for optimal mass transportation of f+

into f−, where f+ and f− are the positive and negative parts of f, respectively. Then,

m is the transport density, vector −∇u is the direction of the optimal transportation and

quantity −m ∇u gives the transport flux. For numerical simulation concerning (S1), i.e.

numerical approximation of the transport flux that contains all the information about the

optimal transportation, we use in this paper the evolution problem (P ) and its large-time

behaviour.

The theoretical study of (P ) may be handled by the nonlinear semi-group theory of the

evolution problem governed by a sub-differential operator, so that unknown function m

2



may be not considered. However, in contrast with (S1), for the numerical analysis, function

m and its regularity are crucial both for problems (P ) and (S1). Roughly speaking, the

theoretical study of (P ) derived from the study of a minimizing problem with a gradient

constraint. For the numerical study, one can use an associated dual formulation where

the flux σ = m ∇u is minus flux, and the analysis of the problem depends on the space of

dual variables (which would be in connection with the regularity of σ = m ∇u).
Remember that, in general m is a Radon measure and the gradient of u needs to be

taken in an unusual sense (for more details in this direction one can see papers [6–8]

and the references therein). However, under additional assumptions on f and Ω, m may

be an Lq function; for more details in this direction, one can see papers [10–12] and the

references therein.

In [3], the authors use a dual problem in a space of vector valued Radon measures both

to prove the existence and uniqueness of a solution for (P ) and for the numerical analysis

of the problem. Our approach is different and may be simpler. For the theoretical analysis

and large-time behaviour we use nonlinear semi-group theory. As for the numerical

analysis, we show that it is enough to study an associated dual formulation in Hdiv(Ω),

the space of L2 vector functions with L2 divergence.

Let us give the main lines of our approach. First, it is not difficult to see that solution

u of (S1) is also a solution of a minimizing problem; so that (P ) is a particular case of

the evolution problem governed by a sub-differential operator stated in L2(Ω). Applying

standard results of nonlinear semi-group theory in a Hilbert space (cf. [9]), we deduce

that (P ) has a unique variational solution (see Definition 2.2), and, as t → ∞, this solution

converges to a solution of stationary problem (S1). For the numerical analysis, thanks

to the nonlinear semi-group theory, we use the fact that the variational solutions may

be obtained by the Euler implicit discretization in time. So, it is enough to study the

stationary problem of type



















v − ∇ · (m ∇v) = g

m ! 0, |∇v| " 1, m (|∇v| − 1) = 0

∣

∣

∣

∣

∣

∣

in Ω

v = 0 on ∂Ω,

(S2)

where g ∈ L2(Ω). It is not difficult to see that solution v of (S2) corresponds to the

projection, with respect to the L2 norm, of g, onto the set of 1−Lipschitz continuous

functions vanishing on the boundary. For numerical analysis of the projections, we use

duality arguments. This last argument was extensively used in previous papers (see [3,

20]) in the space of vector Radon measure valued. The main novelty of our paper is that

we use it simply in Hdiv(Ω).

The paper is organized as follows: in the next section, we give a formal nonlinear semi-

group approach of (P ) to show the existence and uniqueness of a variational solution, the

convergence of the approximate solution by Euler implicit discretization in time and the

convergence, as t → ∞, of the solutions of (P ) to the solutions of (S1). In section 3, we

develop the duality argument for the projection, i.e. the solution of (S2), and we show how

one can obtain the solution of (S2) by a dual variable in Hdiv(Ω). We prove the convergence

of numerical scheme that we use for numerical approximation of the projection and for
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the solution of (P ). At last, in section 4, results of numerical simulations for (P ) and (S1) 

are given.

2 Semi-group approach: Existence, uniqueness, ε-approximate solution and

asymptotic behaviour

For ε > 0, we say that (ti, fi)i=1,...,n is an ε-discretization for the problem, if t0 = 0 < t1 <

· · · < tn−1 < T = tn with ti − ti−1 " ε, f1, . . . , fn ∈ L2(Ω), such that

n
∑

i=1

∫ ti

ti−1

‖f(t) − fi‖L2(Ω) " ε.

For any ε > 0, we say that uε is an ε-approximate solution of (P ), if there exists (ti, fi)i=1,...,n

an ε-discretization for the problem such that

uε(t) =

{

u0 for t ∈]0, t1],

ui for t ∈]ti−1, ti], i = 1, . . . , n
(2.1)

and ui solves the Euler implicit time discretization of (P )







|∇ui| " 1, ∃ mi ! 0, mi (|∇ui| − 1) = 0 in Ω

ui − ∇ · (mi ∇ui) = ε fi + ui−1

∣

∣

∣

∣

in Ω

ui = 0 on ∂Ω.

(2.2)

It is clear that problem (2.2) is a particular case of stationary problem (S2). To deal with

this problem, let us consider

K = {z ∈ W 1,∞(Ω) ∩ W
1,2
0 (Ω); |∇z| " 1 a.e. in Ω}

and IIK the indicator function of K defined by

IIK (z) =

{

0 if z ∈ K,

+∞ otherwise.

We denote by IPK the projection onto convex K, with respect to the L2(Ω) norm, i.e.

v = IPKg if and only if

‖v − g‖L2(Ω) = min
z∈K

‖z − g‖L2(Ω).

The sub-differential of IIK in L2(Ω) is given by v ∈ ∂IIK (g) if and only if

∫

Ω

v(z − g) " 0 for any z ∈ K.

It is not difficult to see that, if v ∈ K is a solution of (S2) in the sense that there

exists a measurable function m such that m ∇v ∈ (L1(Ω))D , m (|∇v| − 1) = 0 a.e. in Ω

and v − ∇ · (m ∇v) = g in D′(Ω), then v = IPK (g). This gives in particular the concept of

variational solutions for problems (S1), (S2) and (P ). More precisely, we get
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Definition 2.1 For a given f ∈ L2(Ω) (resp. g ∈ L2(Ω)), we say that v is a variational

solution of (S1) (resp. (S2)) if v ∈ K and
∫

Ω
f (v − z) ! 0 (resp.

∫

Ω
(g − v) (v − z) ! 0) for

any z ∈ K.

Definition 2.2 For a given f ∈ L2
loc(0, T ;L2(Ω)) and u0 ∈ K, we say that u (resp.

uε) is a variational solution (resp. ε−approximate variational solution) of (P ) if

u ∈ W 1,1(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,∞
0 (Ω)), u(0) = u0 and, for any t ∈ (0, T ), u(t) ∈ K

and
∫

Ω
(f(t) − ut(t)) (u(t) − z) ! 0 for any z ∈ K (resp. uε is given by (2.1) and ui is a

variational solution of (2.2)).

Thanks to [9], we know that ∂IIK is a maximal monotone graph in L2(Ω), i.e. for any

g ∈ L2(Ω), there exists a unique v solution of

v + ∂IIK (v) ∋ g (2.3)

and, if vi is the solution corresponding to gi for i = 1, 2, then

‖v1 − v2‖2 " ‖g1 − g2‖2.

Moreover, if vi is the solution corresponding to gi for i = 1, 2, then

‖(v1 − v2)
+2‖2 " ‖(g1 − g2)

+2‖2.

So, by using the nonlinear semi–group theory in Hilbert space for evolution problems

governed by a sub-differential operator (cf. [5, 9, 22]), we have the following result.

Theorem 2.3 Let u0 ∈ K, T > 0 and f ∈ L2
loc(0, T ;L2(Ω). Then,

(1) For any ε > 0 and any ε-discretization of (P ), there exists a unique ε-approximate

variational solution of (P ).

(2) There exists a unique u ∈ C([0, T );L2(Ω)) such that u(0) = u0, and, as ε → 0,

uε → u in C([0, T );L2(Ω)).

(3) The u function given by (2) is the unique variational solution of (P ).

Moreover, if for i = 1, 2 ui is the solution corresponding to fi, then

d

dt

∫

Ω

(u1 − u2)
+

"

∫

Ω

(f1 − f2)
+ in D′(0, T )

In particular, if f ! 0, then u ! 0 a.e. in Ω.

Proof The first part of the theorem is a simple consequence of the fact that variational

solution ui of (2.2) is equal to IPK(ui−1 + ε fi). Since ∂IIk is a maximal monotone graph

in L2(Ω), the second part of the theorem is a consequence of the classical nonlinear

semi-group theory (cf. [9], see also [5, 22]). The third part of the theorem can be proved
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using the regularity results for semi-group solutions of evolution equations governed by

sub-differential operators (cf. Theorem 3.6 of [9]). !

Remark Thanks to [5], we can derive precise estimates on error ‖u− uε‖L2(Ω). Actually, by

using Theorem 4.2 and Theorem 13.3 of [5], we have

sup
t∈[0,T )

‖u − uε‖L2(Ω) " C
(

T ε
1
2 + ε

)

.

where C is a constant depending on ‖u0‖L2(Ω) and ‖f‖L2(Q) uε is an ε-approximate

variational solution of (P ).

Another main interest of evolution equation (P ) is its large-time behaviour. Actually,

by using Theorem 3.11 of [9], we have

Theorem 2.4 Let f ∈ L2
loc(0,∞;L2(Ω)), u0 ∈ K and u be the variational solution of (P ). If

there exists f∞ ∈ L2(Ω) such that f − f∞ ∈ L1(0,∞;L2(Ω)), then there exists u∞ ∈ K such

that u∞ is a variational solution of (S1), and, as t → ∞, u(t) → u∞ in L2(Ω).

Proof Since, for any C > 0, the set {z ∈ L2(Ω); IIK(z) + ‖z‖L2(Ω) " C} = {z ∈
K; ‖z‖L2(Ω) " C} is a compact set in L2(Ω), then the theorem follows using Theorem 3.11

of [9]. !

The main application we have in mind for this theorem is the optimal mass transport

problem of the Monge–Kantorovich type. However, one sees that this theorem gives

only the approximations of the potential u, i.e. the direction of the optimal transport.

We do not know about the transport densities; in this direction one can see recent

work [4].

3 Dual formulation and numerical approximation of the projection

Now, in order to give a numerical approximation of the solution of (P ), we will use part 2.

of Theorem 2.3. So, we focus our attention on the projection IPKg, for a given g ∈ L2(Ω).

Remember that v = IPK(g) if and only if v ∈ K and

J(v) =
1

2
‖v − g‖2

L2(Ω) = min
z∈K

J(z). (3.1)

To treat this minimization problem we use a dual formulation. By using standard duality

argument (cf. [13]), the dual problem associated with (3.1) is given by the following

functional

G(w) =
1

2

∫

Ω

(div(w))2 +

∫

Ω

g div(w) +

∫

Ω

|w|.

Indeed, (3.1) is equivalent to

min
{

F(z) + H(Λz); z ∈ C1
0(Ω)

}

, (3.2)

6



where Λz := ∇z is linear operator from C1
0(Ω) to C(Ω)N and F : C1

0(Ω) → !
+ and

H : C(Ω)N → ! are convex functions defined by

F(z) =
1

2

∫

Ω

|z − g|2 and H(σ) =

{

0 if |σ(x)| " 1 ∀x ∈ Ω,

+∞ otherwise.

Thanks to [13], the dual problem associated with (3.2) is given by

sup{−F∗(Λ∗σ) − H∗(−σ); σ ∈ (C(Ω)N)∗} (3.3)

which corresponds to

sup{−G(σ); σ ∈ (C(Ω)N)∗}. (3.4)

So, one sees that the natural space for the study of (3.2) by duality argument is the set of

vector valued Radon measures such that the divergence is a L2. This kind of argument

was already used in previous papers (see [3, 20]). Our aim is to simplify the analysis by

using simply the space Hdiv(Ω);

Hdiv(Ω) = {w ∈ (L2(Ω))D; div(w) ∈ L2(Ω)}.

First, we have

Lemma 1 For any g ∈ L2(Ω), w ∈ Hdiv(Ω) and z ∈ K, we have

−G(w) " J(z).

Proof Let w ∈ Hdiv(Ω) and z ∈ K be fixed. Writing 1
2 (div(w) − (z − g))2 ! 0, it is clear

that

−1

2

∫

Ω

(div(w))2 −
∫

Ω

g div(w) +

∫

Ω

z div(w) "
1

2

∫

Ω

(z − g)2

and, since |w| −∇ z · w ! 0, then

−
∫

Ω

|w| −
∫

Ω

z div(w) = −
∫

Ω

|w| +

∫

Ω

∇z · w " 0.

Adding the two inequalities, the result follows. !

In general, it is not clear whether the extremality relation is fulfilled for (w, v) ∈
Hdiv(Ω) × K or not. In other words, it is not clear if there exists (w, v) ∈ Hdiv(Ω) × K

such that −G(w) = J(v). It is known that this kind of relation is very important in order

to connect the primal and dual problems. Standard analysis leads to extremality relation

in Mb(Ω)N × K and one needs to define the gradient in a non-standard way (tangential

gradient with respect to Radon measure). Here, we prove that the study of G in Hdiv(Ω)

gives some kind of approximation for extremality relation. This approximation gives a

connection between primal and dual problems and enables us to compute v the projection

on K of g by computing supσ∈Hdiv(Ω) −G(σ). This is the aim of the following theorems

(Theorem 3.1 and Theorem 3.2).
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Theorem 3.1 Let g ∈ L2(Ω) and v = IPK(g). Then, there exists a sequence (wε)ε>0 in

Hdiv(Ω), such that, as ε → 0,
∫

Ω

|wε| →
∫

Ω

v (g − v), (3.5)

div(wε) → v − g in L2(Ω) (3.6)

and

lim
ε→0

G(wε) = inf
w∈Hdiv(Ω)

G(w)

= − min
z∈K

J(z) (3.7)

= −1

2

∫

Ω

|g − v|2.

To prove this result, let us consider the following elliptic equation







vε − ∇ · wε = g

wε = φǫ(∇vε)

∣

∣

∣

∣

in Ω,

vε = 0 on ∂Ω.

(Sε)

where, for any ε > 0, φε : !
D → !

D is given by

φε(r) =
1

ε
(|r| − 1)+

r

|r| , for any r ∈ !
D .

It is not difficult to see that φε satisfies the following properties:

(i) for any r1, r2 ∈ !
D , (φε(r1) − φε(r2)) · (r1 − r2) ! 0

(ii) there exists ε0 > 0 and A > 1 such that φε(r) · r ! |r|2 for any |r| ! A and ε <ε 0

(iii) for any ε > 0 and r ∈ !, |φε(r)| " φε(r) · r

So, for any g ∈ L2(Ω), (Sε) has a unique solution vε, in the sense that vε ∈ H1
0 (Ω),

wε := φε(∇vε) ∈ L2(Ω)D and vε − ∇ ·wε = g in D′(Ω). We are interested in the study of the

limit of (vε, wε), as ε → 0.

Lemma 2 We have

(1) (vε)0<ε<ε0 is bounded in H1
0 (Ω).

(2) For any Borel set B ⊆ Ω,

lim inf
ε→0

∫

B

|∇vε| " |B|.

Proof Taking vε as a test function in (Sε), we get

∫

Ω

v2
ε +

1

ε

∫

Ω

(|∇vε| − 1)+ |∇vε| =

∫

Ω

f vε. (3.8)

So,

‖vε‖L2 " ‖f‖L2(Ω) (3.9)
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and

1

ε

∫

Ω

(|∇vε| − 1)+ |∇vε| " ‖f‖2
L2(Ω). (3.10)

Using property (ii) of φε, for any 0 < ε<ε 0, we have

∫

Ω

|∇vε|2 =

∫

[|∇vε|"A]

|∇vε|2 +

∫

[|∇vε|>A]

|∇vε|2

"

∫

[|∇vε|"A]

|∇vε|2 +
1

ε

∫

(|∇vε| − 1)+ |∇vε|

" |A|2 |Ω| + ‖f‖2
L2(Ω).

Thus vε is bounded in H1
0 (Ω). Now, let B ⊆ Ω be a fixed Borel set. We have,

∫

B

|∇vε| "

∫

B

(|∇vε| − 1)+ + |B|

"

∫

B

(|∇vε| − 1)+ |∇vε| + |B|

" ε

∫

Ω

(f − vε) vε + |B|.

Letting ε → 0, and using the fact that vε is bounded in L2(Ω), the second part of the

lemma follows. !

Proof of the theorem As a consequence of Lemma 2, there exists ṽ ∈ H1
0 (Ω) and a

subsequence that we denote again by ε, such that

vε → ṽ in H1
0 (Ω) − weak and in L2(Ω),

which implies that

div(wε) → ṽ − g in L2(Ω).

To prove that ṽ ∈ K, let us consider Aδ = [|∇ṽ| ! 1 + δ], with arbitrary δ > 0. Since, as

ε → 0, ∇vε → ∇ṽ in L1(Ω)D-weak, then

|Aδ | "
1

1 + δ

∫

Aδ

|∇ṽ|

"
1

1 + δ
lim inf

ε→0

∫

Aδ

|∇vε|,

so that, by using the second part of Lemma 2, we deduce that

|Aδ | "
1

1 + δ
|Aδ |,
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which implies that |Aδ | = 0. Since δ > 0 is arbitrary, then, we deduce that |∇ṽ| " 1 a.e. in

Ω. Now, let us prove that ṽ = IPK (g). For any z ∈ K , we have

∫

Ω

(g − ṽ) (ṽ − z) = lim
ε→0

∫

Ω

(g − vε) (ṽ − z)

= lim
ε→0

∫

Ω

φε(∇vε) · ∇(ṽ − z)

= lim
ε→0

∫

Ω

(φε(∇vε) − φε(∇z)) · ∇(ṽ − z)

! 0.

To prove (3.5), we see, first, that by using property (iii) of φε, we have

lim sup
ε→0

∫

Ω

|wε| " lim sup
ε→0

∫

Ω

φε(∇vε) · ∇vε

" lim sup
ε→0

∫

Ω

(g − vε) vε

"

∫

Ω

(g − v) v.

Moreover, we have

∫

Ω

v (g − v) = lim
ε→0

∫

Ω

v (g − vε)

= lim
ε→0

∫

Ω

wε · ∇v

" lim inf
ε→0

∫

Ω

|wε|,

which ends up the proof of (3.5). At last, since by Lemma 1 we know that −G(wε) "

minz∈K J(z), then by using (3.6) and (3.7), we deduce that, as ε → 0, G(wε) → − 1
2

∫

Ω
|v −

g|2 = − minz∈K J(z). This completes the proof of the theorem. !

Remark Theorem 3.1 also gives an extremality relation. Indeed, if J(v) = minz∈K J(z); i.e.

v = IPK (g), then, thanks to Theorem 3.1, by taking w ∈ (Mb(Ω))D the weak limit of wε, in

(Mb(Ω))D , we deduce that v is given by







v − div(w) = g in D′(Ω),

|w|(Ω) =

∫

Ω

v (g − v).
(3.11)

This gives a new characterization of the projection of g onto K (see [3, 18, 19] for more

details in this direction).

We are ending this section by giving results for the numerical approximation of dual

problem

inf
w∈Hdiv(Ω)

G(w).

10



Since we want to use a finite element method, we suppose in the following that:

• Domain Ω is a bounded, open, polyhedral subset of !
D (D equal to 1 or 2).

• Th will be a regular partitioning (triangulation or quadrangulation) of Ω by n disjoint

open simplices τ of diameter no greater than a given real h, with Ω = ∪τ∈Th
T .

Let Vh ⊂ V := Hdiv(Ω) be the space of lowest-order Raviart–Thomas finite elements

(cf. [21]):

Vh = {qh ∈ (L2(Ω))D : qh|τ = aτ + bτx, a ∈ !
2, b ∈ !, ∀τ ∈ Th,

and qh · ν is continuous across simplex boundaries}.

Space Vh is a finite dimensional subspace of V with a dimension equal to N = N(h).

Let us denote by rh the interpolation operator onto Vh given in Theorem 6.1 of [21]. By

using the bounds for error interpolation (cf. Theorem 6.3 of [21]) and the density of D(Ω)

in Hdiv(Ω), it is not difficult to prove that, for any w ∈ Hdiv(Ω), as h → 0, we have

rh(w) → w in (L2(Ω))N

and

div(rh(w)) → div(w) in L2(Ω).

(3.12)

Besides, it is clear that convex optimizing problem

inf{G(qh); qh ∈ Vh}

has a solution. Let us denote a solution by wh, i.e.

G(wh) = inf{G(qh); qh ∈ Vh}. (3.13)

Theorem 3.2 Let g ∈ L2(Ω), v = IPkg and wh a solution of (3.13). Then, as h → 0,

div(wh) → v − g in L2(Ω) (3.14)

and

−G(wh) → min
z∈L2(Ω)

J(z) =
1

2
‖v − g‖L2(Ω). (3.15)

Proof Thanks to (3.13) and the fact that rh(wε) ∈ Vh, we have G(wh) " G(rh(wε)), where

wε is given by Theorem 3.1. In other words,

1

2

∫

Ω

(div(wh))
2 +

∫

Ω

g div(wh)+

∫

Ω

|wh| "
1

2

∫

Ω

(div(rh(wε)))
2 +

∫

Ω

g div(rh(wε))+

∫

Ω

|rh(wε)|,

11



which implies that

1

2

∫

Ω

(div(wh) − v + g)2 =
1

2

∫

Ω

(div(wh))
2 +

1

2

∫

Ω

(v − g)2 −
∫

Ω

div(wh) (v − g)

(3.16)

"
1

2

∫

Ω

(div(rh(wε)))
2 +

∫

Ω

g div(rh(wε)) +

∫

Ω

|rh(wε)|

(3.17)

−
∫

Ω

|wh| −
∫

Ω

v div(wh) +
1

2

∫

Ω

(v − g)2

Since v ∈ K, then by integrating by part we get

−
∫

Ω

v div(wh) −
∫

Ω

|wh| =

∫

Ω

∇v · wh −
∫

Ω

|wh|

" 0;

so that (3.18) implies that

1

2

∫

Ω

(div(wh) − v + g)2 "
1

2

∫

Ω

(div(rh(wε)))
2

+

∫

Ω

g div(rh(wε)) +

∫

Ω

|rh(wε)| +
1

2

∫

Ω

(v − g)2 .

Letting h → 0 and using (3.12), we obtain

lim sup
h→0

1

2

∫

Ω

(div(wh) − v + g)2 "
1

2

∫

Ω

(div(wε))
2 +

∫

Ω

g div(wε) +

∫

Ω

|wε|

+
1

2

∫

Ω

(v − g)2.

At last, thanks to Theorem 3.1, by letting ε → 0, we get

lim sup
h→0

1

2

∫

Ω

(div(wh) − v + g)2 " 0

and the result follows. !

4 Numerical simulations

At this stage, it is necessary to introduce an approximation of term
∫

τ
|wh| dx for each

simplex τ of the partitioning of Th. We have chosen here to write

∫

τ

|wh| dx ≃ |τ||wh|(Pτ),

where |τ| represents the area of simplex τ, and Pτ is one of the vertices of τ.

12



Using this approximation, the solution of (3.13) at each t time i∆t (i ∈ ") is a minimizer

of non-differential functional:

Gh : !
n → !

wh 4→ Gh(wh) =
1

2
‖div(wh)‖L2(Ω) +

(

tih, div(wh)
)

+ γ
∑

τ∈Th

|τ||wh(Pτ)|

:=
1

2
(Awh, wh) +

(

tih, divwh

)

+ γ
∑

τ∈Th

|τ||wh|(Pτ)

(4.1)

where n is the dimension of Vh, A is an n×n positive semi-definite matrix, tih is a vector of

!
n defined by tih = ∆tfih + ui−1 (see formula (2.2) with ε = ∆t), and γ = tan(α) is the sand

angle of repose (chosen equal to 1 in the theoretical study). In the following, we denote

wh a minimizer of this functional.

The minimization of this functional is performed by a Gauss Seidel type algorithm that

can be summarized as follows (see for instance [17]):

• Initiate the algorithm with a vector q0 ∈ !
n, and, for k ! 0 until convergence, chose a

canonical direction ej in !
n and find ρjk minimizing

ϕjk : ! → !

ρ 4→ Gh(qk + ρej).

• Take qk+1 = qk + ρjkωej , where ω > 0 is an over-relaxation parameter.

• When ϕjk is differentiable, a Newton algorithm is used to find ρjk . Otherwise, ρjk can

be computed directly (because is this case, ϕjk is the sum of a polynomial of degree

two and an absolute value).

• This algorithm is performed until ‖qk+1 −qk‖ℓ2(!n) " ε, for a given convergence criterion

ε. Afterwards, take wh = qk .

Remark The advantage of this technique over a regularisation procedure coupled with the

resolution of a nonlinear PDE is that, at each step k, the minimization procedure can be

made only on indices j where sand may fall, i.e. where the function ϕjk is not independent

of ρ.

In all the simulation below, we have chosen relaxation parameter ω = 1.2, and conver-

gence criterion ε = 10−5.

Domain Ω is square Ω = (−1, 1)2. For the discretization of the problem, we use the

Raviart–Thomas elements of the lowest order [21] on a regular square grid. In this case,

for a given integer N ∈ ", the step of discretization h is equal to 2
N+1 and the simplices

are squares of the form (j1h, (j1 + 1)h) × (j2h, (j2 + 1)h) for 0 " j1, j2 " N.

Then, knowing a minimizer wh of (3.13), solution ui of (2.2) is computed using extremal-

ity relation (3.11) in a weak sense with piecewise finite elements P0.

In the first numerical simulation of a growing sandpile, the density of the source of

sand f(x, t) is a constant equal to 1, for all time and for all x ∈ Ω where Ω = (−1, 1)2.

In this example, the exact free surface u(x, t) of the sandpile can be easily computed. The

numerical simulation has been done with a regular quadrangular 60 × 60 grid for the

13



Figure 1. Sandpile surface at time t = 0.45 and t = 1.415 for f ≡ 1.

Figure 2. Sand flux at time t = 0.45 and t = 1.415 for f ≡ 1.

discretization of Ω, with a discretization in time ∆t = 0.01, and with the maximal angle

of stability α such that tan α =
√

2. We found an accuracy of primal variable u equal to

{maxi |u(·, ti) − uh(·, ti)|0,∞,Ω/|u|0,∞,Ω×(0,T ) " 0.033. Then, this relative error is closed to the

space step of discretization h = 2/N. Figure 1 shows the san dpile at time t = 0.45, and

at time t = 1.415 when solution u becomes stationary and equal to the euclidean distance

to the boundary.

Figure 2 shows the flux on the sandpile surface. We can see that the flux is parallel to

the gradient of the surface and vanishes on the diagonal of square Ω.

In the second example, the initial free surface of the sandpiles is equal to 1, and the

source of sand is constant and is a negative measure around point x0 = (0, 0.4). The

Neumann boundary conditions q · ν = m ∂u
∂ν

= 0 are considered, which simulated the

existence of a wall on the boundary. Even if the theoretical background of this problem is

not studied is the article, the results shown in Figure 3 show that the method is accurate.

The error on the conservative volume law |
∫ T

0

∫

Ω
f(x, t) dx dt −

∫

Ω
u(T , x) dx| is always

less than 10−14 for all T " 4.

We can also see in Figure 5 that the flux is concentrated around x0 and has a 1
|x−x0|

singularity. Moreover, the flux vanishes on the boundary even at t = 3 when the height

of the sandpile does not vanish on the boundary.

In the third example, the density of the source of sand f is independent of t and changes

signs. The source is strictly positive on the disc centered on x1 = (−0.5, 0) with a radius

equal to 0.2 and on the disc centered on x2 = (0, −0.6) with a radius equal to 1√
15

, and

it is strictly negative on the disc centred on x3 = (0, 0) with a radius equal to 0.2 and

vanishes elsewhere. On each disc, the distribution of sand is quadratic, with a maximum
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Figure 3. Sandpile surface and sand flux at time t = 0.14, t = 3.00.

Figure 4. Sandpile surface at time t = 0.24, t = 0.43, t = 0.50 and t = 3.

on the center of the disc. In other words, the sand is taken from x3 and put over points

x1 and x2, such that
∫

Ω
f(x, t) dx = 0 for any time t.

Figure 4 shows the sandpile at different times, and Figure 5 shows the sand flux for

the same times. The support of the sand source is included into the circles plotted on
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Figure 5. Sand flux at time t = 0.24, t = 0.43, t = 0.50 and t = 3.

the figure. We can see that for any time t " t1 = 0.24, the two sandpiles and the hole

do not interact. After this time, the sand falls from the sandpile centering around x1 into

the hole. At time t = 0.5, sand falls from the two sandpiles to the hole. After all, at time

t = 3, we obtain a stationary state: all the sand deposited over point x1 falls into the hole,

and a part of the sand deposited over x2 falls into the hole, the other part creeps through

the boundary.
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