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ON THE STABILITY OF A RELATIVE VELOCITY
LATTICE BOLTZMANN SCHEME

FOR COMPRESSIBLE NAVIER-STOKES EQUATIONS

FRANÇOIS DUBOIS, TONY FÉVRIER, AND BENJAMIN GRAILLE

Abstract. This paper studies the stability properties of a two dimensional rela-
tive velocity scheme for the Navier-Stokes equations. This scheme inspired by the
cascaded scheme has the particularity to relax in a frame moving with a velocity
field function of space and time. Its stability is studied first in a linear context
then on the non linear test case of the Kelvin-Helmholtz instability. The link with
the choice of the moments is put in evidence. The set of moments of the cascaded
scheme improves the stability of the d’Humières scheme for small viscosities. On
the contrary, a relative velocity scheme with the usual set of moments deteriorates
the stability.

Introduction

The lattice Boltzmann schemes have been successfully used for the simulation of the
compressible Navier-Stokes equations in two or three dimensions [1, 3, 6, 5]. This
method aims to mimic the microscopic behaviour in order to simulate some macro-
scopic problems. The algorithm consists in evaluating some particle distributions.
The particles, moving from node to node of a lattice, undergo a phase of collision
and a phase of transport. Different collision operators have been proposed for the
simulation of the Navier-Stokes equations. The simplest one is the single relaxation
time operator [2, 1, 3, 6] also called BGK. An alternative called the multiple relax-
ation times (MRT) operator [5, 14] has been proposed. During the collision, some
moments, linear combinations of the particle distributions, relax towards the equi-
librium with a priori different velocities. It contains the particularity to offer more
degrees of freedom to fix the different parameters as the viscosities. The multiple
relaxation times approach is thus more flexible than the BGK. Both schemes have
been well studied particularly in terms of stability [14]. They still encounter some
instability features as the viscosities tend to zero that limits high Reynolds number
simulations.
In 2006, a cascaded scheme improving the stability for low viscosities has been pre-
sented [12]. Its relaxation occurs in a frame moving with the fluid velocity. To
understand the positive features of this scheme, a general notion of relative velocity
schemes was defined [8]. Their relaxation is made for a set of moments depending on
a velocity field function of space and time that is the velocity fluid for the cascaded
scheme [8] and zero for the d’Humières scheme [5]. These relative velocity schemes
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are not restricted to the simulation of the Navier-Stokes equations: they are defined
for an arbitrary number of conservation laws. Their consistency has already been
studied for one and two conservation laws [8, 10, 9] but the same reasoning holds for
an arbitrary number of conservation laws.
The purpose of this contribution is to present some numerical stability results of the
two dimensional nine velocities (D2Q9) relative velocity scheme for the compressible
Navier-Stokes equations. We want to characterize the influence of the relative velocity
and the link with the moments choice: the polynomials defining the moments of the
cascaded scheme are different from the usual ones and may act on the stability. In
a first part, we recall the basis of the relative velocity schemes. We then present the
relative velocity D2Q9 we are interested in. The second part exhibits the results of
stability, first in a linear context (L2 von Neumann notion) and then for a non linear
test case, the Kelvin-Helmholtz instability. It puts in evidence the link between the
relative velocity, the choice of the polynomials defining the moments and the stability.

1. Description of the scheme

We first introduce the relative velocity scheme for an arbitrary number of dimensions
and velocities. We then particularize it to the case of two dimensions and nine
velocities.

1.1. The relative velocity DdQq scheme
This section presents the derivation of the relative velocity lattice Boltzmann schemes
introduced in [8] and inspired by the cascaded scheme [12]. Let L be a cartesian lat-
tice in d dimensions with a typical mesh size ∆x. The time step ∆t is linked to the
space step by the acoustic scaling ∆t = ∆x/λ for λ ∈ R the velocity scale. We in-
troduce V = (v0, . . . ,vq−1) a set of q velocities of Rd. This defines the scheme called
DdQq. We assume that for each node x of the lattice L, and each vj in V , the point
x + vj∆t is still a node of L. The DdQq scheme computes a particle distribution
f = (f0, . . . , fq−1) on the lattice L at discrete values of time. An iteration of the
scheme consists in two phases: the relaxation that is non linear and local in space,
and the linear transport solved exactly by a characteristic method.

The relaxation phase reads more easily in a moments basis using the d’Humières
framework [5]. A velocity field ũ(x, t) that depends on space and time being given,
we define the matrix of moments M(ũ) by

M(ũ)kj = Pk(vj − ũ), 0 6 k, j 6 q−1,

where (P0, . . . , Pq−1) are some polynomials of R[X1, . . . , Xd]. This matrix of moments,
supposed to be invertible, defines the moments m(ũ) = (m0(ũ), . . . ,mq−1(ũ)) by the
relation

(1) m(ũ) = M(ũ) f ,

where mk(ũ) is the kth moment.
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The relative velocity schemes use a diagonal relaxation phase in the shifted moments
basis

(2) m?
k(ũ) = mk(ũ)+sk(m

eq
k (ũ)−mk(ũ)), 0 6 k 6 q−1,

where meq
k (ũ) is the kth moment at equilibrium and sk, the relaxation parameter as-

sociated with the kth moment for 0 6 k 6 q−1. Some of these moments are conserved
by the relaxation: they are associated with relaxation parameters equal to zero. The
equilibrium derives from a vector of distribution functions at the equilibrium f eq

independent of the velocity field ũ, only dependent of the conserved moments.

(3) meq(ũ) = M(ũ)f eq.

The inverse of the matrix of moments is used to return to the distributions

(4) f? = M−1(ũ)m?(ũ).

The transport phase spreads the particle distributions on the neighbouring nodes

fj(x, t+ ∆t) = f?j (x− vj∆t, t), 0 6 j 6 q−1.

This framework embeddes the d’Humières scheme for ũ equal to 0 and the cascaded
scheme for ũ equal to the fluid velocity and a particular set of moments [8]. In the
following, when ũ is specified, we call the associated relative velocity scheme the
scheme relative to ũ.

1.2. The study framework: the relative velocity D2Q9 scheme
The purpose of this section is to introduce the scheme whose stability properties are
investigated: the relative velocity D2Q9 scheme with two conservation laws on the
density and the momentum

ρ =
∑
j

fj , qα =
∑
j

vαj fj , 1 6 α 6 d.

for the compressible Navier-Stokes equations. We expose its features and the differ-
ent degrees of freedom used to check its stability. We put a particular attention on
the definition of the moments.

For this two-dimensional scheme, nine velocities are involved: they are defined by

v = {(0, 0), (λ, 0), (0, λ), (−λ, 0), (0,−λ), (λ, λ), (−λ, λ), (−λ,−λ), (λ,−λ)},
with λ ∈ R the velocity scale. These velocities are also represented on the figure 1.

We need to deal with the set of the moments and the equilibrium to completely
characterize the scheme. Historically the D2Q9 scheme has been mainly used with
the following set of moments

(5) 1, X, Y,X2 + Y 2, X2 − Y 2, XY,X(X2 + Y 2), Y (X2 + Y 2), (X2 + Y 2)2,

or its orthogonalized analogue for the simulation of the Navier-Stokes equations [14].
They have been chosen because of their physical meaning: they involve the density,
the momentum, the energy, the diagonal and off-diagonal components of the stress
tensor, the heat flux and the square of the energy. Nevertheless, the D2Q9 cascaded
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Figure 1. The D2Q9 velocities.

scheme [12], that seems to improve the stability at low viscosities, has brought to
light an other set of moments given by

(6) 1, X, Y,X2 + Y 2, X2 − Y 2, XY,XY 2, Y X2, X2Y 2.

This scheme has been written as a relative velocity scheme for the moments (6) and
the fluid velocity [8]. The relaxation of (5) and (6) are equivalent in the d’Humières
framework corresponding to ũ = 0 (section 2.2). However, this is not true any more
when ũ is different from 0. This point naturally leads to the question: does the set of
moments have an influence on the stability properties of the relative velocity scheme?
Giving some experimental rudiments of an answer is the purpose of this study.

That’s why we introduce two sets of moments tuned by a parameter α ∈ R:

(7) 1, X, Y,X2+Y 2, X2−Y 2, XY,X(αX2+Y 2), Y (X2+αY 2),
α

2
(X4+Y 4)+X2Y 2,

and

(8) 1, X, Y,X2 + Y 2, X2− Y 2, XY,XY 2 +α(X2 + Y 2), Y X2 +α(X2 + Y 2), X2Y 2.

The moments (7) generalize those of the D2Q9 cascaded scheme corresponding to
α = 0 [8] given by (6) and the ones associated with α = 1 defined by (5). The intro-
duction of α results from the will not to restrict the study to two sets of moments.
This allows also to understand the impact on the stability of the X3 component when
α moves from 0 to 1. The choice of the moments (8), even if it seems strange because
it mixes some second and third order polynomials, improves the understanding of
the differences of stability between (5) and (6) for the relative velocity D2Q9 scheme.
Taking α = 0 also recovers the cascaded moments.



ON THE STABILITY OF A RELATIVE VELOCITY LATTICE BOLTZMANN SCHEME 5

The equilibrium may also have an influence on the stability. That’s why, denoting
u = q/ρ the fluid velocity, we introduce

(9) f eq
j (ρ,u) = ρωj

(
1 +

u.vj

c2
0

+
(u.vj)

2

2c4
0

− |u|
2

2c2
0

)
, 0 6 j 6 8,

and

(10) f eq
j (ρ,u) = ρωj

(
1 +

u.vj

c2
0

+
(u.vj)

2

2c4
0

− |u|
2

2c2
0

+
(u.vj)

3

6c6
0

−
|u|2(u.vj)

2c4
0

+
dj(u

x)2(uy)2

c4
0

)
, 0 6 j 6 8,

where d0 = −1/4, dj = 1/2, j = 1, . . . , 4, dj = −1, j = 5, . . . , 8, respectively corre-
sponding to the second order truncated equilibrium [6] and to the product equilibrium
used for the D2Q9 cascaded scheme [11]. The product equilibrium corresponds to the
fourth order truncation of the maxwellian equilibrium. Both equilibria allow to sim-
ulate the compressible Navier-Stokes equations whatever the velocity field ũ. Indeed,
the second order equivalent equations of the relative velocity schemes are indepen-
dent of ũ [8] and the Navier-Stokes equations are recovered by the D2Q9 d’Humières
scheme (ũ = 0) at the second order for small Mach numbers [7]. Let’s note that the
simulations of the section 3 have been also made for the incompressible analogue of
(9) and (10) used in [14]: same trends as those presented in the section 3 are obtained.

We choose to work with several two relaxation times schemes (TRT) to understand
the role of each polynomial of the moments: the one given by

(11) s = (se, sν , sν , se, se, se),

called TRT1 and the one given by

(12) s = (se, se, se, sp, sp, se),

called TRT2 where se, sν , sp ∈ R. Note that the TRT1 and the TRT2 differ from the
TRT schemes defined in [13] and based on the symmetry of the lattice. If all the
relaxation parameters are identical, we recover the BGK scheme [5].

Four degrees of freedom are tunable in this section: the moments, the vector of the
relaxation parameters s, the velocity field ũ and the equilibrium. The link between
these parameters and their influence on the stability is studied in the following.

2. Experimental study of linear stability

In this section, we study the linear von Neumann L2 stability of the relative velocity
D2Q9 scheme defined in the section 1.2. The influence of the moments according to
the choice of the velocity field ũ is the keypoint of the section. Our first interest
goes to the moments (6) and (5), respectively corresponding to α = 0 and α = 1
in (7), because they are usually chosen by the community [5, 14, 12, 17]. The first
subsection compares those two sets according to the velocity field parameter. We
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show that taking ũ = u, the velocity of the fluid, improves the stability if the
moments (6) are chosen, deteriorates it if the set (5) is taken. The second subsection
answers the following question: what is the better choice of moments (of α) in terms
of stability? A range of α is proposed and α = 0 is showed to be the most stable
choice.

2.1. Methodology: the von Neumann stability
The study of the relative velocity D2Q9 scheme is based on the L2 von Neumann
stability. This notion being adapted to linear contexts, we linearize the equilibria (9)
and (10) around a velocity V = |V |eiθ ∈ R2, θ ∈ R. Thus there exists a matrix E
so that

f eq = Ef .

Using (1,2,3,4) the linearized relaxation phase of the relative velocity schemes reads

f? = (I + M(ũ)−1DM(ũ)(E − I))f ,

where D = diag(s) is the diagonal matrix of the relaxation parameters. This expres-
sion holds for each node x of the lattice, the relaxation being local in space. One can
deduce the expression of the distribution after an iteration thanks to the transport
phase

fj(x, t+ ∆t) = [(I + M(ũ)−1DM(ũ)(E − I))f ]j(x− vj∆t, t), x ∈ L, t ∈ R.

In the Fourier space, the transport operator becomes local in space and is represented
by the diagonal matrix A whose diagonal components are given by ei∆tk.vj , 0 6 j 6
8. We can then define the amplification matrix L(ũ) = L(ũ,V ,k, s, α) = A(I +
M(ũ)−1DM(ũ)(E − I)), for k,V , ũ ∈ R2, s ∈ R9, α ∈ R, V ∈ R2 characterizing
a time iteration of the scheme in the Fourier space

f̂(k, t+ ∆t) = L(ũ)f̂(k, t), t ∈ R,

where f̂ is the Fourier transform of f . We want to determine the quantity

(13) max{|V |, max
k∈R2

r(L(ũ)) 6 1},

for some parameters s, ũ, α, a direction of linearization θ ∈ R and r(L(ũ)) the
spectral radius of L(ũ). It characterizes the set of the linearization velocities V for
which the scheme verifies the necessary condition of L2 stability max

k∈R2
r(L(ũ)) 6 1.

2.2. Comparison between the d’Humières scheme and the scheme relative
to the linearization velocity

We show that the schemes relative to ũ = V can improve or deteriorate the lin-
ear stability compared to the d’Humières scheme. The stability behaviour depends
strongly on the choice of the moments.

We compare the schemes relative to ũ = 0 and ũ = V for the two sets of moments
(5) and (6): we have α = 0, 1 in (7). We here restrict to the second order truncated
equilibrium (9) linearized around V . The variable of comparison is the largest stable
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n m 0 1 2 3 4 5 6 7
0 0.42 0.41 0.34 0.26 0.20 0.15 0.11 0.08
1 0.42 0.41 0.36 0.30 0.23 0.18 0.13 0.09
2 0.31 0.34 0.34 0.32 0.28 0.23 0.17 0.13
3 0.21 0.28 0.32 0.30 0.25 0.22 0.18 0.15
4 0.14 0.21 0.28 0.26 0.22 0.18 0.16 0.13
5 0.10 0.16 0.22 0.23 0.20 0.17 0.13 0.11
6 0.07 0.12 0.17 0.20 0.18 0.16 0.12 0.11
7 0.05 0.08 0.12 0.17 0.16 0.15 0.11 0.11

Table 1. Highest stable V = (V x, 0) in λ units for the d’Humières
scheme (ũ = 0), with α = 0 or α = 1, of equilibrium (9). se = 2−2−m

and sν = 2− 2−n.

n m 0 1 2 3 4 5 6 7
0 0.42 0.42 0.40 0.37 0.33 0.28 0.24 0.21
1 0.42 0.41 0.37 0.34 0.33 0.30 0.27 0.23
2 0.42 0.36 0.34 0.33 0.29 0.25 0.22 0.19
3 0.36 0.34 0.33 0.30 0.25 0.21 0.18 0.16
4 0.32 0.32 0.30 0.26 0.22 0.18 0.16 0.13
5 0.29 0.30 0.27 0.24 0.21 0.17 0.13 0.11
6 0.26 0.28 0.24 0.21 0.18 0.16 0.12 0.11
7 0.23 0.26 0.22 0.19 0.16 0.15 0.11 0.11

Table 2. Highest stable V = (V x, 0) in λ units for the scheme rel-
ative to ũ = V with α = 0 of equilibrium (9). se = 2 − 2−m and
sν = 2− 2−n.

velocity V (13) for a linearization direction θ equal to 0. We choose to deal with
the TRT1 (11) for se = 2 − 2−m and sν = 2 − 2−n where m,n,∈ N, 0 6 m,n 6 7.
The parameters se and sν respectively tune the bulk and the shear viscosities of the
Navier-Stokes equations. This choice of parameters allows to study the zero viscos-
ity limit by increasing m or/and n. The table 1 deals with the d’Humières scheme
for both sets of moments, the values for those two sets being identical. The tables
2 and 3 give analogous results for the scheme relative to ũ = V : they correspond
respectively to the moments with α = 0 (6) and α = 1 (5).

We notice the importance of the choice of the moments for the schemes relative to
ũ = V : stability areas are the biggest for α = 0 (6) (table 2) and the smallest for
α = 1 (5) (table 3) whatever the choice of s. The d’Humières scheme (ũ = 0, table
1) has smaller stability areas than the scheme relative to ũ = V with α = 0 and
bigger than the one with α = 1.
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n m 0 1 2 3 4 5 6 7
0 0.42 0.42 0.27 0.18 0.12 0.08 0.06 0.04
1 0.42 0.41 0.37 0.31 0.20 0.13 0.09 0.06
2 0.24 0.36 0.34 0.32 0.27 0.21 0.14 0.09
3 0.15 0.29 0.33 0.30 0.25 0.21 0.18 0.14
4 0.10 0.19 0.29 0.26 0.22 0.18 0.16 0.13
5 0.07 0.12 0.20 0.29 0.21 0.17 0.13 0.11
6 0.05 0.09 0.14 0.20 0.18 0.16 0.12 0.11
7 0.03 0.06 0.09 0.14 0.16 0.15 0.11 0.11

Table 3. Highest stable V = (V x, 0) in λ units for the scheme rel-
ative to ũ = V with α = 1 of equilibrium (9). se = 2 − 2−m and
sν = 2− 2−n.

The scheme relative to ũ = V with α = 0 provides the most important gain com-
pared to the d’Humières scheme when se or sν is close to 2 and the other is far from 2
(for one small and one large viscosity). Instead these areas are the most deteriorated
when α is equal to 1. When se and sν are close, the scheme presents stability areas
nearly independent of ũ. The case se = sν corresponds to the BGK scheme: the
velocity field ũ does not play any role since (3) is verified.

Finally, for the d’Humières scheme, the results are independent of the choice of the
moments. Indeed, the third order moment X(X2 + Y 2) is equivalent to λ2X +XY 2

on the velocity network [10]: its relaxation is then equivalent to the relaxation of
XY 2, X being a conserved component. The same reasoning holds for the symmet-
rical moment. The moment (X2 + Y 2)2 is equal to X2Y 2 + λ2(X2 + Y 2) on the
velocity network. Its relaxation is equivalent to relax X2Y 2 because X2 + Y 2 and
X2Y 2 are both in the eigenspace related to se for the TRT1.

All these trends are independent of the direction of linearization θ: the results are
similar for θ = π/8, π/4, π/3.

We now do the same job for the product equilibrium (10) restricting the study to
the choice α = 0. Note that the combination of these moments and this equilibrium
corresponds to the D2Q9 cascaded scheme [11, 8]. The TRT1 (11), tuned by se and
sν , and the direction θ = 0 are chosen. The table 4 is about the d’Humières scheme,
the table 5 corresponds to the scheme relative to ũ = V .

The results are analogous to the ones associated with the equilibrium (9). The scheme
relative to ũ = V has bigger linear stability areas than the d’Humières scheme
(ũ = 0) when α = 0. The gain is more important when the relaxation parameters
are far from each other. The velocity field impact is lightened when se and sν are close.
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n m 0 1 2 3 4 5 6 7
0 0.42 0.42 0.39 0.32 0.24 0.16 0.11 0.07
1 0.42 0.42 0.41 0.38 0.31 0.20 0.14 0.09
2 0.42 0.42 0.41 0.40 0.38 0.30 0.20 0.14
3 0.26 0.41 0.40 0.39 0.37 0.32 0.28 0.20
4 0.16 0.28 0.38 0.36 0.33 0.29 0.24 0.21
5 0.10 0.18 0.29 0.33 0.31 0.26 0.21 0.19
6 0.07 0.12 0.19 0.30 0.29 0.24 0.20 0.18
7 0.05 0.08 0.13 0.20 0.28 0.23 0.19 0.17

Table 4. Highest stable V = (V x, 0) in λ units for the d’Humières
scheme (ũ = 0), with α = 0, of equilibrium (10). se = 2 − 2−m and
sν = 2− 2−n.

n m 0 1 2 3 4 5 6 7
0 0.42 0.42 0.42 0.42 0.35 0.30 0.26 0.23
1 0.42 0.42 0.42 0.41 0.39 0.35 0.32 0.28
2 0.42 0.41 0.41 0.40 0.40 0.35 0.31 0.29
3 0.41 0.41 0.40 0.39 0.36 0.30 0.27 0.23
4 0.40 0.40 0.39 0.36 0.33 0.28 0.23 0.20
5 0.35 0.37 0.36 0.33 0.31 0.26 0.21 0.18
6 0.31 0.33 0.33 0.31 0.29 0.25 0.20 0.17
7 0.28 0.30 0.31 0.29 0.27 0.24 0.19 0.17

Table 5. Highest stable V = (V x, 0) in λ units for the scheme rel-
ative to ũ = V with α = 0 of equilibrium (10). se = 2 − 2−m and
sν = 2− 2−n.

We finally assess the influence of the equilibrium on the linear stability. Whatever
the choice of ũ and s, the equilibrium (10) provides bigger stability areas than the
truncated equilibrium (9). Particularly, the BGK scheme associated with (10) is
more stable than the one corresponding to (9).

As a conclusion, the most important fact of the study is the following: the scheme
relative to ũ = V for α = 0 is more stable than for α = 1. Instead choosing a scheme
relative to ũ = V with a “inappropriate” set of moments can deteriorate the stability.

2.3. Influence of the choice of the moments on the stability
The previous section has studied the stability of the relative velocity and d’Humières
schemes for two choices of α. This parameter seems to be crucial for the relative
velocity schemes. The purpose of this section is to see more precisely its influence
on the stability. It studies the stability properties of the schemes relative to ũ = 0
and ũ = V for a bigger range of α. We show numerically and justify that α = 0
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Figure 2. Draw of V x as a function of α for the d’Humières scheme
with the moments (7). Left: TRT1, se = 2 − 2−m and sν = 2 − 2−n.
Right: TRT2, se = 2− 2−m and sp = 2− 2−n.

constitutes the better choice of moments.

We are interested in the stability of the relative velocity schemes for both sets of
moments (7) and (8): the discussion carries on the choice of the parameter α ∈ R
characterizing these moments. Both equilibria leading to the same trends, we focus
on the truncated one (9) linearized around V = (V x, 0) ∈ R2. Two sets of relaxation
parameters s are used: the TRT1 (11) and the TRT2 (12) where se = 2 − 2−m and
sν = sp = 2− 2−n with (m,n) = (0, 3), (3, 0), (0, 7), (7, 0), (7, 7). The quantity (13) is
drawn as a function of α in [−1, 1]. A negative value of (13) means that the scheme
is unstable for all V .

We first focus on the d’Humières scheme corresponding to ũ = 0. The figures 2 and
3 represent respectively the draws associated with the moments (7) and (8). On each
figure, the left draw is associated with the TRT1 and the right one with the TRT2.

For the moments (7), the draws are independent of α whatever the TRT chosen and
s. For the moments (8), the draw corresponding to the TRT1 is independent of α
unlike the TRT2. The figure associated with the TRT2 induces to choose α = 0:
it corresponds to the maximum of the curve and the stability area decreases as |α|
increases. As expected, the draw for m = n = 7 corresponding to a BGK scheme is
constant in α. We notice that α = 0 belongs to the set of α maximizing the stability
whatever the draw.
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Figure 3. Draw of V x as a function of α for the d’Humières scheme
with the moments (8). Left: TRT1, se = 2 − 2−m and sν = 2 − 2−n.
Right: TRT2, se = 2− 2−m and sp = 2− 2−n.

We can exhibit the origin of the dependence or independence on α. Let’s consider
the moments (7). For the d’Humières scheme, the relaxation of these moments is
independent of α. The last three moments of (7) are

αX3 +XY 2, αY 3 +X2Y,
α

2
(X4 + Y 4) +X2Y 2.

Knowing that X3 = λ2X on the velocity set [10], the scheme is unchanged if we
replace them by

λ2αX +XY 2, λ2αY +X2Y,
λ2α

2
(X2 + Y 2) +X2Y 2.

Relaxing the moments (7) is then equivalent to relax the same moments for α = 0.
Indeed, X and Y are associated with some conserved moments and X2 +Y 2 has the
same relaxation parameter se as the fourth order moment. It is thus consistent for
this draws to be independent of α.

We now focus on the moments (8): the parameter α appears only in the third order
moments. For the TRT1, X2 + Y 2 and the third order polynomials are relaxed with
the same relaxation parameter se. Choosing

XY 2 + α(X2 + Y 2), X2Y + α(X2 + Y 2),

is then equivalent to choose
XY 2, X2Y,

and the scheme does not depend on α as the left draw of the figure 3 shows it. For
the TRT2, X2 +Y 2 and the third order moments are relaxed with different relaxation
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Figure 4. Draw of V x as a function of α for the scheme relative
to ũ = V with the moments (7). Left: TRT1, se = 2 − 2−m and
sν = 2− 2−n. Right: TRT2, se = 2− 2−m and sp = 2− 2−n.

parameters: it is expected to have a dependence on α, excepted for the BGK case
(m = n = 7) involving only one relaxation parameter.

We now do the same job for the scheme relative to ũ = V . The figure 4 is associated
with the moments (7) and the figure 5 with the moments (8).

The stability of the scheme relative to ũ = V depends on α whatever the moments
(figure 4). The maximum is reached for α = 0 whatever the choice of s. For the
moments (8), the stability of the TRT1 is not linked to α (figure 5 on the left side).
Instead, this parameter is influential for the TRT2 (figure 5 on the right side): α = 0
still corresponds to the optimum.

We interpret the figure 4 corresponding to the moments (7). Because X3 = λ2X and
Y 3 = λ2Y on the velocity set, relaxing the relative moments associated with (7) is
equivalent to relax

1, X, Y,X2 + Y 2, X2 − Y 2, XY, P6(ũ, α), P7(ũ, α), P8(ũ, α),

where

P6(ũ, α) = XY 2 + α(−3ũxX2 + (λ2 − 3(ũx)2)X + ũx(λ2 − (ũx)2)),(14)

P7(ũ, α) = X2Y + α(−3ũyY 2 + (λ2 − 3(ũy)2)Y + ũy(λ2 − (ũy)2)),(15)
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Figure 5. Draw of V x as a function of α for the scheme relative
to ũ = V with the moments (8). Left: TRT1, se = 2 − 2−m and
sν = 2− 2−n. Right: TRT2, se = 2− 2−m and sp = 2− 2−n.

and

(16) P8(ũ, α) = X2Y 2 +
α

2

(
(λ2 + 6(ũx)2)X2 + (λ2 + 6(ũy)2)Y 2

+ 2ũx(−λ2 + 4(ũx)2)X + 2ũy(−λ2 + 4(ũy)2)Y

− 3(ũx)2(λ2 − (ũx)2)− 3(ũy)2(λ2 − (ũy)2)
)
.

Let’s observe the equivalent class of the third order moment given by (14). The
dependence on α of the stability comes from the term −3αũxX2. Indeed, relaxing
(14) is equivalent to relax XY 2 − 3αũxX2 since the moments corresponding to the
polynomials 1 and X are conserved by the collision. On the contrary, the moment
associated with X2 is not conserved. For the TRT1, it is a linear combination of the
moments X2 + Y 2 and X2 − Y 2 associated with different relaxation parameters se
and sν . For the TRT2, it is associated with se whereas P6 corresponds to sp.

These remarks justify the introduction of the moments (8) to study the influence of
the non conserved components X2 and Y 2. The figure 5 implying the moments (8)
gives similar results as its analogous for ũ = 0 (figure 3): the same interpretation is
still valid. Note that for α = 0, the areas are bigger with ũ = V (figure 5) than with
ũ = 0 (figure 3). This confirms the observations of the section 2.2.
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3. Stability for the Kelvin-Helmholtz instability

The purpose of this section is to confirm on a non linear test case the previous linear
stability results: this test case is the Kelvin-Helmhotz instability [15, 4].

We compare six versions of the relative velocity D2Q9 scheme to study the influence
of the moments, of the velocity field ũ and of the equilibrium. We consider the
scheme associated with α = 0 relative to ũ = 0 and ũ = u (the fluid velocity) for the
equilibria (9) and (10). We compare it to the choice α = 1 for the relative velocities
0 and u with the equilibrium (9). We choose not to consider the product equilibrium
(10) for α = 1, this equilibrium being introduced for the moments of the cascaded
scheme [11]. We work with the TRT1 defined by (11): unless otherwise specified, se
et sν are fixed by

µ =
λ2∆σe

3
, ν =

λ2∆σν
3

,

where σe = 1/se − 1/2 and σν = 1/sν − 1/2, so that the viscosities µ and ν are set to
0.0366 and 10−4.

We test the stability of the scheme by increasing the velocity U defining the initial
shear layers

ux(x, y, 0) =

{
U tanh(k(y − 1

4)) if y 6 1
2

U tanh(k(3
4 − y)) if y > 1

2

, (x, y) ∈ [0, 1]2,

uy(x, y, 0) = Uδ sin(2π(x+ 1
4)), (x, y) ∈ [0, 1]2.

This velocity U is chosen as Ma/
√

3 for Ma∈ R the Mach number. The parameters k
and δ controlling the width of the shear layers and the magnitude of the initial data
are set to 80 and 0.05.

We first validate the vorticity draws obtained in [16, 4, 15] using the scheme relative
to the fluid velocity u for the second order truncated equilibrium (9). This vorticity
is defined by

ω = ∂xuy − ∂yux.
For this simulation, the domain is constituted of 128× 128 points, the Mach number
is fixed at 0.04 (λ is chosen as in [4] so that U = 1). The figures 6 and 7 are the
vorticity plots at time t = 0.6 and t = 1.

We now present a stability analysis depending on the different parameters for λ = 1.
We expect to confirm the linear stability results. The scheme is considered stable
if it has not broken after 2000 iterations. The table 6 contains the maximal stable
Mach number Ma for different meshes at 0.01 close. The table 7 presents the greater
Reynolds number Re = 1/ν stable at 1000 close for different meshes and Ma= 0.09.
Since we discuss on the Reynolds number, the viscosity ν becomes a parameter.
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Figure 6. Vorticity draw at t=0.6.
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Figure 7. Vorticity draw at à t=1.

We obtain results consistent with the linear stability study. First, choosing a scheme
relative to ũ = u has a positive effect if α = 0, negative if α = 1. We must choose the
moments of the D2Q9 cascaded scheme to improve the stability. This improvement
occurs whatever the equilibrium and the mesh: the stability limit sν = 2 is stable
(table 7) and high Mach numbers are reached for this scheme (table 6). Second, the
d’Humières scheme is independent of α as for the linear stability study. Its stability
area is smaller than the scheme relative to ũ = u when α = 0, greater when α = 1.
Finally, the equilibrium does not influence a lot the stability unlike the linear case.
The obtained values are close whatever the choice of the equilibrium. It is impor-
tant to note that the table 6 exhibits a convergence of all the schemes as ∆x decreases.
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Space step ∆x 1/16 1/32 1/64 1/128 1/256 1/512 1/1024

Corresponding se 0.44 0.25 0.13 0.07 0.03 0.02 0.01
Corresponding sν 1.98 1.96 1.93 1.86 1.73 1.53 1.24
α = 0, ũ = 0, equilibrium (9) 0.18 0.13 0.12 0.12 0.12 0.12 0.12
α = 0, ũ = u, equilibrium (9) 0.96 0.82 0.62 0.49 0.43 0.39 0.39
α = 0, ũ = 0, equilibrium (10) 0.18 0.13 0.12 0.12 0.12 0.12 0.12
α = 0, ũ = u, equilibrium (10) 0.92 0.80 0.62 0.50 0.43 0.39 0.39
α = 1, ũ = 0, equilibrium (9) 0.18 0.13 0.12 0.12 0.12 0.12 0.12
α = 1, ũ = u, equilibrium (9) 0.09 0.07 0.06 0.05 0.05 0.05 0.05

Table 6. Maximum of Ma stable according to the mesh. The two
last columns indicates a convergence of each scheme as ∆x decreases.

Space step ∆x 1/16 1/32 1/64 1/128
Corresponding se 0.44 0.25 0.13 0.07
Corresponding sν 1.98 1.96 1.93 1.86
α = 0, ũ = 0, equilibrium (9) sν = 2 21.103 17.103 17.103

α = 0, ũ = u, equilibrium (9) sν = 2 sν = 2 sν = 2 sν = 2
α = 0, ũ = 0, equilibrium (10) sν = 2 21.103 17.103 17.103

α = 0, ũ = u, equilibrium (10) sν = 2 sν = 2 sν = 2 sν = 2
α = 1, ũ = 0, equilibrium (9) sν = 2 21.103 17.103 17.103

α = 1, ũ = u, equilibrium (9) 10.103 6.103 4.103 4.103

Table 7. Maximum of the Reynolds number stable for Ma = 0.09
according to the mesh.

We now characterize the behaviour of the scheme when the diffusion is weak (when
the relaxation parameters are close to 2). The table 8 presents the maximal Ma
stable for decreasing bulk viscosity µ. The domain is constituted of 1282 points and
ν is still equal to 10−4.

This table is also consistent with the linear stability study. When se and sν are far
from each other, the linear case (the tables 2 and 5) presents an important gain for
the scheme relative to ũ = u for α = 0 whatever the equilibrium. These results are
confirmed by the first columns of the table 8 corresponding to take a big bulk viscos-
ity. When µ tends to 0, the stability areas for the different choices of ũ are expected
to be close at fixed equilibrium: this case corresponds to close parameters se and sν ,
regime where the linear stability results are homogeneous in ũ. This behaviour is
confirmed by the table 8: indeed, the four cases associated with the equilibrium (9)
have the same stability areas when the bulk viscosity is smaller than 10−4. Similarly,
the two cases associated with the equilibrium (10) have close stability areas for these
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Viscosity µ 10−2 0.5.10−2 10−3 10−4 10−5

Corresponding se 0.23 0.41 1.13 1.86 1.98
Corresponding sν 1.86 1.86 1.86 1.86 1.86
α = 0, ũ = 0, equilibrium (9) 0.22 0.29 0.43 0.38 0.32
α = 0, ũ = u, equilibrium (9) 0.73 0.76 0.68 0.63 0.60
α = 0, ũ = 0, equilibrium (10) 0.22 0.30 0.45 0.38 0.32
α = 0, ũ = u, equilibrium (10) 0.72 0.76 0.76 0.63 0.61
α = 1, ũ = 0, equilibrium (9) 0.22 0.29 0.43 0.38 0.32
α = 1, ũ = u, equilibrium (9) 0.10 0.14 0.32 0.38 0.32

Table 8. Maximum of Ma stable according to µ.

ũ 0 0.2u 0.4u 0.6u 0.8u u 1.2u 1.4u
α = 0, equilibrium (9) 0.12 0.15 0.21 0.34 0.60 0.49 0.42 0.33
α = 1, equilibrium (9) 0.12 0.11 0.09 0.07 0.06 0.05 0.05 0.04
α = 0, equilibrium (10) 0.12 0.15 0.21 0.34 0.60 0.50 0.42 0.33

Table 9. Maximum of Ma stable according to ũ.

viscosities.

The table 9 deals with the influence of the velocity field ũ on the stability: other
choices than 0 and u are considered. We determine the maximal Mach number stable
for different ũ according to the choice of the moments. We study the two choices
α = 0 and α = 1 for a mesh of 1282 points.

This table is an evidence of the importance of the moments for the relative velocity
schemes. Taking a velocity different from 0 provides stability improvements only
for α = 0. These moments improve the numerical stability for ũ = u compared to
the d’Humières scheme whatever the equilibrium. Instead, choosing ũ 6= 0 for the
moments (5) deteriorates the stability of the scheme. The most stable choice for
α = 1 corresponds to the d’Humières scheme.

4. Conclusion

We have studied the numerical stability of the relative velocity D2Q9 scheme with two
conservation laws. A linear stability study was presented and strenghtened by a non
linear test case for the compressible Navier-Stokes equations: the Kelvin-Helmholtz
instability. The main conclusion of the article is the following: the relative velocity
schemes improve or deteriorate the stability of the d’Humières schemes and it depends
strongly on the choice of the moments. An improvement occurs if the moments of
the cascaded scheme are chosen whatever the equilibrium. It is bigger when one
viscosity is very small and the other is important. The usual set of moments and its
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orthogonalized analogous deteriorates the stability of the d’Humières scheme. This
degradation originates from the presence of second order components in the third
and fourth order moments. These components do not appear for the moments of the
cascaded scheme that explains the better stability behaviour.
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