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This paper deals with the online diagnosis of Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems. The pattern classification tool Support Vector Machine (SVM) is used to achieve fault detection and isolation (FDI). The algorithm is integrated into an embedded system of the type System in Package (SiP) and validated online in an experimental platform. Four concerned faults are diagnosed successfully online. Additionally, a procedure is proposed to improve the performance of robustness and raise the diagnosis accuracy.

INTRODUCTION

During the last decades, fault diagnosis devoted to improve the reliability and durability performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems has drawn the attention of both academic and industrial communities. Through an efficient diagnosis strategy, more serious faults can be avoided thanks to an early fault alarm. With the help of diagnosis results, the downtime (repair time) can be reduced. Moreover, the precise diagnosis information can speed up the development of new technologies [START_REF] Li | Data-driven fault diagnosis for PEMFC systems[END_REF].

Several fault diagnosis strategies have been studied during the last decade. Since the first principle models of PEMFC systems are not evident to be found or estimated. The application of data-driven fault methodologies has been drawing the attention of researchers [START_REF] Zheng | A review on non-model based diagnosis methodologies for PEM fuel cell stacks and systems[END_REF]. Within the scope of data based fault diagnosis, a number of pattern classification techniques have been widely used since fault detection and isolation (FDI) can be considered as a classification problem. Thanks to the contributions from the computer science and information community, lots of mature experiences can be utilized for PEMFC diagnosis purpose. Generally, the classification based fault diagnosis proceeds in two phases. In the offline training phase, the historical data which distribute in different health states are firstly collected. A classifier is then trained based on the collected dataset. In the online performing phase, the real-time data can be classified into the known classes with the obtained classifier. Thus, the health state of real-time data can be diagnosed.

Although some classification based diagnosis strategies have been proposed for PEMFC systems [3] [4], the online implementation results are announced rarely. Actually, for practical online applications, such as fuel cell electric vehicles, the diagnosis strategy should be integrated into an embedded system and run in real-time. Hence, the importance of online implementation cannot be over-emphasized. Otherwise, the work will stay in the step of "academic studying".

In this paper, a classification tool Support Vector Machine (SVM) is employed for fault detection and isolation (FDI) of PEMFC systems. The diagnosis algorithm is also integrated into a specially designed embedded system, which is of the type System in Package (SiP). The embedded system is installed into a PEMFC system, and the diagnosis algorithm is verified in real-time. Besides, a procedure is proposed to improve the robustness of the diagnosis algorithm.

SVM BASED DIAGNOSIS ALGORITHM

SVM is a classification method developed by V. Vapnik [START_REF] Platt | Sequential Minimal Optimization : A Fast Algorithm for Training Support Vector Machines[END_REF] and has been widely applied the last two decades. Good generalization performance, absence of local minima and sparse representation of solution make SVM an attractive classification tool. The basic theory comes from binary classification problem. As Fig. 1 shows, there are data samples distributed in two classes, suppose we have some hyperplane which separates the points. Then, SVM looks for the optimal hyperplane with the maximum distance from the nearest training samples. A subset of training samples that lie on the margin are called support vectors.

Support vectors Class1 Class2

Maximum margin

The optimal separating hyperplane To explain the binary SVM more mathematically and specifically, take (N 1 + N 2 ) labeled sample z 1 , z 2 , . . . , z N 1 +N 2 from 1st and 2nd classes as training examples. g n ∈ {-1, 1} is defined as the class label of sample z n (-1 for class 1, 1 for class 2). Without going to the detailed deducing process which can be found in many materials on pattern recognition ( [START_REF] Platt | Sequential Minimal Optimization : A Fast Algorithm for Training Support Vector Machines[END_REF] for instance), the training problem can be converted to the following quadratic problem (QP) min L(a) = 1 2

N 1 +N 2 n=1 N 1 +N 2 m=1 a n a m g n g m k(z n , z m ) - N 1 +N 2 n=1 a n (1) subject to      N 1 +N 2 n=1 a n g n = 0 0 ≤ a n ≤ D n = 1, 2, . . . , N 1 + N 2 (2) 
where {a n |n = 1, . . . , N 1 + N 2 } are Lagrange multipliers, which are expressed collectively as a = [a 1 , . . . , a N 1 +N 2 ] T ; D is a parameter which need to be initialized; k(z n , z m ) is kernel function which is introduced to solve the nonlinear problem. A representative kernel function which named Gaussian kernel is expressed as

k(z n , z m ) = exp(- ||z n -z m || 2 σ ) ( 3 
)
where σ is an author defined parameter.

In our study, a practical approach, namely Sequential Minimal Optimization (SMO), is used solve the QP problem (1) [START_REF] Platt | Sequential Minimal Optimization : A Fast Algorithm for Training Support Vector Machines[END_REF]. After solving the QP problem, the Lagrange multipliers a 1 , a 2 , . . . , a N 1 +N 2 are obtained. The samples corresponding to positive Lagrange multipliers are SVs, which are denoted by z s 1 , z s 2 , . . . , z s S . S is the number of SVs. The corresponding a n and g n of SV z s n are denoted by a s n and g s n . The class label g of an arbitrary data point z can be determined by the following equation:

g = sign S n=1 a s n g s n k(z s n , z) + b (4)
where the bias b is given

b = 1 S S j=1 g s j - S n=1 a s n g s n k(z s n , z s j ) (5) 
From ( 4), it could be observed that the determination of the class label is depended on the SVs, and the corresponding parameters {a s n } and {g s n }. This property is central to the online applicability of SVM. The training process and the performing procedure can be synthetically summarized as Algorithm 1. For a new sample z, its class label is determined with respect to (4).

To extend the binary classifier to multi-classification situations, there are several ways. A method named "One-Against-One" is adopted in this chapter. Actually, C(C -1)/2 binary SVMs can be constructed based on the training data in C classes. When an arbitrary sample comes, its classification results of all the binary SVMs are firstly obtained. The final classification is obtained by voting all binary classification results. The details can be found in [START_REF] Hsu | A comparison of methods for multiclass support vector machines[END_REF]. As Fig. 2 shows, the developing platform dedicated to online implementation of the diagnosis strategy consists the following parts:

DIAGNOSIS STRATEGY DEVELOPING PLATFORM

PEMFC system: A 64-cell PEMFC stack, which was fabricated by the French research organization CEA specially for automotive application1 , is concerned. The nominal operating condition of the stack is summarized in Table 1. In the system, a number of physical parameters impacting or expressing stack performances can be regulated flexibly and monitored. Stack temperature, pressures and stoichiometries of hydrogen and air at inlets, relative humidity of the inlet air can be regulated. This could help causing different health states.

The stack voltage and single cell voltages, as well as the above mentioned variables can all be measured with the sample time of 1 s. Electronics load: The load current can be flexibly varied through an electronic load.

Measuring and computing unit: The core of the measuring and computing board is the specially-designed SiP (yellow square component shown in Fig. 2). Fig. 3 shows the structure of the SiP. The upper layer is equipped with Smartfusion on-chip system developed by Microsemi company. The device integrates an FPGA fabric, ARM Cortex-M3 Processor, and programmable analog circuitry which fulfill the A/D and D/A functions [START_REF]Website: Smartfusion introduction[END_REF]. Up to 512 KB flash, 64 KB of SRAM and another two chips of 16 M memory are equipped to this SiP. With the abundant connecting ports, kinds of communications can be realized with other devices. The other two layers, which are equipped with Giant magnetoresistance (GMR) sensors, are used for measuring the voltage signals precisely.

Diagnosis interface:

The measurements and the calculation results obtained from the measuring and computing unit are exported to a general computer equipped with Labview software. With the help of Labview, the real-time cell voltage signals, the diagnosis results can be visualized on the screen. The real-time data can also be saved for advanced analysis.

ONLINE IMPLEMENTATION OF THE DIAGNOSIS STRATEGY

Offline training and algorithm integration

Knowing that classification based diagnosis belongs to supervised learning methods, the data from various classes are needed for training. To prepare the training dataset, several faults were deduced deliberately. With the training dataset, the SVM classifier is trained. Classifying the training data with the trained SVM, the diagnosis accuracy rate is 84.98%. More detailed diagnosis results can be summarized as a confusion matrix shown quantitatively in Table 3 and visually in Fig. 4(b). It could be observed that the false alarm rate, i.e. the rate of the samples in normal state are wrongly diagnosed into the fault classes, is relatively low. The diagnosis accuracy for the data in F3 is high, while a considerable part of data in classes F1, F2, and F4 are wrongly classified into the normal class. The trained SVM classifier was coded into the memory of SiP. When the diagnosis algorithm was carried out using the training dataset respectively in MATLAB environment and the SiP, the accordant results could be obtained and the diagnosis algorithm could be calculated within a sampling cycle (i.e. 1s). That is to say the diagnosis algorithm is successfully integrated into the embedded system.

Online validation

To realize online validation, the embedded system was tested online with the real-time data during another experiment. The operations of this experiment are summarized in Table 4, and the measured cell voltages (i.e. the variables for diagnosis) are plotted as Fig. 4(b). The diagnosis accuracy of the online implementation is 85.93%. Similarly, the online diagnosis results were recorded and summarized visually in Fig. 5(b) and quantitatively in Table 5. A similar observation as the case for training could be obtained when the confusion matrix (i.e. 

CONCLUSION

In this paper, classification method SVM is used to realized fault diagnosis for PEMFC systems.

The algorithm was successfully integrated into a specially designed embedded system. The integrated system was installed into a PEMFC system and tested online. Four faults can be detected and isolated. The robustness and diagnosis accuracy performances are improved by introducing the concept of fault degree.
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Figure 1 :

 1 Figure 1: SVM schematic diagram

Figure 2 :

 2 Figure 2: Overview of the developing platform

Figure 3 :

 3 Figure 3: Embedded system designed for PEMFC system diagnosis [8] individual cell voltages show different magnitudes and distributions in different health states. This feature is utilized for FDI. Constrained by the measuring capability of the 1st version SiP. The voltages of 14 cells which located near to one side of the stack can be measured and used as the variables for diagnosis. The evolutions of individual cell voltages of training data are shown in Fig. 4(a).

  (a) Evolutions of cell voltages: training data Diagnsois results: training data

Figure 4 :

 4 Figure 4: Training data and diagnosis results

  When the faults F1, F2, and F4 are concerned, it can be observed from the Fig.5(b) that the diagnosis results vibrate between the corresponding fault and normal classes. The performance of(a) Evolutions of cell voltages: test data

Figure 5 :

 5 Figure 5: Test data and diagnosis results robustness is not satisfying. Here we propose to use a lagged results to improve the robustness and accuracy of the diagnosis. Specifically, at time k, the diagnosis results of last N lag are taken into account (i.e. from k -N lag + 1 to k). Concerning these N lag data, if fault degree (i.e. the rate of one fault) is above the pre-defined threshold, the fault occurs at time k. Here we set N lag = 100 and threshold as 0.4. The fault degrees of the concerned four faults are shown in Fig. 6(a). The diagnosis results are shown in Fig. 6(b) and Table6. Comparing Fig.6(b) to Fig.5(b), more consistent and robust results can be obtained when fault degree is used as the indicator of the faults. Considering diagnosis accuracy, the global diagnosis accuracy is 90.39% which is significantly improved. Notice that sensitivity and robustness are two conflicting factors, the performance of sensitivity is certainly alleviated when the procedure is employed.

Figure 6 :

 6 Figure 6: Improved diagnosis results

Table 1 :

 1 Nominal conditions of the stacks Parameter Value

	Stoichiometry H 2	1.5
	Stoichiometry Air	2
	Pressure at H 2 inlet	150 kPa
	Pressure at Air inlet	150 kPa
	Differential of anode pressure and cathode pressure 30 kPa
	Temperature (exit of cooling circuit)	65-70 • C
	Anode relative humidity	50%
	Cathode relative humidity	50%
	Current	90 A
	Voltage per cell	0.7 V
	Electrical power	4032 W

Table 2

 2 

	MRAM	FPGA Smartfusion: A2F500	JTAG	IHM SPI+CAN communications
	EVERSPIN			
	16Mb (x2)	Memory Other functions	Smartfusion FPGA	Annexes E/S
	GMR channels	GMRs	Amplifiers	Analog signals transfer
		GMRs	Amplifiers

summarizes the operations in the experiment of training data preparation. In this study, the individual cell voltages are considered as the variables. From our previous study,

Table 2 :

 2 Experimental procedure for the preparation of training dataset

	Starting time Ending time Operation	Health state
	0	879	Nominal condition	Normal state (Nl)
	880	1675	Pressure at 1.3 bar at each side	Low pressure fault (F1)
	1676	2618	Back to nominal condition	Normal state (Nl)
	2619	3499	Pressure at 1.7 bar at each side	High pressure fault (F2)
	3500	4892	Back to nominal condition	Normal state (Nl)
	4893	6288	Lower relative humidity	Drying fault (F3)
	6289	7518	Back to nominal condition	Normal state (Nl)
	7519	8287	St. Air 1.5	Low air stoichiometry fault (F4)
	8288	8955	Back to nominal condition	Normal state (Nl)

Table 3 :

 3 Distributions of samples in different classes: case4

			Diagnosed classes	
		Nl	F1 F2	F3	F4
		Nl 4762 29	25	68	11
		F1 406 373	0	0	17
	Actual classes	F2 300 F3 157	0 11	800 0	0 1228	0 0
		F4 239	82	0	0	448

Table 5

 5 (b)) of test data is analyzed.

Table 4 :

 4 Experimental procedure for online validation

	Starting time Ending time Operation	Health state
	0	3660	Nominal condition	Normal state (Nl)
	3661	4543	Pressure at 1.3 bar at each side	Low pressure fault (F1)
	4544	5374	Back to nominal condition	Normal state (Nl)
	5375	6541	Pressure at 1.7 bar at each side	High pressure fault (F2)
	6542	8128	Back to nominal condition	Normal state (Nl)
	9842	11909	St. Air 1.5	Low air stoichiometry fault (F4)
	8910	9841	Back to nominal condition	Normal state (Nl)
	8129	8909	Lower relative humidity	Drying fault (F3)
	11910	12459	Back to nominal condition	Normal state (Nl)
	4.3 Improvement of the robustness and accuracy	

Table 5 :

 5 Distributions of samples in different classes: case4

			Diagnosed classes	
		Nl	F1 F2	F3	F4
		Nl 7302 31 220	0	10
		F1 446 432	0	1	4
	Actual classes	F2 477 F3 142	0 28	690 5	0 1880	0 8
		F4 363	14	14	0	390

Table 6 :

 6 Distributions of samples in different classes: case4

			Diagnosed classes	
		Nl	F1	F2	F3	F4
		Nl 7413	0	62	48	40
		F1 215 668	0	0	0
	Actual classes	F2 F3 202 88	0 0	1079 0	0 1861	0 0
		F4 150	0	0	0	631

CEA: Alternative Energies and Atomic Energy Commission