
HAL Id: hal-01113707
https://hal.science/hal-01113707

Submitted on 10 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On enhanced descent algorithms for solving frictional
multicontact problems: application to the discrete

element method
Serge Dumont

To cite this version:
Serge Dumont. On enhanced descent algorithms for solving frictional multicontact problems: appli-
cation to the discrete element method. International Journal for Numerical Methods in Engineering,
2013, 93 (11), pp.1170-1190. �10.1002/nme.4424�. �hal-01113707�

https://hal.science/hal-01113707
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


On enhanced descent algorithms for solving frictional multicontact
problems: application to the discrete element method

S. Dumont*,†

LAMFA, Université de Picardie Jules Verne - CNRS UMR 7352, 33, rue Saint-Leu, France

In

 

this

 

article,

 

various

 

numerical

 

methods

 

to

 

solve

 

multicontact

 

problems

 

within

 

the

 

nonsmooth

 

discrete

 
element

 

method

 

are

 

presented.

 

The

 

techniques

 

considered

 

to

 

solve

 

the

 

frictional

 

unilateral

 

conditions

 

are

 
based

 

both

 

on

 

the

 

bipotential

 

theory

 

introduced

 

by

 

G.

 

de

 

Saxcé

 

and

 

the

 

augmented

 

Lagrangian

 

theory

 
introduced

 

by

 

P.

 

Alart.

 

Following

 

the

 

ideas

 

of

 

Z.-Q.

 

Feng

 

a

 

new

 

Newton

 

method

 

is

 

developed

 

to

 

improve

 
these

 

classical

 

algorithms,

 

and

 

numerical

 

experiments

 

are

 

presented

 

to

 

show

 

that

 

these

 

methods

 

are

 

faster

 
than

 

the

 

previous ones, provide results with a better quality, and are less sensitive to the numerical
parameters. Moreover, a stopping criterion that ensures a good mechanical property of the solution is
provided.

 KEY WORDS: granular materials; contact mechanics; Newton algorithms; bipotential; augmented
Lagrangian

1. INTRODUCTION

The simulation of granular media concerns a wide range of engineering applications, such as

concrete or geomaterials. All these materials can be considered as particles in interaction. In this

study, the interaction is the frictional contact.

The numerical simulation of frictional contact problem remains a difficult problem, because the

frictional contact law is strongly nonlinear and multivalued. Nevertheless, several approaches exist

to solve contact problems. A wide bibliography exists on this subject, and an extensive list of refer-

ences can be found, for example, in [4] or in [5]. The most popular method is based on the penalty

approximation, due to its simplicity. But its important drawback is that the numerical parameters

that have to be considered are difficult to choose efficiently. Indeed, if the penalty coefficient is

small, then the contact laws are not accurately satisfied, and if the penalty coefficient is larger, then

the problem to be solved becomes stiff.

Another important family of approaches is based on the notion of augmented Lagrangian. But

because the frictional contact problem is no longer a classical minimization problem, the standard

approaches need to be extended. This article deals with two methods of this family, which are the

Alart and Curnier [2] method and the De Saxcé and Feng [1] method. These methods have been

already adapted to the solving of multicontact problems, in the LMGC90 software for the first

method and in the MULTICOR software for the second.

More precisely, the Alart and Curnier method consists in a Newton method to find the saddle

point of an augmented Lagrangian method where the convex of constraints depends on the solution.

*Correspondence to: S. Dumont, LAMFA, Université de Picardie Jules Verne - CNRS UMR 7352, 33, rue Saint-Leu,
80 000 Amiens, France.

†E-mail: serge.dumont@u-picardie.fr
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The method developed by De Saxcé and Feng is based on the theory of implicit standard materials

and the writing of a so-called bipotential, which is minimized using a gradient method.

In this article, we will consider the works of Feng et al. [3] to improve the resolution of the multi-

body problem, firstly, within the bipotential framework and then within the augmented Lagrangian

framework. The fundamental idea of this algorithm is to search the solution of the contact problem

no longer as the solution of a minimization problem but as the solution of the Euler equations of the

minimization problem. The equation is then solved using a Newton method.

In addition, finding a good stopping criterion remains a difficulty. Very often, algorithms are

stopped when the norm of the increment becomes sufficiently small. The main drawback of this

technique is that there is no guarantee on the quality of the numerical solutions. Moreover, the

solutions obtained by various algorithms are then difficult to compare. In this article, I propose

a stopping criterion that can be used with the whole methods presented. The main advantage of

this criterion lies in the fact that the mechanical quality of the solution is ensured (penetration,

Signorini–Coulomb contact law, and equation of motion), both locally at each contact point and

globally on the overall behavior.

The article is organized as follows: in the next part, I present the equations to be solved within

the discrete element method context, and the frictional contact law considered. In the third part,

I first present two classical methods to numerically solve the full problem, the first one based on

the bipotential theory and the second one on the augmented Lagrangian theory. Then, I show how

these methods can be enhanced using an appropriate Newton method, and a stopping criterion that

works for all these algorithms is provided. The last part of this article is devoted to the numerical

experiments to show the main properties of these algorithms.

2. PROBLEM SETTING

2.1. The equations of motion of a multicontact system

Classically (see, e.g., [6–9]), the motion of a multicontact system is described using a global

generalized coordinate q (for Np particles, q 2 R
Qd�Np , where Qd D 6 for a three-dimensional

(3D) problem and Qd D 3 for a two-dimensional (2D) problem . Because of the possible

shocks between particles, the equations of motion have to be formulated in terms of differential

measure equation:

Md Pq C Fint.t , q, Pq/dt D Fext.t , q, Pq/dt C dR (1)

where

� M represents the generalized mass matrix;

� Fint and Fext represent the internal and external forces, respectively;

� dR is a nonnegative real measure, representing the reaction forces and impulses between

particles in contact.

For the sake of simplicity and without loss of generality, only the external forces are considered

in the following. The internal forces are neglected because the general case can be easily derived

through a linearizing procedure.

Then, for the numerics, Equation (1) is integrated on each time interval Œtk , tkC1� and approxi-

mated using a � -method with � 2�1
2

, 1� for stability reasons (see [10, 11]).

Therefore, the classical approximation of Equation (1) yields
´

M. PqkC1 � Pqn/ D �t.�FkC1 C .1 � �/Fk/ C RkC1

qkC1 D qk C �t� PqkC1 C �t.1 � �/ Pqk

(2)

We will denote Pqfree
k

D Pqk C M
�1�t.�FkC1 C .1 � �/Fk/ the free velocity (velocity when the

contact forces vanish). Then, the first equation in (2) becomes

PqkC1 D Pqfree
k C M

�1RkC1 (3)
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To write the contact law, for a contact c between two particles (1 6 c 6 Nc , where Nc is the total

number of contact), we define the local–global mapping
²

uc D P �.q, c/ Pq

R D P.q, c/rc
(4)

where uc is the local relative velocity between the two bodies in contact and rc is the local contact

force (uc , rc 2 R
d where d is the dimension of the problem, and P � is the transpose of matrix P ).

We also denote P .q/ the total-global mapping, for u and r in R
d�Nc (vectors composed of all

relative velocities and contact forces, respectively):
²

u D P
�.q/ Pq

R D P .q/r
(5)

In the discretization, a prediction of q is computed to estimate the mapping P .q/ (see

Equations (18) and (19) in the following).

Using Equations (2) and (5), we can write the discretization of the motion of a multicontact

system, with frictional contact between particles , as
´

QukC1 D Qufree
k

C W rkC1

lawc

�

Quc
kC1

, rc
kC1

�

D true 8c 2 ¹1, 2, : : : , Ncº
(6)

where W D P
�
M

�1
P is the Delassus operator, and Qufree

k
D P

� Pqfree
k

is the relative free velocity.

Notice that a Newton impact law is also considered (see [8] and Equation (20) in the following),

which modify uk and ufree
k

by Quk and Qufree
k

, respectively.

The second equation in (6) is the implicit frictional contact law that is in our case the classical

Signorini condition and Coulomb’s friction law.

2.2. The frictional contact law

In the local coordinates system defined by the local normal vector n and the tangential vector t ? n,

any element u and r can be uniquely decomposed as u D unn C ut and r D rnn C rt , respectively.

Using these coordinates, we can state the unilateral contact law using the Signorini’s conditions

(see Figure 1 for a graphical representation):

un > 0, rn > 0, unrn D 0 (7)

On the other hand, the Coulomb’s law of friction can be stated using the algorithmic form

(see Figure 2 for a graphical representation):
2

6

6

6

6

4

If rn D 0 then un > 0 ! No contact

Else if rn > 0 and krtk < �rn then u D 0 ! Sticking

Else rn > 0 and krtk D �rn then 9� > 0 such that ut D � rt

krt k
! Sliding

(8)

Contact

No contact

Figure 1. The Signorini conditions.
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Sliding

Sticking

Figure 2. The Coulomb’s conditions.
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Figure 3. The Coulomb’s cone.

For a given friction coefficient �, let K� be the isotropic Coulomb’s cone, which defines the set

of admissible forces (Figure 3):

K� D ¹r D rnn C rt W krtk � �rn 6 0º (9)

The previous law can also be written as follows:
2

6

6

6

6

4

If rn D 0 then un > 0 ! No contact

Else if r 2 I.K�/ then u D 0 ! Sticking

Else rn > 0 and r 2 B.K�/ then 9� > 0 such that ut D � rt

krt k
! Sliding

(10)

where I.K�/ and B.K�/ are, respectively, the interior and the boundary of the cone K�.

3. NUMERICAL RESOLUTION OF THE CONTACT/FRICTION PROBLEMS

I will describe in this section the numerical algorithms that will be considered in what follows.

Generally, to solve problem (6), the numerical algorithms considered are based on two levels: the

global level where the equations of motion are solved and the local level devoted to the resolution

of the contact law.

3.1. Resolution of the global problem : the nonlinear Gauss–Seidel (NLGS) method

In this paragraph, I describe the algorithm used at the global level to solve problem (6). Following

the ideas of Jean and Moreau [7,8,12], I use the NLGS algorithm, which is the most commonly used.

It consists in considering successively each contact until the convergence. The numerical criterion

used to state the convergence will be studied later in this article.
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This method is intrinsically sequential, but it is possible to use a simple multithreading technique

that consists in splitting the contact loop onto several threads. This method has been studied in [13]

in the case of a local algorithm based on the augmented Lagrangian method.

Notice that it is also possible to consider at this stage more sophisticated methods such as

conjugate gradient-type methods (see, e.g., [11]). However, these techniques do not improve

significantly the speedup of the convergence. That is why, they are not considered in the following.

3.2. The standard bipotential-based method (SBP)

In this paragraph, I provide a first method to solve the contact problem at the local level (contact

point between two particles). The method is based on the notion of bipotential, introduced by de

Saxcé et al. [1].

Using the bipotential framework, we can easily show (see, e.g., [1, 14–16]) that a couple .u, r/

verifies the Signorini–Coulomb contact rules if and only if

bc.v, s/ C v � s > bc.u, r/ C u � r D 0 8v, s (11)

where bc is the bipotential

bc.�u, r/ D ‰RC.un/ C ‰K�
.r/ C �rnkutk (12)

and ‰C stands for the indicator function of the set C : ‰C .x/ D 0 if x 2 C , ‰C .x/ D C1 if x … C .

Consequently, the contact law can be written in a compact form of an implicit subnormality rule

(or a differential inclusion rule):

� u 2 @rbc.�u, r/ (13)

Then, for a contact c, at an NLGS iteration i , knowing the relative velocity Quc,i , the algorithm

to compute rc,iC1 from rc,i is based on the minimization of the bipotential (see, e.g.,[14]), using

the inequality

bc

�

�Quc,i , r
�

C Quc,i � r > bc

�

�Quc,i , rc,iC1
�

C Quk,i � rc,iC1 8r 2 K� (14)

or g.r/ > g
�

rc,iC1
�

, 8r 2 K�, if we denote

g.r/ D ‰RC

�

Quc,i
n

�

C ‰K�
.r/ C �rnkQu

c,i
t k C Quc,i � r (15)

The minimization of (14) is classically realized using a projected gradient method (Uzawa

method) without considering the singular term ‰RC

�

Quc,i
n

�

. This minimization can also be viewed

as the search of the proximal point of the augmented force r � � Qu, with respect to the function

r 7! �bc .�Qu, r/ (see, e.g., [1, 14, 15]):

r D prox.r � � Qu, �bc.�Qu, r//

More precisely, the Uzawa method leads to compute the augmented force �c,iC1 D rc,i �

�r Qg.rc,i /, where Qg is the differential part of g:

r Qg
�

rc,i
�

D rr

�

�rnkQu
c,i
t k C Quc,i � r

�

D �kQu
c,i
t kn C Quc,i

and to consider the force at the next step as a projection of the augmented force onto the set of

admissible force rc,iC1 D proj.�c,iC1, K�/, which provides Equations (21) and (22) in the resolu-

tion algorithm of the global problem presented in the following paragraphs. The proj.�c,iC1, K�/

stands for the orthogonal projection over the convex K�, which can be computed exactly (see [14]).

This algorithm will be referred as the SBP method thereafter.

For the sake of simplicity, we denote hereafter the descent direction

Dc,i D �kQu
c,i
t kn C Quc,i

5



Remark 1

A first improvement of this method could be to compute the optimal step �c,i . To do so, we have to

minimize

� 7! g
�

rc,i � �Dc,i
�

(16)

or, more precisely,

� 7! ‰RC

�

Quc,i
n

�

C ‰K�

�

rc,i � �Dc,i
�

C �
�

rc,i
n � �Dc,i � n

�

kQu
c,i
t k C Quc,i �

�

rc,i � �Dc,i
�

D ‰RC

�

Quc,i
n

�

C ‰K�

�

rc,i � �Dc,i
�

� �Dc,i �
�

�kQu
c,i
t kn C Quc,i

�

C C te

D ‰RC

�

Quc,i
n

�

C ‰K�

�

rc,i � �Dc,i
�

� �kDc,ik2 C C te
(17)

We can observe that this method does not permit to choose an optimal parameter � because g, as

a function of �, is linear, excepted in the case where it exists � > 0 such that rc,i � �Dc,i … K�.

A solution could be to modify the function g, for example, by replacing Quc,i by a prediction of

Quc,iC1 using the equations of the dynamics. Unfortunately, this method does not provide satisfying

numerical results.

Then, the SBP algorithm can be written (see, e.g., [16]):

� Loop on the step time k

– Prediction of a position (for the computation of the local–global mapping):

qkC 1
2

D qk C
�t

2
Pqk (18)

– Initialization of the motion: Pq0
kC1

D Pqfree
k

(initialization of the contact forces with R D 0).

– Loop on i > 0 (NLGS), until convergence

* Loop on the contacts c:

� Computation of the local–global mapping

Pu� D P �
�

qkC 1
2

, c
�

Pqk I Puc,Ci D P t
�

qkC 1
2

, c
�

Pqi
kC1 (19)

� Newton shock law

Quc,i
n D

uc,Ci
n C enu�

n

1 C en

I Qu
c,i
t D

u
c,Ci
t C enu�

t

1 C et

(20)

� Prediction of the reaction:

�c,iC1 D rc,i � �
h

Qu
c,i
t C

�

Quc,i
n C �kQu

c,i
t k

�

n
i

(21)

� Correction of the reaction:

rc,iC1 D proj
�

�c,iC1, K�

�

(22)

� Actualization of the generalized displacement:

PqiC1
kC1

D Pqfree
k C M

�1

 

X

˛6c

P
�

qkC 1
2

, ˛
�

r˛,iC1 C
X

˛>c

P
�

qkC 1
2

, ˛
�

r˛,i

!

(23)

* End of the loop on contacts c.

– End of the loop on i of NLGS. When the convergence is reached, actualization of the velocity

PqkC1 D PqiC1
kC1

– Actualization of the generalized displacements: qkC1 D qkC 1
2

C �t
2

PqkC1

� End of the loop on the step time k.
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Remark 2

Notice that only one iteration of the Uzawa algorithm at the local level is considered. Various pre-

vious studies (see, e.g., [17]) show that there is no significant improvement of the method if several

iterations of the Uzawa algorithm are considered at this stage.

3.3. Newton method and enhanced bipotential method (EBP)

I introduce in this section a Newton method to speed up the convergence in the computation of the

solution. This method has been already used, especially in the case of the augmented Lagrangian

method developed by Alart et al. [2], and the ideas presented in this article follow those of

Feng et al. [3] and have been adapted to the problem of the discrete element method. The main

idea of this technique is to find the solution of the optimization problem, not as a minimum but as

a zero of a function, using the Euler equation (or the saddle point) of the problem. Then, a standard

Newton method can be developed to solve this Euler equation.

The technique is first described in the case of the bipotential framework and will be adapted to

the augmented Lagrangian method farther.

We recall that the local problem to be solved, for each contact c, can be written as

8

ˆ

ˆ

<

ˆ

ˆ

:

Quc
kC1 D Qu

c,free

k
C

Nc
X

˛D1

Wc˛r˛

rc D proj.�c , K�/

8c D 1, : : : , Nc (24)

where �c D rc � �
�

�kQuc
t kn C Qu

�

is the augmented reaction (see (21)), and Wc˛ D

P �
�

qkC 1
2 ,c

�

M
�1P

�

qkC 1
2 ,˛

�

is the local Delassus operator.

This problem can be written equivalently

8

ˆ

ˆ

<

ˆ

ˆ

:

Quc
kC1 � Qu

c,free

k
�

Nc
X

˛D1

Wc˛r˛ D 0

rc � proj.�c , K�/ D 0

8c D 1, : : : , Nc (25)

Reminding now that we want to use a Newton algorithm to solve theses equations inside the

NLGS loop on the variable i , we define now, for each contact c D 1, : : : , Nc , the function

f i
c .�/ D

0

B

B

B

@

Quc,i � Qu
c,free

k
�

Nc
X

˛D1

Wc˛r˛,i

Zc,i

1

C

C

C

A

where

� the vector Zc is the error on the prediction of the reaction

Zc,i
�

rc,i , Quc,i
�

D rc,i � proj
�

�c,i , K�

�

(26)

� �c D
�

rc,i , Quc,i
�t

� � D .�1, �2, : : : , �Nc
/t

Remark 3

The first equality in the relation f .�/ D 0 is the equation of motion for the bodies in contact, and

the second relation is the frictional Coulomb law between the bodies in contact, written within the

bipotential framework.
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Then, we have to write a Newton algorithm to solve the problem f .�/ D 0. This algorithm

can be written, for a contact c, by substituting Equations (21) and (22) in algorithm (SBP) by

the following:

� Initialization:

�0
c D

�

r0 D rc,i , v0 D Quc,i
�t

, ` D 0

� Loop on `, until convergence:

– �c
`

D r` � �
�

�kv`
t kn C v`

�

– Resolution:

�

@fc

@�c

�

�`
�

�

��c D �fc

�

�`
�

(27)

– Actualization: �`C1
c D �`

c C ��c

� End of the loop on ` until convergence, Quc,iC1 D v` and rc,iC1 D r`.

Remark 4

This algorithm needs more than one iteration at each NLGS iteration to be efficient. As a conse-

quence and compared with the Uzawa algorithm, the solution in the Newton algorithm is controlled

by both the local (iteration `) and global convergence criteria (iteration i , see [3, 17]).

The local convergence criterion for the Newton algorithm is defined by

"c
Newt.�`/ D kv` � u

c,free

k
� W r`k C kr` � proj

�

r`, K�

�

k (28)

This criterion measures fc.�`/ that has to be sufficiently small.

The matrix Œ@fc=@�c.�/� represents the tangential matrix of the local equations for the contact c.

This matrix is of dimension 6 � 6 for a 3D problem and 4 � 4 for a 2D problem. For a 3D problem,

the general form of this matrix is the following:

�

@fc

@�c

.�/

�

D

�

�W Id3�3

Ac Bc

�

(29)

where

Ac D

�

@Zc

@rn

ˇ

ˇ

ˇ

ˇ

@Zc

@rt1

ˇ

ˇ

ˇ

ˇ

@Zc

@rt2

�

Bc D

�

@Zc

@vn

ˇ

ˇ

ˇ

ˇ

@Zc

@vt1

ˇ

ˇ

ˇ

ˇ

@Zc

@vt2

�

(30)

The matrices Ac and Bc take different forms according to the contact status:

� First case: sliding contact.

In that case, we have

�k�tk > ��n k�tk > ��n

then

Proj.� , K�/ D � �

�

k�tk � ��n

1 C �2

��

�t

k�tk
� �n

�

and

Zc D �
�

�kvk
t kn C vk

�

C

�

k�tk � ��n

1 C �2

��

�t

k�tk
� �n

�

8



The computation of the derivatives of Zc provides the matrices Ac and Bc :

�
@Zc

@rn

D �
�

1 C �2

�

�t

k�tk
� �n

�

�
@Zc

@rt1

D
�t1

.1 C �2/k�tk

�

�t

k�tk
� �n

�

C
k�tk � ��n

1 C �2

�

t1

k�tk
�

�t1

k�tk3
�t

�

�
@Zc

@rt2

D
�t2

.1 C �2/k�tk

�

�t

k�tk
� �n

�

C
k�tk � ��n

1 C �2

�

t2

k�tk
�

�t2

k�tk3
�t

�

�
@Zc

@vn

D �n C
��

1 C �2

�

�t

k�tk
� �n

�

�
@Zc

@vt1

D �

�

t1 C �
vt1

kvtk
n

�

�
�

1 C �2

0

B

@

�

�t1

k�t k
�

�2vt1

kvt k

�

�

�t

k�t k
� �n

�

C

.k�tk � ��n/
�

t1
k�t k

�
�t1

k�t k3 �t

�

1

C

A

�
@Zc

@vt2

D �

�

t2 C �
vt2

kvtk
n

�

�
�

1 C �2

0

B

@

�

�t2

k�t k
�

�2vt2

kvt k

�

�

�t

k�t k
� �n

�

C

.k�tk � ��n/
�

t2
k�t k

�
�t2

k�t k3 �t

�

1

C

A

For a 2D problem, these computations yield the following:

�
@Zc

@rn

D
�

1 C �2
.�n � �r t/

�
@Zc

@rt

D
1

.1 C �2/
.���r n C t/

�
@Zc

@vn

D
�

1 C �2
.n C ��r t/

�
@Zc

@vt

D
��

1 C �2

�

.�v C �r/n C �.1 � �r�v/t
�

where �v D sign.vt / and �r D sign.�t /.

� Second case: sticking contact.

In that case, we have

�k�tk > ��n k�tk < ��n

then

Zc D �
�

�kvk
t kn C vk

�

and the computation of the derivatives of Zc reads

�Ac D 03�3

�
@Zc

@vn

D �n

�
@Zc

@vt1

D ��
vt1

kvtk
n C �t1

�
@Zc

@vt2

D ��
vt2

kvtk
n C �t2

9



For a 2D problem, these computations lead to the following:

�Ac D 02�2

�
@Zc

@vn

D �n

�
@Zc

@vt

D ���vn C �t

� Third case: no contact.

In that case, the matrices Ac D Id3�3 and Bc vanish, and �`C1
c D

²

0

vk

³

3.4. Resolution of the linear system

Generally, the drawback of a Newton method is the computational cost of the linear system to

be solved at each iteration. Here, the particular form of the tangent matrix allows the use of a

condensation technique. More precisely, the linear system to be solved can be written as

�

�W Id3�3

Ac Bc

��

ır

ıv

�

D

�

�f

�g

�

(31)

The first equation yields ıv D �f C W ır, and introducing this equality in the second equation

leads to solve the linear system

.Ac C BcW /ır D �g C Bcf (32)

This property halves the size of the linear system to be solved.

Remark 5

A drawback of the bipotential framework is that, due to its specificity, it is rather difficult to con-

sider fully coupled problems, where the contact law and another phenomena, such as electricity or

thermal effects, are strongly coupled. The other method presented in this article has a better prop-

erty from this point of view because it is based on a more standard mathematical background in the

theory of optimization (see, e.g., [18]).

3.5. Standard augmented Lagrangian (SAL) and enhanced augmented Lagrangian (EAL) method

In [2], Alart et al. proposed another method to solve the frictional contact problem. This method

has been also used with various improvement (e.g., parallelization and conjugate gradient method)

to solve multicontact problems (see, e.g., [11, 13, 19–22]). Even if the coupled frictional contact

problem is not an optimization problem anymore, it is always possible to formally formulate a

‘quasi’-optimization problem, for which the constraint set depends on the normal components of

the solution as a parameter. The solution is then searched as a saddle point of a quasi-augmented

Lagrangian of the problem.

More precisely, the global problem on all unknowns that has to be solved at each time step

(in place of Equation (24)) has the following form:
8

<

:

u D ufree C W r

r > 0, u > 0, r � u D 0
(33)

To solve this problem, for a given r 2 R
3�Nc , one can define the Cartesian product of infinite

half-cylinder with section equal to the ball B.0, �rc/ of radius �rc by:

C.�r/ D

Nc
Y

cD1

R
C �B.0, �rc/

10



and then, the granular-type frictional contact problem is given by

r 2 argminr2C.�r/

1

2
r � W r C ufree � r D argminr2C.�r/J.r/ (34)

and the projected gradient method to minimize this problem reads (for each iteration i of the NLGS

algorithm) as follows:

riC1 D proj
�

ri � �
�

ufree C W ri
�

, C
�

�riC1
��

(35)

or riC1 D proj
�

� iC1, C
�

�riC1
��

, with � iC1 D ri � �ui , ui D ufree C W ri . This algorithm will be

referred to hereinafter as the SAL method.

Notice that this method is very close to the SBP method. More precisely, for a contact c, only

the descent direction Quc,i C �kQu
c,i
t kn in (21) is replaced by Quc,i , and the projection rc,iC1 D

proj
�

�c,iC1, K�

�

in (22) is replaced by

8

ˆ

<

ˆ

:

rc,iC1
n D max

�

0, �c,iC1
n

�

r
c,iC1
t D

�
c,iC1
t

k�
c,iC1
t k

min
�

�rc,iC1
n , k�

c,iC1
t k

�

Remark 6

It is also possible to see the algorithm developed from the bipotential formalism as a slight modi-

fication of the algorithm defined previously. Indeed, it is only necessary to change the set C.r/ by

K D

Nc
Y

cD1

K�, and to change the descent direction Quc,i by Quc,i C �kQu
c,i
t kn, which remains a descent

direction for the SAL method, because

rJ
�

rc,iC1
�

� Dc,i D �kQuc,ik2 � Quc,i �
�

�kQu
c,i
t k

�

n D �kQuc,ik2 � �uc,i
n kQu

c,i
t k

which is negative because � > 0.

Then, acting by analogy, we can develop a Newton method to find the minimum of J by seeking

the solution as a zero of the function Qf .�/ where, for a contact c,

Qfc.�/ D

0

B

B

B

@

Quc
kC1 � Qu

c,free

k
�

Nc
X

˛D1

Wc˛r˛

QZc

1

C

C

C

A

the vector QZc is the error on the prediction of the reaction

QZc
�

rc , Quc
kC1

�

D rc � proj
�

�c
kC1, Cc .�rc/

�

(36)

and the set Cc.�rc/ is the set of admissible forces Cc.�rc/ D R
C � B.0, rc/. This method will be

referred as the EAL method hereafter.

Then, in what follows, we have three cases in the computation of the tangent matrix
h

@ Qf =@�c
�

�`
�

i

:

� First case: sliding contact (�n > 0, �t > �rn)

We have proj.�c , Cc.�rc// D �nn C �t

k�t k
�rn and QZc D �vnn � �t

k�t k
�rn C rt .

11



The computation of the derivatives of QZc provides the matrices Ac and Bc :

�
@ QZc

@rn

D ��
�t

k�tk

�
@ QZc

@rt1

D t1 � �rn

�

t1

k�tk
�

�t1

k�tk3
�t

�

�
@ QZc

@rt2

D t2 � �rn

�

t2

k�tk
�

�t2

k�tk3
�t

�

�
@ QZc

@vn

D �n

�
@ QZc

@vt1

D ���rn

�

t1

k�tk
�

�t1

k�tk3
�t

�

�
@ QZc

@vt2

D ���rn

�

t2

k�tk
�

�t2

k�tk3
�t

�

For a 2D problem, these computations lead to

Ac D

�

0 0

���r 1

�

Bc D �

�

1 0

0 0

�

� Second case: sticking contact (�n > 0, �t < �rn)

proj.�c , Cc.�rc// D �c , and the computation of the derivatives of Zc reads

� Ac D 03�3

� Bc D �Id3�3

� Third case: no contact (�n 6 0)

proj.�c , Cc.�rc// D 0, then the matrices Ac D Id3�3 and Bc vanishes, and �`C1
c D

²

0

vk

³

3.6. The global stopping (convergence) criterion

I present in this paragraph the convergence criterion on the global NLGS iterations. This criterion,

developed from that proposed in [23], has been extended in the case of the Newton and bipoten-

tial (EBP) method, where some terms are naturally vanishing in the original Uzawa and bipotential

(SBP) method. This criterion "glob has been written in such a way that if the solution verifies that

"glob is sufficiently small, then this solution provides good properties of the equation of motion and

Signorini–Coulomb contact law. Consequently, this criterion remains valid for methods developed

using an augmented Lagrangian (e.g., SAL and EAL methods).

This criterion can be stated as:

"glob D
1

Nc

Nc
X

cD1

h

"c
motion C "c

proj C "bc
C "c

pen

i

(37)

where

� "c
motion D kQuc � Quc

mk where Quc
m D Quc,i C

PNc

˛D1 Wc˛r˛ , so "motion measures the error on the

equation of motion (see Equation (24), this term vanishes for the SBP and SAL methods);

� "c
proj D krc � proj.rc , K�/k is the error for the projection onto the Coulomb cone (vanishing

for the SBP method);

� "bc
D
ˇ

ˇ

ˇ
Quc �rc C�rc

nkQuc
t k
ˇ

ˇ

ˇ
is the absolute value of the bi-potential that has to vanish if and only

if the couple . Quc , rc/ verifies the Signorini Coulomb contact law (see formula 11);

� "c
pen D � min.0, Quc

n/ is the value of the penetration.

12



Remark 7

One can notice that it is absolutely necessary to verify in the criterion that there is no penetration,

because nothing in the presented algorithm ensures that this condition is satisfied at the end of the

loop. Moreover, if this condition is not satisfied, the other part of the bipotential can be negative or

can vanish, even if the couple . Qu, r/ is not a solution.

4. NUMERICAL RESULTS

I present in this section three numerical examples with an increasing complexity.

In these computations, the descent parameter � is taken in such a way that the result is optimal

in terms of time computing. Denoting N� D
mi mj

mi Cmj

1
�t

, for the SBP and the SAL methods, we have

chosen � D 0.6 N�, whereas for the EBP and the EAL methods, it is better the take � D N�. We recall

that it has been shown that, for the bipotential method (see, e.g., [3]) and the augmented Lagrangian

method (see, e.g., [11]), the parameter � has to verify � < 2 N� in order to ensure the convergence.

Generally, for these two methods, the convergence is very sensitive to this parameter. We will show

in the last paragraph of this study that for the EBP method, the parameter � can be taken in a large

range around the value N� without changing dramatically the convergence of the method.

At each iteration of the NLGS algorithm, the Newton algorithm is stopped either if the conver-

gence is obtained
�

"c
Newt 6 10�5

�

or if the number of iterations of the Newton algorithm reaches 100

when there is no convergence.

4.1. Ball sliding on a plane

In this first example, we consider a ball placed on a table with an initial horizontal velocity equal

to 1.5 m� s�1. The radius of the ball is equal to 5 � 10�3 m, and the friction coefficient between the

table and the ball is equal to � D 0.7. The time step of discretization is equal to 10�4 s. In this

experiment, the ball first slides on the table, and then, the ball rolls without sliding (Figure 4). The

global stopping criterion is equal to "glob D 10�10.

We can observe from these numerical results that the error coming from the projection is very

small for the four methods. The SBP method and the SAL method give very close results, both in

terms of quality (Figures 5 and 6) and in terms of time computing (Table I). Nevertheless, we can

notice that the time computing is smaller with the SAL method, because there is less computations

at each iteration (e.g., there is no term such as kQutk and projection is easier to compute). The EBP

method provides better results, both in terms of quality (Figure 7) and in terms of time computing

(6.5% better). The EAL method converges after the first NLGS iteration for every time step, and

consequently, this is the faster method on this example (7% faster than the SBP method).

4.2. Sedimentation of four balls in a box

In this second experiment, we consider the sedimentation of four balls of radii ranging from 4 �10�4

to 5�10�4 m (Figure 8). For the computations, the time step of discretization is equal to �t D 10�4 s,

and the NLGS loop is stopped either if the global stopping criterion on the NLGS method is equal

to "glob D 10�10 or after 5000 iterations if there is no convergence (this case never occurs in this

experiment). The friction coefficient between the balls and between the balls and the walls is equal

to � D 0.3.

Figure 4. Example 1—A ball is launched with an initial horizontal velocity (left). First, the ball slides. Then,
the ball rolls without slipping (right).
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Figure 5. Example 1—Convergence for the standard bipotential-based (SBP) method, fifth iteration. The
last two curves collapse. Thus, the total error is essentially due to the penetrations.

100 101
10−14

10−12

10−10

10−8

10−6

10−4

10−2

Non linear Gauss−Seidel iterations

E
rr

o
rs

SAL

Bi−potential

Penetration

Total

Figure 6. Example 1—Convergence for the standard augmented Lagrangian (SAL) method, fifth iteration.
The last two curves collapse. Thus, the total error is essentially due to the penetrations.

Table I. Comparison of the results obtained by the four methods on the
first example (after the 2000th time step).

Method Number of Error Total
NLGS iterations "glob CPU time (s)
(last time step) (last time step)

SBP 18 0.384 � 10�10 9.44

SAL 18 0.384 � 10�10 9.28
EBP 1 0 8.83

EAL 1 0.175 � 10�13 8.78

NLGS, nonlinear Gauss–Seidel; SBP, standard bipotential-based method;
SAL, standard augmented Lagrangian; EBP, enhanced bipotential method;
EAL, enhanced augmented Lagrangian.
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Figure 7. Example 1—Convergence for the Newton and enhanced bipotential (EBP) method, fifth iteration.

The curve corresponding to the penetrations does not appear because the penetrations are lower than 10�14.

Figure 8. Example 2—Sedimentation of four balls under the gravity effect.
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Figure 9. Example 2—Convergence of the nonlinear Gauss–Seidel iterations for the standard bipotential-
based (SBP) method (1000th time step). The last two curves overlap, showing that the global error is

governed by the error of penetration.
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Figure 10. Example 2—Convergence of the nonlinear Gauss–Seidel iterations for the standard augmented
Lagrangian (SAL) method (1000th time step). The last two curves overlap, showing that the global error is

governed by the error of penetration.
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Figure 11. Example 2—Convergence of the nonlinear Gauss–Seidel iterations for the Newton and enhanced
bipotential (EBP) method (1000th time step). The last two curves overlap, which shows that the global error

is governed by the error on the equations of motion.

Table II. Comparison of the results obtained by the four methods on the
second example (after the 1000th time step).

Method Number of Error Maximal Total
NLGS iterations "glob penetration CPU time (s)
(last time step) (last time step) (last time step)

SBP 305 0.949 � 10�12 0.310 � 10�11 2.92

SAL 301 0.980 � 10�12 0.340 � 10�11 2.87

EBP 161 0.635 � 10�12 0.641 � 10�12 2.59

EAL 158 0.973 � 10�12 0.208 � 10�19 2.43

NLGS, nonlinear Gauss–Seidel; SBP, standard bipotential-based method;
SAL, standard augmented Lagrangian; EBP, enhanced bipotential method;
EAL, enhanced augmented Lagrangian.
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Like in the previous simulations, the SBP and SAL methods provide very similar results

(Figures 9 and 10). For these two methods, we can notice that here the global error is essentially due

to the penetrations. The SAL method is 2% faster than the SBP method (Table II).

Results obtained by the EBP method are better (Figure 11), and here, the overall error is governed

by the error on the equations of motion. The EBP method is 11% faster than the SBP method, and

the penetration is five times smaller. In this example, the EAL is the faster method (16.8% faster

than the SBP method), and the penetration is very small (Figure 12).

4.3. Sedimentation of 500 balls

In this example, we consider the sedimentation of 500 balls (Figure 13) of radii ranging from

2.5 � 10�4 to 5 � 10�4 m, the time step of discretization is equal to �t D 5 � 10�5 s, and the NLGS

loop is stopped if the global estimator (37) verifies "glob 6 10�12 or after 5000 iterations if there is

no convergence. The friction coefficient between the balls, and between the balls and the walls is

equal to � D 0.3.

The results in Table III are obtained after 1000 time steps (t D 5 � 10�2 s).
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Figure 12. Example 2—Convergence of the nonlinear Gauss–Seidel iterations for the Newton and enhanced
augmented Lagrangian (EAL) method (1000th time step). The last two curves overlap, and the other one does

not appear on the figure because the corresponding errors are lower than 10�16.

Figure 13. Example 3—Zoom-in images of balls falling under the gravity effect. Initial configuration on the
left, final configuration on the right.
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Table III. Comparison of the results obtained by the four methods on the
third example (after the 1000th iteration, Nmax D 5000 iterations).

Method Number of Error Maximal Total
NLGS iterations "glob penetration CPU time (s)
(last time step) (last time step) (last time step)

SBP 5000 0.119 � 10�6 0.213 � 10�5 1092.95

SAL 5000 0.135 � 10�6 0.533 � 10�5 973.31

EBP 5000 0.156 � 10�6 0.286 � 10�6 854.31

EAL 5000 0.101 � 10�6 0.390 � 10�17 916.65

NLGS, nonlinear Gauss–Seidel; SBP, standard bipotential-based method;
SAL, standard augmented Lagrangian; EBP, enhanced bipotential method;
EAL, enhanced augmented Lagrangian.

Table IV. Comparison of the results obtained for various values of � D ˛ N�
on the third example (after the 500th iteration, Nmax D 5000 iterations)

˛ Number of NLGS Maximal Total CPU
iterations penetration time (s)

(last time step) (last time step)

5 652 0.110 � 10�6 65.08

2 414 0.177 � 10�6 55.86

1 750 0.149 � 10�6 53.95
1
2 812 0.634 � 10�6 78.43

1
5 667 0.219 � 10�5 176.14

NLGS, nonlinear Gauss–Seidel.
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Figure 14. Example 3—Convergence of the nonlinear Gauss–Seidel iterations for the standard bipotential-
based (SBP) method (1000th time step). The last two curves collapse.

In this example, the difference between methods SBP and SAL on the one hand, and the

methods EBP and EAL on the other hand is larger (Table III). We can notice that the SAL

method is 10.95% faster than the SBP method, and the EBP is 21.83% faster than the SBP method.

Here, the EAL method is no longer the faster one, but the penetration is very small (Figure 17).

Again, for the first two methods the global error is essentially due to the penetrations (Figures 14 and

15), whereas for the last two methods, the error is essentially due to the failure to follow precisely

the equations of motion (Figures 16 and 17).
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4.4. Discussion on the descent parameter �

We consider again the third example solved by the Newton and bipotential method ("tot D 10�8,

maximal number of iterations of Newton method equal to 100, "Newt D 10�5, 500th time step).

Here, we take N� D
mi mj

mi Cmj

1
�t

, and we consider � D ˛ N�, for various values of ˛.

These results show one of the main advantage of the EBP method. Indeed, one can notice that in

Table IV, the CPU time and the quality of the solution are very similar if ˛ is equal to 1 or 2. Even if

˛ is equal to 5, the convergence is not badly damaged. One remains that for this value of ˛, the SBP

and the SAL methods are no longer convergent . If the parameter ˛ is small, the method converges,

but the convergence rate is very small. One can notice that the EAL method is much more sensitive

to the parameter ˛, essentially in the convergence of the Newton method. This phenomena can be

explained by the fact that the EAL method differs from the SAL method only if the augmented

reaction � iC1 is outside the admissible set Cc

�

�riC1
�

.
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Figure 15. Example 3—Convergence of the nonlinear Gauss–Seidel iterations for the standard augmented
Lagrangian (SAL) method (1000th time step). The last two curves collapse.
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Figure 16. Example 3—Convergence of the nonlinear Gauss–Seidel iterations for the Newton and enhanced
bipotential method (EBP) (1000th time step). The last two curves collapse.
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Figure 17. Example 3—Convergence of the nonlinear Gauss–Seidel iterations for the Newton and enhanced
augmented Lagrangian (EAL) method (1000th time step). The last two curves collapse. The curve

corresponding to the penetrations does not appear because the penetrations are lower than 10�14.

5. CONCLUSION

The results presented show that, using an appropriate Newton method, it is possible to improve the

computational time to more than 20% compared with the standard methods . Moreover, one princi-

pal drawback of that type of methods, that is, the dependance of the results on the parameter �, does

not exist anymore .

On the other hand, the stopping criterion developed appears to be efficient. It permits to have

a unified criterion to compare the methods. Moreover, it ensures the mechanical quality of the

solutions.

In the future, this method will be extended to the case of a contact law with adhesion. The diffi-

culty here is the writing of appropriate local equations to model the adhesion. Even in the case of

a frictional contact law, one can notice that the local equations that have to be solved come from a

choice, and the efficiency of the method strongly depends on this choice.
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