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Ostrava-Poruba, 708 00, Czech Republic
tomas.ligursky@ugn.cas.cz

YVES RENARD
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A method of numerical branching is proposed for piecewise-smooth steady-state problems when
any analytical expressions are not known for the regions of smoothness of the functions involved.
It is shown in model examples of contact problems that the method can reliably discover all
solution branches around a known solution if its input parameters are set up properly. It is also
suggested how to choose the optimum parameter settings.
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1. Introduction

The steady-state bifurcation problem:

Find y ∈ U such that

H(y) = 0,

}
(P)

where U ⊂ RN+1 and H : U → RN , has been the subject of large number of studies in the last decades. In
particular, a variety of numerical bifurcation methods has been constructed ifH is smooth, say continuously
differentiable (see, e.g., Allgower & Georg [1997]; Georg [2001]; Hughes & Friedman [2009] and the references
therein).

However, there are many equilibrium problems in economics and diverse engineering fields whose
models lead to a system of non-smooth equations [Alexander et al., 1983; Scholtes, 1994; Facchinei &
Pang, 2003]. For instance, let us mention frictional and frictionless contact problems in solid mechanics,
which are of our specific interest. All the same, methods of numerical branching of solutions of non-smooth
problems when they depend on a parameter are still very little explored to our knowledge: Only branching
of static equilibrium curves of discretised frictionless contact problems were treated in Björkman [1992];
Schulz & Pellegrino [2000], where tangential directions of curves emanating from points of non-smoothness
were determined by a certain linear complementarity problem, and a method based on resolution of this
problem was suggested for branch switching during numerical continuation.
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In our recent paper Ligurský & Renard [2014], we developed a restarted predictor-corrector method
for numerical continuation of solution curves of Problem (P) provided that H is piecewise C1 (PC1). The
method consists in continuing smooth solution branches by a standard predictor-corrector method and
joining the smooth branches continuously.

More precisely, our method computes a sequence of points {yk} lying approximately on selected solution
branches, and a sequence of the corresponding tangent vectors {tk} with a unit weighted norm ‖tk‖w.
Starting from a couple (yk, tk), one predictor-corrector step yields a new couple (yk+1, tk+1). Firstly, an

initial approximation (ỹ, t̃) of the new couple is generated in the direction of tk in the predictor step:

ỹ := yk + htk, t̃ := tk,

where h is a step size. Secondly, the corrector steps, which are iterative steps of Newton’s type, are run
with the initial approximation (ỹ, t̃). If they succeed in bringing the predicted point back to the currently
approximated branch, the final couple is accepted, the step size h is adapted for the next predictor-corrector
step and the current step is done. Otherwise, h is reduced and the predictor and the corrector steps are
repeated. If the standard predictor-corrector method fails in computing a new couple, a special procedure is
carried out for locating a new smooth branch (simple tangent switch). Afterwards, the predictor-corrector
method is restarted for continuation of the branch found. The whole method does not obey any analytical
expressions of the regions of smoothness of H and is implementable generically.

Similar continuation techniques constructed specially for static plane frictional contact problems can
be found in Haslinger et al. [2012, 2013]. Nevertheless, all the methods were proposed for finding solely
one continuing branch when an end point of the most recently traced branch is encountered.

The present paper deals with purely non-smooth numerical branching of solutions of (P) when H is
PC1. We develop an approach that does not rely on any analytical expressions of the regions of smoothness
ofH in Section 2, and we demonstrate its performance for model examples of contact problems in Section 3.

Throughout the paper, we employ the following definition of a PC1-function [Scholtes, 1994]:

Definition 1.1. A function H : U → RN , U ⊂ RM , is PC1 if it is continuous and for every ȳ ∈ U , there
exist an open neighbourhood O ⊂ U of ȳ and a finite family of C1-functions H(i) : O → RN , i ∈ I(ȳ),
such that

∀y ∈ O : H(y) ∈ {H(i)(y); i ∈ I(ȳ)}.

The functions H(i) are termed selections of H at ȳ.

2. Numerical Branching

Consider that an approximation of a smooth solution branch of (P) has been obtained by the restarted
predictor-corrector method from Ligurský & Renard [2014], and either the method has failed in locating a
new smooth branch or it has located one but we want to find other ones because a bifurcation is expected
by virtue of the criterion from Ligurský & Renard [2015], for example. Restricting ourselves to purely
non-smooth branching (Assumptions (I)–(III) below), we shall describe a method designed for discovering
potentially all continuing branches.

Let ȳ be the corresponding end point of the recovered branch. We shall assume the following:

(I) The whole solution set of (P) in a vicinity of ȳ is formed by one-sided smooth solution branches

emanating from ȳ into mutually distinct regions of smoothness {y ∈ O; H(y) = H(i)(y)} for some
i ∈ I(ȳ).

(II) The gradients ∇H(i)(ȳ), i ∈ I(ȳ), have a full rank.

(III) Ker∇H(i)(ȳ) ∩Ker∇H(j)(ȳ) = {0}, ∀i, j ∈ I(ȳ), i 6= j.

Particularly, these assumptions guarantee that tangent vectors at ȳ to any two different branches are
linearly independent (see Fig. 1 for an illustration of branching under our consideration).

Since it seems to be hardly possible to encounter a point of non-smoothness in practical computations,
we shall suppose in addition that H is smooth in any point considered in the procedures hereinafter. Then,
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Fig. 1. An example of the considered situation.

a unit tangent vector t at such a point y lying in a vicinity of ȳ and belonging to a solution branch in the
region {z ∈ U ; H(z) = H(i)(z)} is uniquely determined up to a direction by the conditions:

∇H(i)(y)t = 0, ‖t‖w = 1.

Our branching method consists of two steps: approximation of the end point ȳ and subsequent location
of new branches from a neighbourhood of the approximate end point.

2.1. Approximation of the end point

The end point is approximated by a bisection-like procedure that is based on the predictor-corrector method
used in the process of numerical continuation of smooth branches. This procedure relies on the fact that
individual branches have numerically distinguishable tangents, which is justified by Assumptions (I)–(III).
The algorithm can be sketched as follows:

Algorithm 2.1.

Input: cdiff ∈ (0, 1), h > hmin > 0, y0, t0 ∈ RN+1 such that

H(y0) ≈ 0, ∇H(y0)t0 = 0, ‖t0‖w = 1,

and the corrector steps for the prediction ỹ = y0 +ht0, t̃ = t0 do not converge or they converge to a couple
(y, t) with t>t0/(‖t‖‖t0‖) < cdiff .
Step 1: Set h := h/2.
Step 2: Do the prediction ỹ := y0 + ht0, t̃ := t0.
Step 3: Start the correction with (ỹ, t̃).
Step 4: If the correction converges to a new couple (y, t) and t>t0/(‖t‖‖t0‖) ≥ cdiff , then set y0 := y,
t0 := t.
Step 5: If h < hmin, break. Otherwise, go to Step 1.
Output: The point y0 with the corresponding unit tangent t0.

The couple (y0, t0) in the input is the last couple obtained by the numerical continuation of the most
recent smooth branch (the couple (yk, tk) in Fig. 1) and h equals the minimal step size from the predictor-
corrector method employed during the continuation. We denote the Euclidean norm by ‖.‖ and cdiff is
the minimal value of the cosine of the angle of two tangent vectors considered to correspond to the same
branch. Hence, if the conditions in Step 4 are satisfied, the newly found point y is supposed to be from
the same branch as the one stored in y0, and it is accepted as a better approximation of ȳ. The minimal
step size hmin determines the precision required for the resulting approximation of ȳ.

2.2. Location of new branches

Suppose that y0 calculated by Algorithm 2.1 is a good approximation of ȳ belonging to one smooth branch,
and t0 is the corresponding unit tangent pointing out from the region of smoothness with y0 (see Fig. 2).
Inspired by the methods for branch switching at a smooth simple bifurcation point [Georg, 2001; Hughes
& Friedman, 2009], we shall propose a heuristic technique composed of a sequence of predictor-corrector
steps and yielding points on other smooth branches.
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Fig. 2. Output of Algorithm 2.1.
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Fig. 3. Prediction direction for find-
ing a new branch.
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Fig. 4. Generation of directions into
all regions.

Our heuristic stems from the idea used in the simple tangent switch [Ligurský & Renard, 2014]: Let t̃
be a vector satisfying

∇H(ỹ)t̃ = 0, ‖t̃‖w = 1, (1)

where ỹ is a point close to ȳ and lies in the region of smoothness containing a new smooth branch (see
Fig. 3). Then, a suitable prediction for a predictor-corrector step giving a point on this branch should be
either of the ones in the directions of ±t̃.

Imagine for a while that you have a sequence of points ỹ that pass through all regions of smoothness
intersecting at ȳ at your disposal. Under Assumptions (I)–(III), you could discover all solution branches
by computing the sequence of vectors t̃ from (1) and trying the corresponding predictor-corrector steps
with t̃ and −t̃ successively. Therefore, we would like to guess such a sequence of points from all the regions
intersecting at ȳ.

For this purpose, consider the most probable branching scenarios described in Ligurský & Renard
[2015] next: By linearisation and projection, the corresponding regions of smoothness can be represented
by cones with vertices at 0 in a two-dimensional vector space. This representative space can be spanned by
any two linearly independent vectors, say v1 and v2. As a consequence, a sequence of linear combinations of
v1 and v2 whose directions are deployed densely enough comprises directions pointing into representatives
of all regions of smoothness (Fig. 4). From here, one can conclude that if t̃1 and t̃2 are vectors represented
by v1 and v2, then the corresponding sequence of linear combinations of t̃1 and t̃2 contains directions
pointing into all regions and it can be used for calculating a sequence of points as desired.

In the general setting with (y0, t0) from the output of Algorithm 2.1, choose a step length h sufficiently
large in comparison with the precision of the approximation of ȳ by y0, in particular so large that y0 +ht0
leaves the region with y0. Now, take t̃1 := −t0 and calculate a vector t̃2 satisfying

∇H(y0 + ht0)t̃2 = 0, ‖t̃2‖w = 1.

According to the imposed assumptions, t̃1 and t̃2 are linearly independent. So, choose a set B ⊂ R2 so that
{β1t̃1 + β2t̃2}(β1,β2)∈B is a sequence of densely deployed directions. With regard to the argumentation for

the most probable branching scenarios, one can expect that the sequence {y0 + h(β1t̃1 + β2t̃2)}(β1,β2)∈B
might be the desired one containing points from all regions intersecting at ȳ.

This leads us to the following algorithm:

Algorithm 2.2.

Input: cdiff ∈ (0, 1), ndir ∈ N, h, hinit > 0, y0, t0 ∈ RN+1 such that

H(y0) ≈ 0, ∇H(y0)t0 = 0, ‖t0‖w = 1,

and y0 + ht0 leaves the region of smoothness with y0.
Step 1: Take t̃1 := −t0 and compute t̃2 such that

∇H(y0 + ht0)t̃2 = 0, ‖t̃2‖w = 1.

Set nbr := 1, ynbr
:= y0, tnbr

:= t̃1.
Step 2: Set i := 0.
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Step 3: Set

α :=
2πi

ndir
, v := (sinα)t̃1 + (cosα)t̃2, v :=

v

‖v‖w
,

and compute t̃ such that

∇H(y0 + hv)t̃ = 0, ‖t̃‖w = 1.

Step 4: If i = 0 or |̃t>t0|/(‖t̃‖‖t0‖) < cdiff , set t0 := t̃. Otherwise, go to Step 7.
Step 5: Try one predictor-corrector step with the couple (y0, t̃) and the initial step size hinit. If it converges
to a new couple (y, t), then

(i) if t>(y − y0) < 0, take t := −t;
(ii) if t>tj/(‖t‖‖tj‖) < cdiff , j = 1, . . . , nbr, then set nbr := nbr + 1, ynbr

:= y, tnbr
:= t.

Step 6: Repeat the lines in Step 5 with t̃ := −t̃.
Step 7: Set i := i+ 1. If i < ndir, go to Step 3. Otherwise, break.
Output: Points y1, . . . ,ynbr

with the corresponding unit tangents t1, . . . , tnbr
.

Here, cdiff is the minimal absolute value of the cosine of the angle of two vectors from the kernels of
gradients considered to correspond to the same selection similarly as in Algorithm 2.1. Further, ndir is the
total number of linear combinations of t̃1 and t̃2 for seeking points from distinct regions. The step sizes h
and hinit should be appropriately large in comparison with the expected precision of the approximation of
ȳ by y0 so that the corresponding steps fall into the desired regions.

The conditions in Step 4 serve for determining whether t̃ has been computed from a gradient from the
same region as previously. If it is so, its testing is superfluous, hence skipped. In Step 5(ii), one verifies
whether (y, t) does not belong to any of the branches already found before. This ensures that the points in
the output are from different smooth branches. The corresponding tangents are oriented in the directions
of branching from ȳ, which is guaranteed by Step 5(i). Subsequently, any of the branches located in this
way can be traced by predictor-corrector steps.

Remark 2.1. To increase the probability of recovering all branches, one can restart Algorithm 2.2 several
times from Step 2 with other choices of t̃1 and t̃2. We propose the following possibilities:

(i) Take t̃i from the set {t1, . . . , tnbr
} at your current disposal.

(ii) Take t̃i := t̃
+
i with t̃

+
i satisfying

∇H
(
y0 + h

(
t̃
−
i + 0.1

t̃

‖t̃‖w

))
t̃
+
i = 0, ‖t̃+i ‖w = 1,

where the value of h is the same as in Algorithm 2.2, t̃
−
i is equal to the vector t̃i employed in the

previous run of Algorithm 2.2 and t̃ is chosen randomly.

3. Numerical Tests

We have tested our technique on examples of bifurcations in discretised plane contact problems with
friction described in detail in Ligurský & Renard [2015]. We have chosen the following strategy based on
Remark 2.1 for restarting Algorithm 2.2:

(1) Pass with t̃1 and t̃2 successively through combinations from {t1, . . . , tnbr
} at your disposal.

(2) If all combinations which are available so far have already been employed, try to let t̃1 be the same
and choose t̃2 according to Remark 2.1(ii).

In the following tests, we denote the total number of selections of t̃1 and t̃2 by nspan, that is, the
total number of restarts of Algorithm 2.2 equals nspan − 1. Further, npc stands for the total number of the
predictor-corrector steps, which constitute the most expensive part of our technique. Hence, this number
characterises the computational cost of each test.

Our calculations were performed with the aid of the finite-element library GetFEM++ [Renard &
Pommier, 2002–2014].
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(a)Triangular body.
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Fig. 5. Geometries of the model problems.

3.1. Triangular body

Consider static deformation of an elastic isosceles triangle with legs 1 m long in the framework of small-
deformation elasticity with Lamé constants λ = 100 GN/m2 and µ = 82 GN/m2. The boundary of the
triangle being split into three parts ΓD, Γc and ΓN , the triangle is fixed along ΓD, and points from Γc
may come into contact with a flat rigid foundation. This contact is described by unilateral conditions and
the Coulomb friction law. Finally, the triangle is subject to surface forces of the density h on ΓN , and the
density depends on a real parameter γ, that is, h = h(γ) (Fig. 5(a)).

Discretisation of the problem has been done by the finite-element method for two different meshes
with nodal approximation of the contact conditions. The settings of Algorithms 2.1 and 2.2 have been the
same in both cases: cdiff = 0.99999, h = 5e−8, hmin = h/214 .

= 3.1e−12 and hinit = 5e−4.

1. We have taken a model formed by a single linear triangular finite element where the lower left vertex of
the triangle is the only free node. We have chosen h(γ) = γ(−14.5 GN/m2,−7.5 GN/m2) and the friction
coefficient F has been set to 2.

There are four solution branches intersecting at γ = 0 in this case. They correspond to loss of contact,
contact-slip to the right, contact-stick and contact-slip to the left of the lower left vertex of the triangle
and will be denoted respectively by numbers 1 to 4 in what follows.

2. A uniform mesh with 4096 linear triangles and 64 contact nodes has been used for the discretisation,
and we have prescribed h(γ) = γ(−26 GN/m2,−7.5 GN/m2) and F = 1.7.

There are four solution branches intersecting at γ = 0, again. In this case, they correspond to a partial
contact and slip of the triangle to the right, and to no contact, contact-stick and contact-slip to the left
of the lower left vertex of the triangle with pulling the whole triangle to the left. These branches will be
referred to as Branch 2, Branch 1, Branch 3 and Branch 4, respectively, in what follows.

We have investigated sufficient values of nspan and the corresponding values of npc for finding all
four branches for given ndir for both meshes. One gets by with selecting t̃1 and t̃2 solely according to
Remark 2.1(i), no random generations are necessary in any of the tests performed. Our observations are
summarised in Tables 1 and 2. In the tables, the entry input means the branch from which y0 is chosen
on the input of Algorithm 2.1. One can conclude that the setting with ndir = 10 and nspan = 2 seems to
be the most suitable in these examples with four branches.

3.2. Rectangular body

Next, consider contact of an elastic rectangular block that is 40 mm wide and 80 mm high with a flat
foundation (Fig. 5(b)). A plane-strain approximation of the nonlinear Ciarlet-Geymonat constitutive law
[Ciarlet, 1988, Chapter 4] is used for the material of the block. Namely, the response function σ̂ of the first
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Table 1. Single triangle.

Input ndir nspan npc

Branch 1
10 2 8
20 2 8
30 1 8

Branch 2

10 2 8
20 2 8
30 2 8
40 2 8
50 1 8

Branch 3 10 1 8

Branch 4 10 1 8

Table 2. Refined triangle.

Input ndir nspan npc

Branch 1
10 2 36
20 1 32

Branch 2 10 1 18

Branch 3

10 2 34
20 2 52
30 2 72
40 1 56

Branch 4 10 1 20

Piola-Kirchhoff stress tensor is defined by

σ̂(x,F ) = (σ̃(F̃ ))1≤i,j≤2, F̃ =

(
F 0
0 1

)
, F ∈ R2×2,

σ̃(F̃ ) = 2b
(
tr(F̃

>
F̃ )

)
I + 2(a− bF̃ F̃>)F̃ +

(
2cdet(F̃

>
F̃ )− d

)
F̃
−>
, F̃ ∈ R3×3,

where

λ = 4000 N/mm2, µ = 120 N/mm2, a = 30 N/mm2

and

b =
µ

2
− a, c =

λ

4
− µ

2
+ a, d =

λ

2
+ µ.

The rectangle is fixed along ΓD, F = 1 on Γc, and the parametrised surface forces of the density
h = h(x, γ) = γ(−2, 0.12(x1 − 20)) (in N/mm2) act on both parts of ΓN . Discretisation is done by
the finite-element method with a uniform mesh with 800 bilinear squares and 21 contact nodes, and nodal
approximation of the contact conditions.

There are six solution branches intersecting at γ = 0. Branches 1–3 correspond to forcing the rectangle
to the right with no contact, contact-stick and contact-slip to the right of the lower right vertex of the
triangle. Branches 4–6, which are symmetric, correspond to forcing the rectangle to the left with no contact,
contact-stick and contact-slip to the left of the lower left vertex.

We have set cdiff = 0.99999, h = 5e−7, hmin = h/214 .
= 3.1e−11, hinit = 5e−4 in Algorithms 2.1 and 2.2.

As previously, we have started our testing by looking into sufficient values of nspan and the corresponding
values of npc for finding all six branches for ndir fixed. In this problem, random generations according to
Remark 2.1(ii) are needed for some initial branches and some values of ndir. In such cases, we have repeated
the corresponding test two times, and the behaviour of the whole computational process has varied from
one test to another; see Table 3 for the results (the behaviour for Branches 4–6 is symmetric). We denote
the total number of restarts of Algorithm 2.2 following a random generation by nrand there.

Afterwards, we have prescribed ndir and nspan, and we have compared the obtained values of npc to
get an idea about the cheapest but quiet reliable strategy. The summary of our observations is shown in
Table 4. All six branches have been recovered in all the tests. According to the results, we can propose to
set ndir to about 20 and nspan to about 15 in this example with six branches. In addition, we can suggest
to increase rather ndir than nspan to increase the probability of finding all branches at the lowest price, in
general.

4. Conclusion

We have developed a method of numerical branching for piecewise-smooth problems, and we have demon-
strated that our method can reliably discover all solution branches in two model situations if it is set up
properly. We have suggested how to choose the optimum parameter settings, as well. As far as we know,
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Table 3. Rectangular body, ndir given a priori.

Input ndir nspan npc nrand

Branch 1

20 8 168 1
20 10 214 3
20 13 266 6

40 7 292 2
40 8 330 3
40 14 478 7

50 3 162 0

60 5 232 0

100 3 206 0

Branch 3

20 5 128 0

40 3 134 0

50 1 72 0

60 4 202 0

100 1 102 0

Input ndir nspan npc nrand

Branch 2

20 4 136 1
20 7 220 3
20 8 240 4

40 4 260 1
40 5 294 2
40 5 316 2

50 4 274 1
50 5 342 2
50 7 490 4

60 5 374 2
60 8 620 5
60 9 654 6

100 4 372 1
100 4 406 1
100 7 662 4

Table 4. Rectangular body, ndir and nspan given a priori.

Input ndir nspan npc nrand

Branch 1

20 15 310 3
20 15 316 5
20 15 322 1

20 16 326 3
20 16 344 5
20 16 346 1

50 10 400 0

60 10 416 0

100 8 474 0

Branch 3

20 15 318 0
20 15 318 0

20 16 334 1
20 16 334 1

50 10 396 0

60 10 414 0

100 8 456 0

Input ndir nspan npc nrand

Branch 2

20 15 350 2
20 15 360 4
20 15 416 8

20 16 374 2
20 16 386 4
20 16 434 8

50 10 518 1
50 10 532 1
50 10 562 2

60 10 618 2
60 10 642 3
60 10 734 6

100 8 642 1
100 8 684 2
100 8 720 3

this is the first attempt to devise a numerical method of piecewise-smooth branching that does not rely on
any analytical expressions of the regions of smoothness of the functions involved.
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