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RÉSUMÉ. Ce travail consiste à identifier des lois de comportement homogénéisées rendant
compte du comportement global des systèmes multi-contacts. A l’heure actuelle, ces systèmes
sont généralement analysés avec la Mécanique des Milieux Continus et la micro-mécanique ou
approche multi-échelle. Cette étude a pour but de quantifier à l’aide de la méthode des Eléments
Discrets (Jean, 1999; Fortin et al., 2005) les phénomènes de polarisation des efforts de contact.

ABSTRACT. The aim of this study is to identify the homogenized laws modeling the overall be-
havior of multi-contact systems. At the moment, these systems are generally analyzed either by
continuum mechanics or micro-mechanics and a multi-scale approach. These approaches dif-
fer from the phenomenological approach traditionally used for modeling the behavior of solid
materials which is based on mathematical formulations developed in the framework of thermo-
dynamics, whose constants are determined from results of laboratory tests. The lack of basic
physics in these formulations leads to mathematical models that are often complex and difficult
to identify. The multi-scale approach appears well suited to address these difficulties. This
study aims at quantification using the Discrete Element method (Jean, 1999; Fortin et al., 2005)
polarization phenomena of contact forces.

MOTS-CLÉS : Méthode des Eléments Discrets ; Méthode multi-échelle ; Frottement.

KEYWORDS: Discrete Element Method ; Multi-scale Method ; Friction.
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1. Context

The aim of this study is to identify the homogenized behavior laws modeling the

overall behavior of multi-contact systems. At the moment, these systems are gene-

rally analyzed either with continuum mechanics or micro-mechanics and multi-scale

approach. These approaches differ from the phenomenological approach traditionally

used for modeling the behavior of solid materials, which is based on mathematical

formulations developed in the framework of thermodynamics, whose constants are

determined from results of laboratory tests. The lack of basic physics in these formu-

lations leads to mathematical models that are often complex and difficult to identify.

The multi-scale approach appears well suited to address these difficulties. This study

aims to quantify polarization phenomena of contact forces using the Discrete Element

method (Jean, 1999; Fortin et al., 2005). Polarization means that the main part of

the contact forces in a relevant zone, for example on the walls of a silo, are on the

boundary of the Coulomb cone.

2. Continuous approaches

Classically, to numerically study the behavior of a deformable body submitted to

various solicitations, we use the Finite Element Method (FEM) which is an important

tool for the analysis of structures. It is based on the Mechanics of Continuous Fields.

Even though the bodies that are considered are not continuous, the hypothesis of conti-

nuity brings a simplification which makes possible the resolution of the problems of

classic mechanics.

2.1. Stability of multi-contacts systems

Contrary to a liquid, a granular material can offer an oblique free surface. For

a dry and non cohesive material, it is, however, impossible to tilt vertically : a pile

of sand or earth cannot form a bank possessing a bigger slope than a certain critical

angle according to the material and the geometry of the sand pile. Careful observation

of the formation of a sand pile shows in fact that there are two critical angles : the

angle of starting up θstart, and the angle of stopping θstop. As soon as the angle of

inclination exceeds θstart an avalanche occurs : the material slides on the surface,

which reduces the slope of the sand pile. This flow stops as soon as the angle of

inclination becomes lower than θstop.

The most direct interpretation would be to associate this coefficient of macro-

scopic friction with the microscopic friction between grains. Nevertheless, a pile

of perfectly smooth grains, as soon as the first layer is maintained fixed, can also

lead to an oblique free surface. The grain / grain friction is thus not necessary for

the existence of a critical angle. Where then does this stability come from ? A first
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element comes from the rigidity of the grains. To start moving, the pile has to dilate.

For dense flows on a free surface, the integrated approach of Saint-Venant is the

most widely used. It consists in integrating the equations of preservation on the thick-

ness of the layer into movement.

∂h

∂t
(x, t) = −∇ · q(x, t) + f(x, t) [1]

This approach allows freedom the internal rheology of the layer in movement by

considering only its averaged effects on the thickness of the layer in movement. The

missing relations are generally chosen so as to report the studied phenomenon. We

then obtain a complete set of equations which describes the dynamics of the granular

material through the evolution of overall heights as the thickness of the layer in mo-

vement or the average flow. The flow of the granular material is connected in a thin

boundary layer moving down slopes of the growing sand pile. There exists a function

m(x, t) ≥ 0 such that :

q(x, t) = −m(x, t)∇h(x, t). [2]

For numerical simulation, this equation has been discretized in time with an impli-

cit Euler scheme, and a Finite Element Method is used for the space discretization of

the domain Omega, Figure 1 (see (Dumont et al., 2009) for more details).

Figure 1. The sand source is localized upon the center of the domain

However, this type of approach is purely descriptive and does not allow an

understanding of the microscopic mechanisms responsible for continuous behaviors.

On the scale of the grain, the two fundamental questions on the statics of granular

assemblies concern the distribution of strengths when the assembly is at equilibrium

and the stability conditions of this equilibrium.
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2.2. Rheology of the ensiled materials

One of the important problems in the design of silos is the prediction of the vertical

wall stress, induced by the stored granular material. This stress distribution depends

of course on the granular material parameters and on the flow during the process of

discharge. By modeling the ensiled granular medium as a continuous medium we can

obtain relatively simple models for the calculation of the vertical wall stress. In 1885,

Janssen (Janssen, 1895) offered a first model that provided a qualitative understanding

of the saturation effect in granular silos. The idea of the Janssen model is that the

vertical wall stress does not vary linearly with depth. The simplicity of the Janssen

model (Janssen, 1895) comes because the granular media is considered as a continuous

environment in a quasi-static state, that is that movements inside the silo are small

enough for the global movement of the material to be considered as equal to zero. The

main directions are in a perpendicular vertical plane on both walls of the silo (Figure

(2)).
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Figure 2. Representation of a slice of ensiled matter

The Janssen model also supposes the existence of a constant ratio λ between the

horizontal component of the stress tensor and its vertical component. This implies that

λ = σxx

σzz
is constant in all the silo. On the other hand, the ensiled material is supposed

to be in a state of break described by the Mohr-Coulomb criterion

τxz = µσxx with µ = tanφ, [3]

where σxx, σzz indicate the main stress and τxz the shear stress. Finally, the theory

of Janssen is limited to the non cohesive, isotropic and homogeneous materials. Thus,

Janssen was interested in the determination of the stress tensor assumed to depend

only on z. The origin of the axis z in the silo corresponds to the free surface of the

material. On the other hand, Janssen considers that the upper surface of the ensiled

material is without stress (σzz = 0 en z = 0). We finally obtain the stress expression
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σzz = γRh

µλ

(

1− exp
(

− µλ
Rh

z
)

)

σxx = λσzz

τxz = µλσzz

[4]

where γ represents the volume weight, and Rh indicates the hydraulic beam. Ho-

wever, the Janssen theory rests on certain contradictory hypotheses and contains some

limitations ; the Janssen theory assumes that σxx et σzz are the main stress connected

by a constant coefficient in all the silo. These limitations of the Janssen theory explain

the significant gaps existing between the stresses measured experimentally and those

predicted by the Janssen theory. We notice that the hypothesis of continuity seems

difficult to admit for systems which consist of several stiff or deformable parts, which

are inter-connected. We then speak of multi-contact systems (Rahmoun, 2006).

3. Discrete approach

In fields where a collection of bodies between which the one-sided connections,

usually affected by Coulomb friction, may become established or broken, these equa-

tions of constraints lead to a problem of non linear complementarity which cannot

be solved by a linear programming method. The separation of surfaces in the case of

sliding results from non compliance with the hypothesis of normality which implies a

speed corresponding to the dilation of the interface.

Figure 3. Multi-contact systems

To each couple of particles Ωi and Ωj which may enter in contact, is associated

a local reference whose axes are oriented according to the two unit vectors n and

t, respectively, normal and tangential vectors in the contact plane. The normal n is
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directed from Ωj to Ωi. The dual variables are u̇, the local relative velocity between

Ωi and Ωj , and the contact reaction r of Ωj on Ωi. In the local base, they are written

by

u̇ = u̇t + u̇n.n , r = rt + rn.n , [5]

where u̇n is the normal velocity, u̇t the sliding velocity, rn the contact pressure

and rt the friction force. The introduction of Coulomb friction Kµ defined by

Kµ = {(rn, rt) such that f(rn, rt) = ||rt|| − µrn ≤ 0} [6]

leads to a non-linear problem which cannot be solved by a linear programming

method. It is possible to prove that the Coulomb unilateral contact law with dry friction

does not satisfy the cyclic monotonic condition of Rockaffelar. Thus there does not

exist an associated formulation in terms of sub-differential using a pseudo-potential.

However one can associate a bi-potential as follows :

bc(−u̇, r) = ΨR−(−u̇n) + ΨKµ
(r) + µrn|| − u̇t||. [7]

The condition of non inter-penetrability u̇n ≥ 0 is represented by the indicatory

function of R−, noted ΨR−(−u̇n), which is equal to zero when −u̇n ≤ 0 and to +∞
otherwise. The contact bi-potential also takes infinite values if the condition r ∈ Kµ

is not satisfied. This bi-potential of contact is bi-convex (convex with respect to each

of the variables) and satisfies :

∀ − u̇, r ∈ R
3, bc(−u̇, r) ≥ −u̇.r. [8]

Moreover, the couples for whom equality is reached in the previous relation, are

called extremal couples :

bc(−u̇, r) = −u̇.r ⇔ µrn|| − u̇t|| = −(u̇t.rt + u̇nrn). [9]

These couples verify the Coulomb unilateral contact law with dry friction and the

inverse law, which can be written implicitly :

−u̇ ∈ ∂rbc(−u̇, r), r ∈ ∂−u̇bc(−u̇, r) [10]

where ∂xbc denotes the sub-differential of bc with respect to the variable x. Classi-

cally the resolution of the Coulomb unilateral contact law with dry friction needs two
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principles of minimization : the first one for unilateral contact, and the second one

for friction. The use of the bi-potential only needs one variational principle where the

contact and the friction are coupled. For the resolution of the unilateral contact law

with bi-potential formalism, we use the augmented Lagrangian method. First, let us

write a relation as follows :

∀r′ ∈ Kµ, bc(−u̇, r′)− bc(−u̇, r) ≥ −u̇(r′ − r). [11]

Now let us choose a positive arbitrary coefficient ρ, whose value will be fixed later

to ensure the numerical convergence of the algorithm. Then inequality (11) can be

written :

∀r′ ∈ Kµ, ρbc(−u̇, r′)−ρbc(−u̇, r)+[r− (r+ρ(−u̇))].(r′−r) ≥ 0. [12]

Using now the definition (7) of the contact bi-potential, relation (12) becomes with

u̇n ≥ 0 and r ∈ Kµ :

∀r′ ∈ Kµ, (r− τ).(r′ − r) ≥ 0 [13]

where

τ = r− ρ[u̇t + (u̇n + µ|| − u̇t||).n]

denotes the augmented reaction. Relation (13) implies that r is the projection of τ onto

Coulomb cone :

r = proj(τ,Kµ) [14]

and can be solved with a Usawa-like algorithm ; let (−u̇
i, ri) be an approximation of

(−u̇, r) at the iteration i. Then the calculus of ri+1 is split into two steps :

prediction : τ i+1 = r
i − ρ[u̇i

t + (u̇i
n + µ|| − u̇

i
t||).n] ,

correction : r
i+1 = proj(τ i+1,Kµ).

[15]

where the projection of Coulomb’s cone leads, according to the value of τ , to one

of these states : no contact, contact with adherence or sliding contact, (Figure 4).

Conventionally, at each time step, the contact forces in the system are determined

repeatedly by the method of successive balances based on a Gauss-Seidel algorithm

for the 2D version. Each contact force is calculated by adopting temporary values over

the other contacts. Convergence is obtained when the force confirms the unilateral

contact law with dry friction.
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Figure 4. Projection of the augmented reaction onto the friction cone

4. Homogenized laws of behavior

While the stress tensor has for a long time been defined for a continuous environ-

ment, the definition of an average stress tensor from the strengths being applied on the

scale of the grain itself is much less clear for granular media. On one hand, there are

several different definitions which do not generally lead to a symmetric average stress

tensor. We can find a comparison between the various expressions obtained as well as

an analysis of an order of height of the antisymmetric part of the average stress tensors

defined. Eventually, it is important to note that all these works are based on a static

analysis of the problem, and are valid only for a quasi-static arrangement of granular

media.

Figure 5. Homogenization procedures : to define a Representation Elementary Vo-
lume
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In the dynamic state, only J.J. Moreau proposes a generalization of the previous

definitions based on the notion of internal moment. Hence, two problems still remain

open ; the first concerns the choice of a substantial definition of the average stress ten-

sor in a granular medium in quasi-static conditions. The second concerns an extension

of this definition in dynamics. To try to clarify the problem, we have proposed a ge-

neral definition of the average stress tensor for a granular medium, valid in statics as

well as in dynamics. This definition, which follows (de Saxcé et al., 2004) takes into

account not only the strengths of contact, but also the strengths of volume (gravity and

slowness) being applied on the scale of grains. The average stress tensor so defined

possesses the properties of a Cauchy stress tensor : it is symmetric and invariant by

translation.

Σp =
1

Vb

(∫

Vb

�x⊗

[

ρ(�g − �̈x)
]

dV + �xc ⊗ �r

)

= Σr +Σg +Σγ [16]

where Σr, Σg and Σγ denote the respective contributions of the reaction force,

of the gravity force and of the acceleration forces. We obtain, after computations,

(de Saxcé et al., 2004).

Σp = ρga

⎧

⎨

⎩

⎛

⎝
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a

⎛
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⎠

⎫

⎬

⎭

[17]

where L can be interpreted as the mean free path of the bead between two colli-

sions.

5. Application

5.1. Test case

Quasi-static examples, presented in Fig 6, are considered. A regular array of equal-

size disks confined in a box is considered. The box is composed of two vertical and

two horizontal flat walls. The particles as well as the walls are assumed to be per-

fectly rigid. Each particle is subjected to the gravitation force g and to contact force

resulting from neighborhood particles and walls. For three different geometries, the

normal contact forces for each particle are computed. The assumptions and results are

displayed in Figure 6.

The widths of inter-center segments are proportional to the corresponding normal

contact force intensity. For the rectangular arrangement, for obvious physical reasons,

the normal force increases when the height of the disk center with respect to the base of
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(a) (b) (c)

Figure 6. Normal contact forces(a) rectangular - (b) triangular - (c) cannon ball

the box decreases. For the triangular arrangement, we observe that contacts between

the particles and the vertical wall exist. This situation is typical regarding the com-

plex behavior of granular materials. By comparison with the analytical computation,

we obtain the same values concerning the normal contact forces. For the cannon-ball

arrangement, friction, which is not displayed here, is essential to the stability of the

system.

5.2. Polarization of contact forces

First, we consider a silo where the properties of the contact stresses on the lateral

walls allow an explanation of the macroscopic properties, such as the stopping of the

flow at the bottom of the silo, or the modeling of the stresses in the silo with the

Janssen model. In the experiment presented below, we have tried to determine if the

contact stresses on the vertical walls are in the so-called Coulomb conditions, i.e. the

normal and the tangential reaction are on the slip surface of the Coulomb cone. We

have considered here a sample of 350 particles, with a radius equal to 1.5mm (±10%)

in a silo. The static friction coefficient is equal to 0.25. The first part of the experiment

was to settle the sample under the influence of gravity, and then to relax the system by

lowering the bottom wall in order to put the system in the Coulomb condition (Figure

7a). At the end of the relaxation, we compute the average constraint on the lateral

walls, and compare the results with those given by the Janssen approach (Figure 7b).

In a second step, we have considered a shear flow, Figure 8, where the quantifica-

tion of the polarization will permit us to propose a model of boundary layer for this

type of flow, like what has been achieved in the case of masonry (Lebon et al., 2008).

This type of study has already been done with the DEM in the case of non-sheared

media, as for example in a rotating drum (Renouf et al., 2005).

In the first term of (17), the σyy component is negative, which corresponds, with

our sign convention, to a compression stress. It can be interpreted as due to the contact

reaction onto the bead (induced by the action of gravity) which prevents it from pene-

trating through the plane. The σxy component of the first term represents the friction

effect. In the second term of (17), the resulting hydrostatic stress is positive, which

10 | 12



0 5 10 15 20
Normal reaction

-4

-2

0

2

4

T
an

g
en

ti
al

 r
ea

ct
io

n

0 10 20 30 40
Poured mass (g)

0

1

2

3

4

5

6

7

P
o
u
re

d
 m

as
s 

(g
)

Sedimentation
Relaxation of the wall

Janssen model

(a) (b)

Figure 7. (a) Polarization of contact forces - (b) Comparizon Janssen - DEM

Figure 8. Shear flow

corresponds to a traction state due to the centrifugal effects. We call it the centrifugal

stress tensor. However, in a dense granular medium, because of frequent collisions,

the mean free path of particles is small with respect to their size. Hence, the ratio
L

a
remains small with respect to 1 and the second term in (17) can be neglected. It

is worthwhile noting that both contact reaction and gravity produce non-symmetrical

tensors Σr, Σg . This shows that it is important not to neglect the inertia tensor Σr in

the calculation of the mean stress tensor. As the inertia forces have to balance the other

forces, contact reactions and gravity, they have the same order of magnitude.
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6. Conclusion

In this study we have shown both for a quasi-static example as in the silo and for

a dynamic example as in a shear flow over a sandpile that the position of the contact

forces on the Coulomb cone enables to explain the overall behavior of the granular

material.
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