
HAL Id: hal-01113564
https://hal.science/hal-01113564v4

Submitted on 14 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Method of Piecewise-Smooth Numerical Branching
Tomáš Ligurský, Yves Renard

To cite this version:
Tomáš Ligurský, Yves Renard. A Method of Piecewise-Smooth Numerical Branching. Journal of
Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2017,
97 (7), pp.815-827. �10.1002/zamm.201600219�. �hal-01113564v4�

https://hal.science/hal-01113564v4
https://hal.archives-ouvertes.fr


14 November 2016

A Method of Piecewise-Smooth Numerical Branching
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A method of numerical branching is proposed for piecewise-smooth steady-state problems when any analytical expressions
are not known for the regions of smoothness of the function involved. The performance of the method is shown for model
bifurcations in discretised contact problems with Coulomb friction. First, different parameter settings in its input are tested
so that the optimum one can be proposed. Then, the method is used to investigate the behaviour of the bifurcations for
different meshes. All solution branches seem to be discovered reliably if the parameters are set up properly.

1 Introduction

The steady-state bifurcation problem:

Find y ∈ U such that

H(y) = 0,

}
(P)

where U ⊂ RN+1 and H : U → RN , has been the subject of large number of studies in the last decades. A variety of
numerical bifurcation methods has been constructed if H is smooth, say continuously differentiable (see, e.g., [3, 7, 10]
and references therein). On the other hand, there are many equilibrium problems in economics and diverse engineering
fields whose models lead to a system of non-smooth equations [2, 6, 18]. Let us mention frictional and frictionless contact
problems in solid mechanics, which are of our specific interest, for instance. However, methods of numerical branching of
solutions of non-smooth problems depending on a parameter are still very little explored to our knowledge: Branching of
static equilibrium curves of discretised frictionless contact problems were treated in [4,19], where the tangential directions
of curves emanating from points of non-smoothness were characterised as the solutions of a certain linear complementarity
problem, and a method based on resolution of this problem was suggested for branch switching during numerical contin-
uation (see also the theoretical survey [13]). Furthermore, the possible evolutions in quasi-static plane frictional contact
problems were determined similarly in [16].

In our recent paper [14], we developed a restarted predictor-corrector method for numerical continuation of solution
curves of Problem (P) provided that H is piecewise C1 (PC1). The method consists in continuing smooth solution
branches by a standard predictor-corrector method and joining the smooth branches continuously.

More precisely, our method computes a sequence of points {yk} lying approximately on a selected solution branch
together with a sequence of the corresponding tangent vectors {tk} with a unit weighted norm ‖tk‖w. Starting from a
couple (yk, tk), one predictor-corrector step yields a new couple (yk+1, tk+1) in the following way: In the predictor step,
an initial approximation (ỹ, t̃) of the new couple is generated in the direction of tk as

ỹ := yk + htk, t̃ := tk,

where h is a step size. Then, the corrector steps, which are iterative steps of Newton’s type, are run with the initial
approximation (ỹ, t̃). If they succeed in bringing the predicted point back to the currently approximated branch, the
resulting couple is accepted, the step size h is adapted for the next predictor-corrector step, and the current step is done.
Otherwise, h is reduced and the predictor and the corrector steps are repeated. If these predictor-corrector steps fail in
computing a new couple, a special procedure is carried out for locating a new smooth branch (the so-called simple tangent
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Fig. 1 An example of the considered situation.

switch). Afterwards, the predictor-corrector steps are restarted for continuation of the branch found. Let us emphasise that
the whole method does not obey any analytical expressions of the regions of smoothness of H , and it is implementable
generically.

Similar continuation techniques constructed specially for static plane frictional contact problems can be found in [8, 9].
Nevertheless, all these methods were proposed for finding solely one continuing branch when an end point of the most
recently traced smooth branch is encountered. Besides, a bifurcation criterion was proposed merely in [15].

The present paper deals with purely non-smooth numerical branching of solutions of (P) whenH is PC1. We develop
an approach that does not rely on any analytical expressions of the regions of smoothness of H in Section 2, and we test
its performance on model examples of contact problems in Section 3.

Throughout the paper, we employ the following definition of a PC1-function [18]:
Definition 1.1 A function H : U → RN defined on an open set U ⊂ RM is PC1 if it is continuous and for every

ȳ ∈ U , there exist an open neighbourhood O ⊂ U of ȳ and a finite family of C1-functions H(i) : O → RN , i ∈ I(ȳ),
such that

∀y ∈ O : H(y) ∈ {H(i)(y); i ∈ I(ȳ)}.

The functionsH(i) are termed selections ofH at ȳ.

2 Numerical Branching

Consider that an approximation of a smooth solution branch of (P) has been obtained by the restarted predictor-corrector
method from [14], and either the method has failed in locating a new smooth branch or it has located one but we want to find
other ones because a bifurcation is expected by virtue of the criterion from [15], for example. Restricting ourselves to purely
non-smooth branching (Assumptions (I)–(III) below), we shall describe a method designed for discovering potentially all
continuing branches.

Let ȳ be an end point of the recovered branch. We shall assume the following:

(I) The whole solution set of (P) in a vicinity of ȳ is formed by one-sided smooth solution branches emanating from ȳ

into mutually distinct regions of smoothness {y ∈ O; H(y) = H(i)(y)} for some i ∈ I(ȳ).
(II) The gradients ∇H(i)(ȳ), i ∈ I(ȳ), have a full rank.

(III) Ker∇H(i)(ȳ) ∩Ker∇H(j)(ȳ) = {0}, ∀i, j ∈ I(ȳ), i 6= j.

Note that these assumptions guarantee particularly that tangent vectors at ȳ to any two different branches are linearly
independent (see Fig. 1 for an illustration of branching under our consideration).

Since it seems to be hardly possible to encounter a point of non-smoothness in practical computations, we shall suppose
in addition that H is smooth in any point considered in the procedures hereinafter. Then, a unit tangent vector t at such a
point y lying in a vicinity of ȳ and belonging to a solution branch from the region {z ∈ U ; H(z) = H(i)(z)} is uniquely
determined up to a direction by the conditions:

∇H(i)(y)t = 0, ‖t‖w = 1,

where ‖.‖w denotes a suitable weighted norm [11, pp. 86 and 87].
Our branching method consists of two steps: an approximation of the end point ȳ and a subsequent location of new

branches from a neighbourhood of the approximate end point.

2.1 Approximation of the end point

The end point can be approximated by a bisection-like procedure that is based on the predictor-corrector method used in
the process of numerical continuation of smooth branches. The proposed procedure relies on the fact that the individual
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branches emanating from the end point have numerically distinguishable tangents, which is justified by Assumptions (I)–
(III). The algorithm can be sketched as follows:

Algorithm 2.1

Input: cdiff ∈ (0, 1), h > hmin > 0, y0, t0 ∈ RN+1 such that

H(y0) ≈ 0, ∇H(y0)t0 = 0, ‖t0‖w = 1,

and the corrector steps for the prediction ỹ := y0 + ht0, t̃ := t0 do not converge or they converge to a couple (y, t)
with t>t0/(‖t‖‖t0‖) < cdiff .

Step 1: Set h := h/2.

Step 2: Do the prediction ỹ := y0 + ht0, t̃ := t0.

Step 3: Run the correction with (ỹ, t̃).

Step 4: If the correction converges to a new couple (y, t) with t>t0/(‖t‖‖t0‖) ≥ cdiff , then set y0 := y, t0 := t.

Step 5: If h < hmin, break. Otherwise, go to Step 1.

Output: The point y0 with the corresponding unit tangent t0.

The couple (y0, t0) in the input is supposed to be the last couple obtained by numerical continuation of the most recent
smooth branch (the couple (yk, tk) in Fig. 1), and h equals typically the minimal step size from the predictor-corrector
method employed during the continuation. We denote the Euclidean norm by ‖.‖ and cdiff is the minimal value of the
cosine of the angle of two tangent vectors considered to correspond to the same branch. Hence, if the conditions in Step 4
are satisfied, the newly found point y is supposed to be from the same branch as the one stored in y0 at that time, and it
is accepted as a better approximation of ȳ. The minimal step size hmin determines the precision required for the resulting
approximation of ȳ.

2.2 Location of new branches

Suppose that y0 calculated by Algorithm 2.1 is a good approximation of ȳ, it belongs to some smooth branch, and t0 is
the corresponding unit tangent pointing out from the region of smoothness with y0 (see Fig. 2). Inspired by the methods
for branch switching at a smooth simple bifurcation point [7, 10], we shall propose a heuristic technique composed of a
sequence of predictor-corrector steps and yielding points on other smooth branches.

Our heuristic stems from the idea used in the simple tangent switch [14]: Let t̃ be a vector satisfying

∇H(ỹ)t̃ = 0, ‖t̃‖w = 1, (1)

where ỹ is a point close to ȳ and lies in the region of smoothness containing a new smooth branch (Fig. 3). Then, either t̃
or −t̃ should be a suitable prediction direction for a predictor-corrector step giving a point on this new branch.

Imagine for a while that you have a sequence of points ỹ that pass through all regions of smoothness intersecting at
ȳ at your disposal. Under Assumptions (I)–(III), you could discover all solution branches by computing the sequence of
vectors t̃ from (1) and trying the corresponding predictor-corrector steps with t̃ and −t̃ successively. Hence, we would like
to guess such a sequence of points ỹ from all the regions intersecting at ȳ.

For this purpose, consider the most probable branching scenarios described in [15]: By linearisation and projection,
the corresponding regions of smoothness can be represented by cones in a two-dimensional vector space with vertices at
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0. This representative space can be spanned by any two linearly independent vectors, say v1 and v2. Thus, a sequence
of linear combinations of v1 and v2 whose directions are deployed densely enough in the space comprises the directions
pointing into the representatives of all regions of smoothness as indicated in Fig. 4. From here, one can conclude that if
v1 and v2 represent some vectors t̃1 and t̃2, then the corresponding sequence of linear combinations of t̃1 and t̃2 contains
directions pointing into all regions and it can be used for calculating the sequence of points as desired.

In the general setting with (y0, t0) from the output of Algorithm 2.1, let us choose a step length h sufficiently large in
comparison with the precision of the approximation of ȳ by y0, in particular so large that y0 + ht0 leaves the region with
y0. Next, let us take t̃1 := −t0 and calculate a vector t̃2 satisfying

∇H(y0 + ht0)t̃2 = 0, ‖t̃2‖w = 1.

According to the imposed assumptions, t̃1 and t̃2 are linearly independent. One can choose a set B ⊂ R2 so that {β1t̃1 +
β2t̃2}(β1,β2)∈B is a sequence of densely deployed directions. With regard to the argumentation for the most probable
branching scenarios, one can expect that the sequence {y0 +h(β1t̃1 +β2t̃2)}(β1,β2)∈B might be the desired one containing
points from all regions intersecting at ȳ.

These considerations lead us to the following algorithm:

Algorithm 2.2

Input: cdiff ∈ (0, 1), ndir ∈ N, h, hinit > 0, y0, t0 ∈ RN+1 such that

H(y0) ≈ 0, ∇H(y0)t0 = 0, ‖t0‖w = 1,

and y0 + ht0 leaves the region of smoothness with y0.

Step 1: Take t̃1 := −t0 and compute t̃2 such that

∇H(y0 + ht0)t̃2 = 0, ‖t̃2‖w = 1.

Set nbr := 1, ynbr
:= y0, tnbr

:= t̃1.

Step 2: Set i := 0.

Step 3: Set

α :=
2πi

ndir
, v := (sinα)t̃1 + (cosα)t̃2, v :=

v

‖v‖w
,

and compute t̃ such that

∇H(y0 + hv)t̃ = 0, ‖t̃‖w = 1.

Step 4: If i = 0 or |̃t>t0|/(‖t̃‖‖t0‖) < cdiff , set t0 := t̃. Otherwise, go to Step 7.

Step 5: Try one predictor-corrector step with the couple (y0, t̃) and the initial step size hinit. If it converges to a new
couple (y, t), then

(i) if t>(y − y0) < 0, take t := −t;
(ii) if t>tj/(‖t‖‖tj‖) < cdiff , j = 1, . . . , nbr, then set nbr := nbr + 1, ynbr

:= y, tnbr
:= t.

Step 6: Repeat the procedure from Step 5 with t̃ := −t̃.

Step 7: Set i := i+ 1. If i < ndir, go to Step 3. Otherwise, break.

Output: Points y1, . . . ,ynbr
with the corresponding unit tangents t1, . . . , tnbr

.

Here, cdiff is the minimal absolute value of the cosine of the angle of two vectors from the kernels of gradients considered
to correspond to the same selection similarly as in Algorithm 2.1. Further, ndir is the total number of linear combinations
of t̃1 and t̃2 for seeking points from distinct regions. The step sizes h and hinit should be appropriately large in comparison
with the expected precision of the approximation of ȳ by y0 so that the points determined with them fall into the regions
in the respective directions.
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The conditions in Step 4 serve for determining whether t̃ has been computed from a gradient from the same region as
previously. If it is so, it is superfluous, hence the corresponding predictor-corrector steps are skipped. In Step 5(ii), one
verifies whether (y, t) does not belong to any of the branches already found before. This ensures that the points in the
output are from different smooth branches. The corresponding tangents are oriented in the directions of branching from ȳ,
which is guaranteed by Step 5(i). Afterwards, any of the branches located in this way can be traced by predictor-corrector
steps.

Remark 2.3 To increase the probability of recovering all branches, one can restart Algorithm 2.2 several times from
Step 2 with other choices of t̃1 and t̃2. We propose the following possibilities:

(i) Take t̃i from the set {t1, . . . , tnbr
} at your current disposal.

(ii) Take t̃i := t̃
+
i with t̃

+
i satisfying

∇H
(
y0 + h

(
t̃
−
i + 0.1

t̃

‖t̃‖w

))
t̃
+
i = 0, ‖t̃+i ‖w = 1,

where the value of h is the same as in Algorithm 2.2, t̃
−
i is equal to the vector t̃i employed in the previous run of

Algorithm 2.2 and t̃ is chosen randomly.

3 Numerical Tests

We have tested our technique on two examples of bifurcations in discretised elastostatic plane contact problems with
Coulomb friction from [15]. We have chosen the following strategy for restarting Algorithm 2.2 based on Remark 2.3:

(1) Pass with t̃1 and t̃2 successively through the combinations from {t1, . . . , tnbr
} at your disposal.

(2) If all combinations which are available so far have already been employed, try to let t̃1 be the same and choose t̃2
according to Remark 2.3(ii).

In our tests, we denote the total number of selections of t̃1 and t̃2 by nspan, that is, the total number of the restarts of
Algorithm 2.2 equals nspan − 1. Our calculations have been done with the finite-element library GetFEM++ [17].

3.1 Elastostatic plane contact problems with Coulomb friction

Let us consider static deformation of an elastic body whose reference configuration is the closure of a bounded domain
Ω ⊂ R2. Let the boundary ∂Ω be Lipschitz-continuous and split into three disjoint relatively open subsets ΓD, ΓN and
Γc. The body is fixed along ΓD whereas an applied surface force of density h is prescribed on ΓN . A flat rigid foundation
supports the body along Γc, and the contact is modelled by unilateral conditions and the Coulomb friction law. We suppose
that there is no initial gap between the body and the foundation. We consider that the surface force at a point x ∈ ΓN
depends on a real parameter γ and it may depend on x either, that is, h = h(γ,x) in our model, γ being a loading
parameter. We seek equilibrium states of the body for the values of γ from an interval I of our interest.

Discretisation of this problem is done by applying a conforming Lagrange finite-element method to a mixed variational
formulation of the problem with Lagrange multipliers enforcing the Dirichlet and the contact boundary conditions. The
contact conditions are approximated nodally.

Let {φi}1≤i≤2nΩ
and {ξi}1≤i≤2nD be bases of the shape functions of the finite elements for the displacement and the

Lagrange multiplier corresponding to the Dirichlet condition, respectively. We introduce the following vectors and matrix:

A(u) = (Ai(u))1≤i≤2nΩ , Ai(u) :=

∫
Ω

σ̂
(
x, I +

2nΩ∑
j=1

uj∇φj(x)
)

: ∇φi(x) dx, u = (uj)1≤j≤2nΩ ,

L(γ) = (Li(γ))1≤i≤2nΩ
, Li(γ) :=

∫
ΓN

h(γ,x) · φi(x) ds,

BD = (BD,ij)1≤i≤2nD
1≤j≤2nΩ

, BD,ij :=

∫
ΓD

ξi(x) · φj(x) ds.

Here, σ̂ stands for the first Piola-Kirchhoff stress tensor, which is replaced by the Cauchy stress tensor in the case of small-
deformation elasticity (the second example). Further, let {ai}1≤i≤nc be the set of the finite-element nodes corresponding
to {φi}1≤i≤2nΩ

and lying on Γc \ ΓD, and ν and τ denote the unit inward normal and the unit tangent to the foundation,
respectively. One can define matricesBν ,Bτ ∈ Rnc×2nΩ so that for any uh =

∑2nΩ

j=1 ujφj ,

(Bνu)i = uhν (ai), (Bτu)i = uhτ (ai), i = 1, . . . , nc,
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where uhν and uhτ are the components of uh in the directions of ν and τ :

uhν (ai) = uh(ai) · ν, uhτ (ai) = uh(ai) · τ .

The discretised problem can be written in the following form of (P) [1, 12]:

Find y := (γ,u,λD,λν ,λτ ) ∈ I × R2(nΩ+nD+nc) such that

H(y) = 0,

}

whereH : I × R2(nΩ+nD+nc) → R2(nΩ+nD+nc) is defined by

H(y) :=


A(u)−L(γ)−B>DλD −B

>
ν λν −B

>
τ λτ

BDu
− 1
r

(
λν,j − ((λν − rBνu)j)−

)
, j = 1, . . . , nc

− 1
r

(
λτ,j − P[F((λν−rBνu)j)−,−F((λν−rBνu)j)−]((λτ − rBτu)j)

)
, j = 1, . . . , nc

 . (2)

Here, u ∈ R2nΩ is the vector of nodal displacements, λD ∈ R2nD is the Lagrange multiplier corresponding to the Dirichlet
condition, and λν ,λτ ∈ Rnc are the normal and tangential Lagrange multipliers on the contact zone, respectively. The
notation (.)− means the negative part (or equivalently, the projection onto (−∞, 0]), and P[a,b](.) stands for the projection
onto an interval [a, b], a ≤ b. The friction coefficient is represented by a non-negative constant F here and r > 0 is an
augmentation parameter. Since the projections onto an interval are PC1-functions, H is also PC1 provided that A and L
are continuously differentiable.

Let us mention that if h denotes the mesh size for the displacement, the parameter r can be viewed as a coefficient of
the proportionality between the Lagrange multipliers divided by h, which gives approximations of the contact stresses, and
the displacements divided by h on the contact zone (compare to the physical interpretation of the modulus of elasticity).
Nevertheless, the (exact) solutions of the discrete problem do not depend on the value of r because the formulations are
mathematically equivalent for all r > 0. Its choice affects only numerical solving of the problem.

3.2 Problem with a rectangular body

Consider deformation of a rectangular block that is 40 mm wide and 80 mm high, fixed along its upper side and loaded
along its lateral sides (Fig. 5). A plane-strain approximation of the nonlinear Ciarlet-Geymonat constitutive law [5, Chap-
ter 4] is used for the material of the block. Namely, the first Piola-Kirchhoff stress tensor σ̂ is given by

σ̂(x,F ) = (σ̃(F̃ ))1≤i,j≤2, F̃ =

(
F 0
0 1

)
, F ∈ R2×2,

σ̃(F̃ ) = 2b
(
tr(F̃

>
F̃ )
)
I + 2(a− bF̃ F̃>)F̃ +

(
2cdet(F̃

>
F̃ )− d

)
F̃
−>
, F̃ ∈ R3×3,

where

λ = 4000 N/mm2, µ = 120 N/mm2, a = 30 N/mm2

and

b =
µ

2
− a, c =

λ

4
− µ

2
+ a, d =

λ

2
+ µ.

We have prescribed h(γ,x) = γ(−2, 0.12(x1 − 20)) (in N/mm2) on both lateral sides of the block, r = 10 and F = 1.
Discretisation is done by approximating the displacement and the Lagrange multiplier for the Dirichlet condition with
continuous piecewise bilinear functions on a uniform mesh with 800 squares and 21 contact nodes.

There are six solution branches intersecting at γ = 0, which are illustrated in Fig. 5. Branches 1, 2 and 3 correspond
to forcing the block to the right with no contact, contact-stick and contact-slip to the right of the lower right vertex of the
block. Branches 4, 5 and 6, which are symmetric with respect to the axis x1 = 20 of the block, correspond to forcing the
block to the left with no contact, contact-stick and contact-slip to the left of the lower left vertex.

In the testing of our method, we have set cdiff = 0.99999, h = 5e−7, hmin = h/214 .
= 3.1e−11 and hinit = 5e−4 in

Algorithms 2.1 and 2.2. To start with, we have chosen various values of ndir, and we have looked into sufficient values of
nspan for finding all six branches. Our computations are summarised in Table 1, where the entry Input means the branch
from which y0 is chosen in the input of Algorithm 2.1 (only the listings for Branches 1, 2 and 3 are written down because
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(a) Branch 1. (b) Branch 2. (c) Branch 3.

(d) Branch 4. (e) Branch 5. (f) Branch 6.

Fig. 5 Deformed bodies corresponding to the solutions with |γ| = 1: (a), (b), (c) γ = −1; (d), (e), (f) γ = 1.

the behaviour for Branches 4, 5 and 6 is the same due to the symmetry of the solutions). The cost of each computation is
characterised by npc, which stands for the total number of the predictor-corrector steps. These constitute the most expensive
part of our technique. Note that random generations according to Remark 2.3(ii) are needed for some input branches and
some values of ndir. In such cases, we have run our branching method three times, and the behaviour of the performed
computational process has varied from one run to another. We denote the total number of the restarts of Algorithm 2.2
following a random generation by nrand here and in what follows.

Afterwards, we have prescribed ndir as well as nspan, and we have compared the obtained values of npc to get an idea
about the cheapest but quiet reliable strategy. The overview of the performance of our method is presented in Table 2. All
six branches have been recovered in all cases. According to the results, we can propose to set ndir to about 20 and nspan to
about 15 in this particular example. In addition, we can suggest to increase rather ndir than nspan to increase the probability
of finding all branches at the lowest price in general.

To explore the bifurcation phenomenon in the contact problem thoroughly, we have performed the method of numerical
branching for discretisations on different uniform meshes, namely with 200, 800, 3200 and 12800 bilinear squares (M200,



8 T. Ligurský and Y. Renard: A Method of Piecewise-Smooth Numerical Branching

Table 1 Rectangular body, ndir given a priori.

Input ndir nspan npc nrand

Branch 1

20 8 168 1
20 10 214 3
20 13 266 6
40 7 292 2
40 8 330 3
40 14 478 7
50 3 162 0
60 5 232 0

100 3 206 0

Branch 3

20 5 128 0
40 3 134 0
50 1 72 0
60 4 202 0

100 1 102 0

Input ndir nspan npc nrand

Branch 2

20 4 136 1
20 7 220 3
20 8 240 4
40 4 260 1
40 5 294 2
40 5 316 2
50 4 274 1
50 5 342 2
50 7 490 4
60 5 374 2
60 8 620 5
60 9 654 6

100 4 372 1
100 4 406 1
100 7 662 4

Table 2 Rectangular body, ndir and nspan given a priori.

Input ndir nspan npc nrand

Branch 1

20 15 310 3
20 15 316 5
20 15 322 1
20 16 326 3
20 16 344 5
20 16 346 1
50 10 400 0
60 10 416 0

100 8 474 0

Branch 3

20 15 318 0
20 15 318 0
20 16 334 1
20 16 334 1
50 10 396 0
60 10 414 0

100 8 456 0

Input ndir nspan npc nrand

Branch 2

20 15 350 2
20 15 360 4
20 15 416 8
20 16 374 2
20 16 386 4
20 16 434 8
50 10 518 1
50 10 532 1
50 10 562 2
60 10 618 2
60 10 642 3
60 10 734 6

100 8 642 1
100 8 684 2
100 8 720 3

Table 3 The relative error of the displacements for γ = −1 for the rectangular body. The displacements uh1 , uh2 , uh3 and uh4 have
been computed for M200, M800, M3200 and M12800, respectively.

Branch 1 2 3
‖uh1 − uh4‖1,Ω/‖uh4‖1,Ω 6.1e−2 1.7e−1 4.3e−2
‖uh2 − uh4‖1,Ω/‖uh4‖1,Ω 2.3e−2 1.1e−1 1.1e−2
‖uh3 − uh4‖1,Ω/‖uh4‖1,Ω 6.9e−3 5.1e−2 5.4e−3

M800, M3200 and M12800). Having taken ndir = 30 and nspan = 15, we have found six branches distinctly separated
for all meshes. The branches seem to be stable and to converge with the meshes, see the bifurcation diagrams in Fig. 6
obtained by the method of piecewise-smooth numerical continuation from [14], and the behaviour of the relative error for
Branches 1, 2 and 3 in Table 3 (which is the same as the one for Branches 4, 5 and 6).
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Fig. 6 The normal and tangential displacements uν and uτ at the most left contact node of the rectangular body.

3.3 Problem with a triangular body

Next, let us consider deformation of an isosceles right-angled triangle with the legs 1 m long, lying on a leg, loaded along
the other leg and fixed along the hypotenuse (Fig. 7). Let us restrict ourselves to the small-deformation framework with
Hooke’s law with the Lamé constants λ = 100 GN/m2 and µ = 82 GN/m2, and let r = 10 and F = 1.7. Both the
displacement and the Lagrange multiplier for the Dirichlet condition are approximated with continuous piecewise linear
functions over triangular meshes.

As described in [15], there are four solution branches intersecting at γ = 0 for h = h(γ) = γ(−26,−7.5) GN/m2 and
the discretisation with a uniform mesh with 4096 triangles and 64 contact nodes, see Fig. 7. They correspond to a partial
contact and slip of the triangle to the right (Branch 2), and to no contact, contact-stick and contact-slip to the left of the
lower left vertex of the triangle with pulling the whole triangle to the left (Branches 1, 3 and 4).

To explore the bifurcation in this contact problem, we have taken uniform meshes with 4096, 16384, 65536 and 262144
linear triangles (M4096, M16384, M65536 and M262144), and we have used our method with cdiff = 1 − 1e−10, h =
5e−8, hmin = h/214 .

= 3.1e−12, hinit = 5e−4, ndir = 30 and nspan = 10. The bifurcation behaviour has shown to be
more complex here. Branches 1 and 4 approach one another for finer meshes, and they disappear both for the finest mesh
for the force h(γ) = γ(−26,−7.5), as illustrated in Fig. 8.

To investigate this behaviour more precisely, we have run an auxiliary numerical continuation of the same parametrised
problem except the force h(γ) = (−20 − 10γ,−7.5). As one can observe in Fig. 9, there are values of γ for which
the contact problem has multiple solutions for this parametrisation, but these values differ a bit for each mesh. Namely,
the problem has three solutions for γ approximately from (0.56541, 0.66665), (0.5883, 0.70731), (0.59996, 0.73289)
and (0.60585, 0.7499) for M4096, M16384, M65536 and M262144, respectively. Moreover, two solutions approach one
another when γ approaches a bound of the interval corresponding to a fixed mesh.

Besides, note that A in (2) is linear in this case. If h is considered linear with respect to γ, then L is linear, as well,
and H given by (2) is piecewise linear and especially positively homogeneous. This yields that the solutions obtained by
the auxiliary continuation characterise the solution behaviour of the corresponding unparametrised contact problem with
forces h = (h1, h2) for any h2 < 0.

In particular, we have discovered three solutions of the unparametrised contact problem with forces h = (h1,−7.5) for
h1 approximately from (25.6541, 26.6665), (25.883, 27.0731), (25.9996, 27.3289) and (26.0585, 27.499) for the meshes
M4096, M16384, M65536 and M262144, respectively. This and the positive homogeneity give us cones in the h1–h2 plane
such that the unparametrised problem has three solutions for the forces from their interiors for each mesh. Furthermore,
if a force approaches a half-line from the boundary of the cone for a given mesh, two of the three corresponding solutions
approach one another.

Since the line h(γ) = γ(−26,−7.5) is closer and closer to a half-line from the boundaries of the cones for finer
and finer meshes and out of the cone for the finest mesh, this explains the behaviour of the bifurcation in the present
example. Nevertheless, regarding the branching in the whole h1–h2 plane, one can find it stable and convergent, again.
This is illustrated by the bifurcation diagrams in Fig. 10 and Table 4 computed for a bit modified parametrised force
h(γ) = γ(−26.4,−7.5), for which there are four branches distinctly separated for all meshes.
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(a) Branch 1. (b) Branch 2.

(c) Branch 3. (d) Branch 4.

Fig. 7 Deformed bodies corresponding to the solutions with |γ| = 1: (b) γ = −1; (a), (c), (d) γ = 1.

Fig. 8 The normal and tangential displacements uν and uτ at the most left contact node of the triangular body for h(γ) = γ(−26,−7.5)

(in GN/m2).
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Fig. 9 The normal and tangential displacements uν and uτ at the most left contact node of the triangular body for h(γ) = (−20 −
10γ,−7.5) (in GN/m2).

Fig. 10 The normal and tangential displacements uν and uτ at the most left contact node of the triangular body for h(γ) =

γ(−26.4,−7.5) (in GN/m2).

Table 4 The relative error of the displacements for γ = −1 (Branch 2) and γ = 1 (Branches 1, 3 and 4) for the triangular body. The
displacements uh1 , uh2 , uh3 , uh4 have been computed for M4096, M16384, M65536 and M262144, respectively.

Branch 1 2 3 4
‖uh1 − uh4‖1,Ω/‖uh4‖1,Ω 2.0e−2 2.8e−2 2.2e−1 2.5e−1
‖uh2 − uh4‖1,Ω/‖uh4‖1,Ω 9.8e−3 1.4e−2 1.6e−1 1.1e−1
‖uh3 − uh4‖1,Ω/‖uh4‖1,Ω 4.2e−3 6.0e−3 9.6e−2 4.1e−2

4 Conclusion

We have developed a method of numerical branching for piecewise-smooth problems, and we have suggested how to
choose its parameter setting to discover reliably all solution branches at the lowest price. We have used our method for
investigating the behaviour of bifurcations in discretised contact problems with Coulomb friction for different meshes. As
far as we know, this is the first attempt to devise a numerical method for piecewise-smooth branching that does not rely on
any analytical expressions of the regions of smoothness of the function involved.
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