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Abstract

Two new sensitivity indices are presented which give an original solution to the

known question in sensitivity analysis of how to determine regions within in the

input space for which the model variation is high. The indices, as functions

over the input domain, give insight into the local influence of input variables

over the whole domain when the other variables lie in the global domain. They

can serve as an informative extension to a standard analysis and in addition

are especially helpful in the specification of the input domain, a critical, but

often vaguely handled issue in sensitivity analysis. In the usual framework of

independent continuous input variables, we present theoretical results that show

an asymptotic connection between the presented indices and Sobol indices, valid

for general probability distribution functions. Finally, we show how the indices

can be successfully applied in an analytical as well as a real example.

Keywords: sensitivity analysis, support analysis, Sobol indices, DGSM

Global sensitivity analysis is an essential tool in many of the steps in the

analysis of computer experiments, like screening, investigation, model building,

or optimization [1]. Variance-based indices have become the method of choice

among practitioners, as they offer a clear interpretable quantification of the
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influence of variables on the output variance. Different types of variance-based5

indices have been proposed in the literature. The single influence of a variable

is e.g. measured by the first-order Sobol index [2]. The total sensitivity index

[3] quantifies the joint influence of a variable and all its interactions and thus

can be used to detect unessential variables. A screening of interactions can be

obtained by the total interaction index ([4], [5]), which captures the total impact10

of the second-order interaction of a pair of variables.

An alternative concept to global sensitivity are derivate-based global indices

(DGSM) [6]. The indices use the integrated square derivative of the model

output over the domain of the inputs as indicator of the influence and, like total

sensitivity indices, can be used to detect unessential variables.15

For the estimation of both, variance-based indices and DGSM, input vari-

ables are usually treated as random variables following a distribution defined by

the user. The minimum and maximum value of the support of this distribution

is usually specified from the region of interest of the parameter in question.

They are often chosen vaguely, but can have an important impact.20

As an example, let us consider the Ishigami function by [7],

f(x1, x2, x3) = sin(x1) + 7 sin2(x2) + 0.1x43 sin(x1).

This function is often chosen in sensitivity analysis due to its strong non-

linearities and interactions. The usual setting is to assume that X1, X2, X3 are

independent random variables, drawn uniformly on [−π, π], and to investigate

the Sobol indices of f(X1, X2, X3). A direct computation (see e.g. [1]) shows25

that the unscaled total sensitivity indices of the Ishigami function are equal to

DT
1 = 7.72, DT

2 = 6.13, and DT
3 = 3.37. Now, if we reduce the support of the

distribution of X3 by 10 percent, X∗3 ∼ U [−π+ π
10 , π−

π
10 ], we get DT∗

1 = 4.05,

DT∗
2 = 6.13, and DT∗

3 = 1.45. The first and the last variable have rapidly lost

influence in comparison to the second one, the ranking of variables has changed.30

This can be explained by the interaction between X1 and X3, which is much

stronger at the borders than in the rest of the function. The index of X2 stays

unchanged as it does not interact with X3. The change in the output when
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changing X2 stays the same.

As very cheap-to-evaluate metamodels are often used in practice, it is pos-35

sible to compute more than the common one or two simple numbers, the Sobol

and the total sensitivity index, for each input variable. We present a method

that extends those two scalar indices to functions of sensitivities as an extension

to the traditional sensitivity analysis. They explore the local influence behavior

over the support of the input variables and thus show the impact of the choice40

of the input distribution.

In their book on sensitivity analysis, Saltelli et al. [1] name as one goal of

sensitivity analysis “to determine the optimal regions within the space of the

factors for which the model variation is maximum”. The presented method

performs this task by returning the local influences over the whole domain.45

It is related to the idea of local sensitivities as mentioned e.g. in [8, Section

2.5.1.]. There, local sensitivities are defined as partial derivatives at fixed base-

line points. Our method shares with them that partial derivatives are used to

obtain local influences. The main difference is that in local sensitivity analysis,

the influence of a variables is studied in a local space of the other inputs whereas50

our method studies the local influence of a variable in a global space of the

other variables. The local influences are studied over the whole input space, so

no space is ignored. Welch et al. [9] suggest to plot curves of the main effects,

i.e. the expectation of the model conditional on each input, in a framework

with a Gaussian process metamodel. They argue that these plots give a visual55

indication of the effects and provide insight into their relative magnitude. Our

idea shares these aims, but gives two different local sensitivities corresponding

to first-order Sobol indices and total indices, which has to our knowledge not

been done before.

With our method, effects of the choice of the input distribution can be60

visible. In addition, it gives further insight into the function by presenting a

function of sensitivities as extension to Sobol and total sensitivity indices. It

can also be a helpful tool in sequential optimization, where the input behavior

of certain optimal regions is of interest, which might differ extensively from the
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global behavior. After an overview on global sensitivity measures in Section 1,65

we define the support index functions and show that they are connected to

classical indices when the variable in question is restricted to an interval whose

size goes to zero (Section 2). In Section 3, we present further connections to

classical indices, obtained by integration over the functions. To illustrate the

method, it is applied to the Ishigami function and a real life application in sheet70

metal forming in Section 4. We conclude with Section 5.

1. Overview of global sensitivity measures

We consider a black-box function Y = f(X) of independent random variables

X = (X1, . . . , Xd) with distribution µ = µ1⊗· · ·⊗µd. The function f is defined

on ∆ ⊆ Rd → R such that f(X) ∈ L2(µ).75

1.1. Variance-based sensitivity measures

The FANOVA decomposition [10, 2] gives a decomposition of the function

f into additive terms which are centered and orthogonal:

f(X) = f0 +

d∑
i=1

fi(Xi) +
∑

1≤i<j≤d

fi,j(Xi, Xj) + · · ·+ f1,...,d(X1, . . . , Xd) (1)

The terms represent first-order effects (fi(Xi)), second-order interactions

(fi,j(Xi, Xj)), and all higher combinations of input variables. From the orthog-80

onality in Eq. (1), the variance of the f can be decomposed accordingly,

var(f(X)) =
∑

I⊆{1,...,d}

var(fI(XI)), (2)

where the overall variance is denoted by D = var(f(X)), and the variance

terms by DI = var(fI(XI)). These terms quantify the influence of the set of

variables XI on the output variance. The Sobol sensitivity indices SI are defined

as the following ratios, ensuring the indices to fall in [0, 1],85

SI =
DI

D
. (3)
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In a sensitivity analysis procedure, the first-order Sobol indices Si, i =

1, . . . , d are usually estimated to quantify the single influences of the input vari-

ables. In addition, often the total sensitivity indices STi are estimated, which

give the influence of each variable including all interactions and thus are suitable

for variable screening,90

DT
i =

∑
J⊇{i}

DJ , STi =
DT
i

D
(4)

1.2. Derivative-based measures

A further sensitivity measure, the derivate-based global sensitivity measures

(DGSM), was introduced by [6]. Here, the notion of sensitivity is based on

the derivative of the function, rather than on the output variance. It thus

summarizes the local variation instead of the global one. The DGSM are defined95

by

νi =

∫ (
∂f(X)

∂Xi

)2

dµ(X). (5)

It can be connected to total sensitivity indices through

DT
i ≤ C(µi)νi, (6)

provided that µ belongs to a class of distributions that satisfy a Poincaré in-

equality, ∫
g(X)2 dµ(X) ≤ C(µ)

∫
‖∇g(X)‖2 dµ(X),

for all functions g in L2(µ) such that
∫
g(X) dµ(X) = 0, and ‖∇g‖ ∈ L2(µ),

where ∇g denotes the gradient of g. See [11] or [12] for a comprehensive sum-

mary. Equation (6) implies that the DGSM can be used as upper boundaries100

for the total sensitivity indices. It can thus serve as a cheaper method for

the screening of noninfluential input variables, especially when the computer

experiment additionally provides partial derivatives.

2. Support index functions

We now develop new sensitivity measures to quantify the changing effect of105

the input variables over their support. In addition to the previous notation, we
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assume that ∆ = [0, 1]
d
, f of class C1, and that X1, . . . , Xd have continuous

density functions with support [0, 1]. Remark that since f is of class C1 on the

compact set [0, 1]d, f and all its first-order derivatives are bounded, ensuring

that f(X) and ∂f
∂x•

(X) are in L2.110

The support index functions are then defined as follows.

Definition 1. Support index functions

The first-order support index Di(t) of an input variable Xi at a point t, t ∈ [0, 1],

is defined as the square of the expected value of the first derivative of f ,

Di(t) =

(
E

(
∂f

∂xi
(t,X−i)

))2

.

The total support index DT
i (t) of an input variable Xi at a point t, t ∈ [0, 1], is115

defined as the expected value of the squared derivative of f ,

DT
i (t) = E

((
∂f

∂xi
(t,X−i)

)2
)
.

The support variance DXi(t) corresponding to a support index of an input vari-

able Xi at a point t, t ∈ [0, 1], is defined as the overall variance for Xi = t,

DXi(t) = var(f(t,X−i)).

Thus, the local influence is measured through the partial derivative of Xi

at each point t, summarized over the global variable space by the expectation.120

The role of the square will be clearer later through the connection to first-order

and total indices in Proposition 1.

The functions can be evaluated and plotted for a sufficiently large number of

discrete points t = 0, . . . , 1 over the support. If the gradient of f is known the

functions can be calculated directly. If not, the gradient can be approximated125

by finite differences. For instance the first-order support index of Xi at point t

using Monte Carlo samples of X−i, x
(1)
−i , . . . ,x

(n)
−i , and a small value of δ∗ can

be estimated by

D̂i(t) =

(
1

n

n∑
k=1

f(t+ δ∗,x
(k)
−i )− f(t− δ∗,x(k)

−i )

2δ∗

)2

.
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An interpretation of the support functions can be obtained, when we look

at the first-order and total influence of the specific point in the support of the130

variable. Indeed, the functions are connected to the classical index estimation

when we restrict Xi to vary only over a small interval around t and let the size

of the interval go to zero.

Proposition 1. Let X1, . . . , Xd be independent random variables with con-135

tinuous density functions with support [0, 1]. Let f be a function defined on

∆ = [0, 1]d compact and assume that f is of class C2, ensuring that f(X),

∂f
∂x•

(X), ∂2f
∂x•∂x•

(X) are in L2. Now let one of the random variables, say Xi,

be restricted to Xh
i ∼ Xi|Xi ∈ [t− h/2, t+ h/2] for t ∈]0, 1[ and h > 0. Then we

have that140

var(Xh
i − t)
h2

h→0−→ 1

12
,

and for the limits of the overall variance, the Sobol index of Xh
i , denoted by

DXh
i

, and the total sensitivity index of Xh
i , denoted by DT

Xh
i

, it holds that

1. var(f(Xh
i ,X−i))

h→0−−−→ var(f(t,X−i)) = DXi(t),

2. DXh
i

= var
(
E
[
f(Xh

i ,X−i)|Xh
i

])
/h2

h→0−−−→ 1

12

(
E

(
∂f

∂xi
(t,X−i)

))2

= Di(t)/12,

3. DT
Xh

i
= E

(
var
[
f(Xh

i ,X−i)|X−i
])
/h2

h→0−−−→ 1

12
E

((
∂f

∂xi
(t,X−i)

)2
)

= DT
i (t)/12.

Remark. The factor 1
12 is common to all probability density functions.

Proof. Let us first show that

var(Xh
i − t)
h2

h→0−−−→ 1

12
.

Let g be the density function of Xi − t, g(x) = fXi(x + t). By assumption,

g is continuous in 0, g(0) > 0. Consider the density of the truncated variable145

Xh
i − t, gh(x) = g(x)∫ h

2

−h
2

g(t) dt
1[−h

2 ,
h
2 ](x).
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Let `h = inf
x∈[−h

2 ,
h
2 ]
g(x) and uh = sup

x∈[−h
2 ,

h
2 ]
g(x). With continuity of f in 0,

we have uh
h→0−−−→ g(0) and `h

h→0−−−→ g(0). By standard integral computations we

get

h`h ≤
∫ h

2

−h
2

g(x) dx ≤ huh and
h3

12
`h ≤

∫ h
2

−h
2

g(x)x2 dx ≤ h3

12
uh

so that for E(
(
Xh
i − t

)2
) =

∫ h
2

−h
2

g(x)x2 dx

∫ h
2

−h
2

g(x) dx
it holds that150

`h
uh

h3/12

h
≤ E(

(
Xh
i − t

)2
) ≤ uh

`h

h3/12

h
.

By dividing by h2 this leads to

E(
(
Xh
i − t

)2
)

h2
h→0−−−→ 1

12
.

It remains to show that
E(Xh

i −t)
h

h→0−−−→ 0. As∫ h
2

−h
2

g(x)x dx =

∫ h
2

0

(g(x)− g(−x))x dx

it holds that

|E(Xh
i − t)| ≤

1

`hh

∫ h
2

0

|g(x)− g(−x)|x dx ≤ 1

`hh

∫ h
2

0

(uh − `h)x dx

=
uh − `h
`hh

∫ h
2

0

x dx =
uh − `h
`hh

h2

8
.

Thus
|E(Xh

i − t)|
h

≤ uh − `h
8`h

h→0−−−→ 0.

In the following, denote Bi =
Xh

i −t
h . Remark that Bi is bounded by |Bi| ≤ 1

2

and that var(Bi)
h→0−−−→ 1

12 .155

Proof of 1. Write the mean value theorem between a real number xi ∈

[t− h/2, t+ h/2] ⊆ [0, 1] and t

f(x) = f(xi,x−i) = f(t,x−i) + (xi − t)
∂f

∂xi
(c,x−i)

for a c between xi and t, thus c ∈ [t − h/2, t + h/2]. Replacing by random

variables, we get

f(Xh
i ,X−i) = f(t,X−i) + (Xh

i − t)
∂f

∂xi
(C,X−i),
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where C is a random variable such that C ∈ [t − h/2, t + h/2]. Denoting160

Q = Bi
∂f
∂xi

(C,X−i), we then have

f(Xh
i ,X−i) = f(t,X−i) + hQ.

Now remark that Q is bounded since both Bi and ∂f
∂xi

are bounded (by con-

tinuity of ∂f
∂xi

on the compact set [0, 1]d). This implies that E(f(Xh
i ,X−i))

h→0−−−→

E(f(t,X−i)) by Lebesgue theorem as well as E
(
f(Xh

i ,X−i)
2
) h→0−−−→ E

(
f(t,X−i)

2
)
.

The result follows.165

Proof of 2. The proof is similar to the one of 1. Write the Taylor-Lagrange

expansion of f between a real number xi ∈ [t− h/2, t+ h/2] ⊆ [0, 1] and t

f(x) = f(xi,x−i) = f(t,x−i) + (xi − t)
∂f

∂xi
(t,x−i) +

1

2
(xi − t)2

∂2f

∂x2i
(c,x−i)

for a c between xi and t, thus c ∈ [t − h/2, t + h/2]. Replacing by random

variables, we have170

f(Xh
i ,X−i) = f(t,X−i) + hBi

∂f

∂xi
(t,X−i) + h2R̃,

with R̃ = 1
2B

2
i
∂2f
∂x2

i
(C,X−i), where C is a random variable, C ∈ [t−h/2, t+h/2].

Then, using the independence between Xh
i and X−i, we have

E
[
f(Xh

i ,X−i)|Xh
i

]
= β0 + hβ1Bi + h2R,

with β0 = E (f(t,X−i)), β1 = E
(
∂f
∂xi

(t,X−i)
)

, and R = E
[
R̃|Xh

i

]
. Finally

var
(
E
[
f(Xh

i ,X−i)|Xh
i

])
= h2β2

1var(Bi) + 2h3β1Cov(Bi, R) + h4var(R).

Now remark that R̃ is a bounded random variable by continuity of ∂2f
∂x2

i
on

the compact set [0, 1]d, and thus R is bounded as well. This implies that175

var(R) = O(1) and Cov(Bi, R) = O(1), and the result follows.

Proof of 3. With the same notations as in the proof of 2., we have

E
[
f(Xh

i ,X−i)|X−i
]

= f(t,X−i) + hE(Bi)
∂f

∂xi
(t,X−i) + h2E

[
R̃|X−i

]
9



and thus

f(Xh
i ,X−i)− E

[
f(Xh

i ,X−i)|X−i
]

= h(Bi − E(Bi))
∂f

∂xi
(t,X−i) + h2S,

with S = R̃ − E
[
R̃|X−i

]
. Since S is centered, we have by independence of Bi

and ∂f
∂xi

(t,X−i)

E
((
f(Xh

i ,X−i)− E
[
f(Xh

i ,X−i)|X−i
])2)

=

β2var(Bi)h
2 + 2h3Cov

(
(Bi − E(Bi))

∂f

∂xi
(t,X−i), S

)
+ h4var(S),

with β2 = E

((
∂f
∂xi

(t,X−i)
)2)

. The result follows in the same way as in the180

proof of 2. by using that ∂f
∂xi

(t,X−i) and S are bounded random variables.

3. Further connections to existing indices

Taking the expected value over the support index functions reveals inter-

esting connections to other indices, which give a little more insight into the

interpretation of the functions.185

For the total support index, we immediately get that the equality to the

DGSM index. On the other hand, the expected value over the first-order support

index function can be connected to variance-based indices when we replace f as

underlying function by the partial derivative of f with respect to xi. Then the

expected value can be obtained as first-order index plus its global mean.190

Proposition 2. 1. For the total support index DT
i (t) and the DGSM νi (see

Eq. (5)) of a variable Xi, we have

E
[
DT
i (Xi)

]
= νi.

2. Denote by
(
∂f
∂xi

)
0

the global mean of the derivative function ∂f
∂xi

(.) and by

Di

(
∂f
∂xi

(X)
)

its first-order Sobol index of variable Xi, then we obtain

E [Di(Xi)] = Di

(
∂f

∂xi
(X)

)
+

((
∂f

∂xi

)
0

)2

.

10



Proof. The first part is obtained directly by writing

E
[
DT
i (Xi)

]
= E

[
E

((
∂f

∂xi
(Xi,X−i)

)2
∣∣∣∣∣Xi

)]
= νi.

For the second point, compute the first-order Sobol index of ∂f
∂xi

(.) correspond-

ing to the input variable Xi by using the pick-freeze formula [2] with Z−i an

independent copy of Xi,

Di

(
∂f

∂xi
(X)

)
=E

[
∂f

∂xi
(Xi,X−i)

∂f

∂xi
(Xi,Z−i)

]
−
((

∂f

∂xi

)
0

)2

.

As both factors in the expectation are independent conditionally on Xi, we can

write

Di

(
∂f

∂xi
(X)

)
=E

[
E

(
∂f

∂xi
(Xi,X−i)

∂f

∂xi
(Xi,Z−i)

∣∣∣∣Xi

)]
−
((

∂f

∂xi

)
0

)2

=E

[(
E

[
∂f

∂xi
(Xi,X−i)

∣∣∣∣Xi

])(
E

[
∂f

∂xi
(Xi,Z−i)

∣∣∣∣Xi

])]
−
((

∂f

∂xi

)
0

)2

,

and due to the same distribution of X−i and Z−i, we obtain

Di

(
∂f

∂xi
(X)

)
= E

[(
E

[
∂f

∂xi
(Xi,X−i)

∣∣∣∣Xi

])2
]
−
((

∂f

∂xi

)
0

)2

.

From 1., it follows that the expected value of the total support index serves as195

an upper bound for the total sensitivity index,

C(µi)E
[
DT
i (Xi)

]
≥ DT

i ,

with C(µi) the Poincaré constant of µi as before.

4. Example and application

We first continue the example from the introduction and show how the new

indices capture the changing impact of the variables over the support. Then we200

give a complete sensitivity analysis of a real-life application in the field of sheet

metal forming.
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Figure 1: Support analysis of the Ishigami function.

4.1. A numerical example

Applying the described support analysis to the Ishigami function, f(x1, x2, x3) =

sin(x1) + 7 sin2(x2) + 0.1x43 sin(x1), reveals the effect observed in the introduc-205

tion. For the estimation, the estimators based on finite differences, D̂i(t) and

D̂T
i (t), were computed at 40 regularly spread points in ]−π, π[ for Monte Carlo

samples of size n = 5 000. Notice that for this simple function, the support in-

dices could have been computed analytically. The results are shown in Figure 1.

The influence of the input variable X3 is increasing strongly at the borders,210

which explains the observed strong change in the total effect, when the support

size is changed. Beside this the sinusoidal behavior of X1 and X2 can be ob-

served as well as the facts already known from the standard analysis that X1

and X3 interact and that the main influence of X2 is the strongest.
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4.2. Application to sheet metal forming215

The industrial process of deep drawing is a fundamental procedure for form-

ing sheet metal into desired shapes. It is for example extensively applied in

the automotive industry in the production of car bodies. In the deep drawing

process, a flat sheet metal is pressed with a punch into a die while so-called

blankholders keep the metal fixed at the metal borders. The application aims220

at analyzing the influence of several input parameters on the thickness reduc-

tion of the formed part. A high thickness reduction at a region of the sheet

metal means a strong local thinning, which can lead to structural deformations

or actual tearing. Is it thus of interest to know, which parameters influence the

thinning and in which way as well as modeling and optimization.225

Eight input variables are varied in this study, listed in Table 1 together with

ranges assumed by the practioners. The variables flow stress, initial sheet thick-

ness, hardening exponent and sheet layout concern the material, blankholder

force and friction can be varied during the process. In practice, friction can be

changed during the process by adding or removing lubricant with high pressure230

air and oil removing agents. To roughly integrate this change of friction over the

process time, friction is modeled as three independent variables corresponding

to three stages of the process time over which friction is kept constant. The

output value is the maximal thickness reduction, that is the thickness reduction

of the point of the formed part with the strongest thinning. It is given as the235

ratio between thickness reduction and initial thickness which leads to a scalar

value between 0 and 1.

As the duration of the simulation lies between two and six hours per run,

it is out of the scope of a direct analysis. A common approach to reduce the

number of evaluations is to replace the original exact model by a fast-to-evaluate240

metamodel, which is fitted on a comparatively small amount of evaluations (see

e.g. [13]). For the design of these evaluations, space-filling designs like Latin

hypercube design [14] are well suited. In this application, a Latin hypercube de-

sign with 50 runs is applied. The input variables are scaled to lie between 0 and

1. While this does not affect the sensitivity analysis, it simplifies computations245
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input variable feasible region

X1 flow stress 100-200 MPa

X2 initial sheet thickness 0.5-1.7 mm

X3 blankholder force 50-200 kN

X4 friction; 1st third of process time 0-0.14

X5 friction: 2nd third of process time 0-0.14

X6 friction: 3rd third of process time 0-0.14

X7 hardening exponent 0.1-0.3

X8 sheet layout 100-150%

Table 1: Input variables of the thickness reduction application.

and is necessary for the comparisons in the support analysis. On the results, a

Gaussian process metamodel with a standard product kernel, a single constant

trend, and Matérn 5/2 covariance functions is fitted (see e.g. [15] or [16]). The

accuracy of the metamodel is validated by leave-one-out cross-validation. The

root mean square deviation of the cross-validated predictions from the exact val-250

ues lies at 0.11, which, considering the range of the thickness reduction [0.2, 0.9],

we regard as sufficient.

Using the obtained Gaussian process metamodel, the standard single indices,

first-order Sobol and total sensitivity indices, are estimated by applying inde-

pendent uniform distributions to the input variables. For the computation and255

visualization the R package sensitivity [17] is used. The results are shown in

Figure 2. According to this, variable X8, the sheet layout, has the strongest

influence followed by the two last parts of the friction X5 and X6. The total

sensitivity indices show strong interactions for those variables.

As we are working with the very fast-to-evaluate Gaussian process meta-260

model, we can explore this main effect analysis further by looking at the sup-

port indices of the three most influential variables X5, X6 and X8. This analysis

shows us the local influence of the variables over the domain and can in par-

ticular check if the chosen input ranges influence the results critically. Support
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Figure 2: Thickness reduction application, first-order Sobol and total sensitivity indices.

indices are estimated at 50 equally distributed points over the scaled domain265

[0, 1] via finite differences with a Monte Carlo sample of size 2 000 for each point.

The resulting support functions are drawn in Figure 3. The plots show that the

chosen ranges indeed seem appropriate, as the output variation is not strong

at the borders of the input supports. The wavy shape of the support index

function of variable X8 reveals strong nonlinearities in the relation between this270

variable and the thickness reduction. For instance, the local influence of X8 —

when X5, X6 lie in [0, 1] — is strong around 0.2 and 0.8, but vanishes around

0.4, 0.6, and 0.9. The two friction parameters X5 and X6 show rather similar

support functions, underlining that both describe the same type of parameter.

The interactions seem to be rather equally spread over the support.275

5. Conclusion and perspectives

Two new sensitivity indices, the first-order support index and the total sup-

port index, have been presented that extend the Sobol index and the total

sensitivity index, respectively. They give an original and global solution to
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Figure 3: Support analysis of the sheet metal application.

one of the challenges of sensitivity analysis named in [1]: to determine regions280

within in input space for which the model variation is maximum. By returning

a function of sensitivities over the input space, the indices give insight into the

first-order and the total local behavior of input variables.

On the theoretical level, we showed that the two support index functions are

asymptotically connected to their corresponding scalar indices when the support285

approaches zero. Furthermore, we showed that the expected value over the

support of the functions is linked to derivative-based indices and variance-based

indices, respectively. The results are general as they only require independence

and work for every probability density functions of the input variables.

The functions give insight into the local influence of variables and thus can290

be used as an extension to a sensitivity analysis via standard scalar indices.

They can be especially helpful in the specification of the input distribution,

a possibly highly influential, but often vaguely determined point in sensitivity
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analysis. They can further be useful in optimization to explore potential regions

in the input domain.295

We have noticed two limitations of support indices, which correspond to

those observed for the Sobol indices and derivative-based Sobol measures. First,

the estimation of the indices is expensive and thus can only be used with rather

cheap-to-evaluate models like metamodels. Second, as the support indices repre-

sent functions of partial derivatives, strongly varying models will lead to higher300

support indices than smooth ones, an effect which is not reflected in the scalar

indices which just summarize the output variance. This is due to the focus on

local sensitivities and only important in the case of strongly varying models, in

which careful interpretation is necessary. Finally, the definition is restricted to

independent input variables. An interesting perspective would be to extend the305

approach to the case of dependent inputs.
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