On Anomaly Ranking and Excess-Mass Curves, Supplementary Material

Nicolas Goix
UMR LTCI No. 5141
Telecom ParisTech/CNRS
Institut Mines-Telecom
Paris, 75013, France

Anne Sabourin
UMR LTCI No. 5141
Telecom ParisTech/CNRS
Institut Mines-Telecom
Paris, 75013, France

Stéphan Clémençon
UMR LTCI No. 5141
Telecom ParisTech/CNRS
Institut Mines-Telecom
Paris, 75013, France

1 Illustrations

Note that the scoring function we built in Algorithm 1 is an estimator of the density f (usually called the silhouette), since $f(x)=\int_{0}^{\infty} \mathbb{1}_{f \geq t} d t=\int_{0}^{\infty} \mathbb{1}_{\Omega_{t}^{*}} d t$ and $s(x):=\sum_{k=1}^{K}\left(t_{k}-t_{k-1}\right) \mathbb{1}_{x \in \hat{\Omega}_{t_{k}}}$ which is a discretization of $\int_{0}^{\infty} \mathbb{1}_{\hat{\Omega}_{t}} d t$. This fact is illustrated in Fig. 1

Figure 1: density and scoring functions

2 Detailed Proofs

Proof of Proposition 1

Let $t>0$. Recall that $E M^{*}(t)=\alpha(t)-t \lambda(t)$ where $\alpha(t)$ denote the mass at level t, namely $\alpha(t)=$ $\mathbb{P}(f(X) \geq t)$, and $\lambda(t)$ denote the volume at level t, i.e. $\lambda(t)=\operatorname{Leb}(\{x, f(x) \geq t\})$. For $h>0$, let $A(h)$ denote the quantity $A(h)=1 / h(\alpha(t+h)-\alpha(t))$ and
$B(h)=1 / h(\lambda(t+h)-\lambda(t))$. It is straightforward to see that $A(h)$ and $B(h)$ converge when $h \rightarrow 0$, and expressing $E M^{*^{\prime}}=\alpha^{\prime}(t)-t \lambda^{\prime}(t)-\lambda(t)$, it suffices to show that $\alpha^{\prime}(t)-t \lambda^{\prime}(t)=0$, namely $\lim _{h \rightarrow 0} A(h)-t B(h)=$ 0. Now we have $A(h)-t B(h)=\frac{1}{h} \int_{t \leq f \leq t+h} f-$ $t \leq \frac{1}{h} \int_{t<f<t+h} h=\operatorname{Leb}(t \leq f \leq t+h) \rightarrow 0$ because f has no flat part.

Proof of Lemma 1;

On the one hand, for every Ω measurable,

$$
\begin{aligned}
\mathbb{P}(X \in \Omega)-t \operatorname{Leb}(\Omega) & =\int_{\Omega}(f(x)-t) d x \\
& \leq \int_{\Omega \cap\{f \geq t\}}(f(x)-t) d x \\
& \leq \int_{\{f \geq t\}}(f(x)-t) d x \\
& =\mathbb{P}(f(X) \geq t)-t \operatorname{Leb}(\{f \geq t\})
\end{aligned}
$$

It follows that $\{f \geq t\} \in \arg \max _{\text {Ameas. }} \mathbb{P}(X \in$ $A)-t \operatorname{Leb}(A)$.

On the other hand, suppose $\Omega \in$ $\arg \max _{A \text { meas. }} \mathbb{P}(X \quad \in \quad A)-t \operatorname{Leb}(A)$ and $\operatorname{Leb}(\{f>t\} \backslash \Omega)>0$. Then there is $\epsilon>0$ such that $\operatorname{Leb}(\{f>t+\epsilon\} \backslash \Omega)>0$ (by subadditivity of Leb, if it is not the case, then $\left.\operatorname{Leb}(\{f>t\} \backslash \Omega)=\operatorname{Leb}\left(\cup_{\epsilon \in \mathbb{Q}_{+}}\{f>t+\epsilon\} \backslash \Omega\right)=0\right)$. We have thus
$\int_{\{f>t\} \backslash \Omega}(f(x)-t) d x>\epsilon . \operatorname{Leb}(\{f>t+\epsilon\} \backslash \Omega)>0$,
so that

$$
\begin{aligned}
\int_{\Omega}(f(x)-t) d x \leq & \int_{\{f>t\}}(f(x)-t) d x \\
& -\int_{\{f>t\} \backslash \Omega}(f(x)-t) d x \\
< & \int_{\{f>t\}}(f(x)-t) d x
\end{aligned}
$$

i.e

$$
\begin{aligned}
\mathbb{P}(X \in \Omega)- & t \operatorname{Leb}(\Omega) \\
& <\mathbb{P}(f(X) \geq t)-t \operatorname{Leb}(\{x, f(x) \geq t\})
\end{aligned}
$$

which is a contradiction: $\{f>t\} \subset \Omega$ Leb-a.s. .

To show that $\Omega_{t}^{*} \subset\{x, f(x) \geq t\}$, suppose that $\operatorname{Leb}\left(\Omega_{t}^{*} \cap\{f<t\}\right)>0$. Then by sub-additivity of Leb just as above, there is $\epsilon>0$ s.t $\operatorname{Leb}\left(\Omega_{t}^{*} \cap\{f<t-\epsilon\}\right)>0$ and $\int_{\Omega_{t}^{*} \cap\{f<t-\epsilon\}} f-t \leq-\epsilon \cdot \operatorname{Leb}\left(\Omega_{t}^{*} \cap\{f<t-\epsilon\}\right)<0$. It follows that $\mathbb{P}\left(X \in \Omega_{t}^{*}\right)-t \operatorname{Leb}\left(\Omega_{t}^{*}\right)<\mathbb{P}(X \in$ $\left.\Omega_{t}^{*} \backslash\{f<t-\epsilon\}\right)-t \operatorname{Leb}\left(\Omega_{t}^{*} \backslash\{f<t-\epsilon\}\right)$ which is a contradiction with the optimality of Ω_{t}^{*}.

Proof of Proposition 2

Proving the first assertion is immediate, since $\int_{f \geq t}(f(x)-t) d x \geq \int_{s \geq t}(f(x)-t) d x$. Let us now turn to the second assertion. We have:

$$
\begin{aligned}
& E M^{*}(t)-E M_{s}(t)= \int_{f>t}(f(x)-t) d x \\
& \quad-\sup _{u>0} \int_{s>u}(f(x)-t) d x \\
&=\inf _{u>0} \int_{f>t}(f(x)-t) d x \\
& \quad-\int_{s>u}(f(x)-t) d x
\end{aligned}
$$

yet:

$$
\begin{aligned}
& \int_{\{f>t\} \backslash\{s>u\}}(f(x)-t) d x+\int_{\{s>u\} \backslash\{f>t\}}(t-f(x)) d x \\
& \leq\left(\|f\|_{\infty}-t\right) \cdot \operatorname{Leb}(\{f>t\} \backslash\{s>u\}) \\
& +\quad t \operatorname{Leb}(\{s>u\} \backslash\{f>t\})
\end{aligned}
$$

so we obtain:

$$
\begin{aligned}
& E M^{*}(t)-E M_{s}(t) \leq \max \left(t,\|f\|_{\infty}-t\right) \\
& \times \operatorname{Leb}(\{s>u\} \Delta\{f>t\}) \\
& \leq\|f\|_{\infty} \cdot \operatorname{Leb}(\{s>u\} \Delta\{f>t\}) .
\end{aligned}
$$

To prove the third point, note that:

$$
\begin{aligned}
& \inf _{u>0} \operatorname{Leb}(\{s>u\} \Delta\{f>t\}) \\
&=\inf _{T \nearrow} \operatorname{Leb}(\{T s>t\} \Delta\{f>t\})
\end{aligned}
$$

Yet,

$$
\begin{aligned}
& \operatorname{Leb}(\{T s>t\} \Delta\{f>t\}) \\
& \leq \operatorname{Leb}\left(\left\{f>t-\|T s-f\|_{\infty}\right\} \backslash\left\{f>t+\|T s-f\|_{\infty}\right\}\right) \\
& =\lambda\left(t-\|T s-f\|_{\infty}\right)-\lambda\left(t+\|T s-f\|_{\infty}\right) \\
& =-\int_{t-\|T s-f\|_{\infty}}^{t+\|T s-f\|_{\infty}} \lambda^{\prime}(u) d u
\end{aligned}
$$

On the other hand, we have $\lambda(t)=\int_{\mathbb{R}^{d}} \mathbb{1}_{f(x) \geq t} d x=$ $\int_{\mathbb{R}^{d}} g(x)\|\nabla f(x)\| d x \quad$ where \quad we let $g(x)=$ $\frac{1}{\|\nabla f(x)\|} \mathbb{1}_{\{x,\|\nabla f(x)\|>0, f(x) \geq t\}}$. The co-area formula (see [1], p.249, th3.2.12) gives in this case: $\lambda(t)=\int_{\mathbb{R}} d u \int_{f^{-1}(u)} \frac{1}{\|\nabla f(x)\|} \mathbb{1}_{\{x, f(x) \geq t\}} d \mu(x)=$ $\int_{t}^{\infty} d u \int_{f^{-1}(u)} \frac{1}{\|\nabla f(x)\|} d \mu(x) \quad$ so that $\quad \lambda^{\prime}(t)=$ $-\int_{f^{-1}(u)} \frac{1}{\|\nabla f(x)\|} d \mu(x)$.

Let η_{ϵ} such that $\forall u>\epsilon,\left|\lambda^{\prime}(u)\right|=$ $\int_{f^{-1}(u)} \frac{1}{\|\nabla f(x)\|} d \mu(x)<\eta_{\epsilon}$. We obtain:

$$
\begin{aligned}
\sup _{t \in\left[\epsilon+\inf _{T \nearrow}\|f-T s\|_{\infty},\|f\|_{\infty}\right]} & E M^{*}(t)-E M_{s}(t) \\
& \leq 2 \cdot \eta_{\epsilon} \cdot\|f\|_{\infty} \inf _{T \nearrow}\|f-T s\|_{\infty} .
\end{aligned}
$$

In particular, $\operatorname{if~}_{\inf _{T \nearrow}}\|f-T s\|_{\infty} \leq \epsilon_{1}$,
$\sup _{\left[\epsilon+\epsilon_{1},\|f\|_{\infty}\right]}\left|E M^{*}-E M_{s}\right| \leq 2 . \eta_{\epsilon} \cdot\|f\|_{\infty} \cdot \inf _{T \nearrow}\|f-T s\|_{\infty}$.

Proof of Proposition 3

Let i in $\{1, \ldots, K\}$. First, note that:

$$
\begin{aligned}
& H_{n, t_{i+1}}\left(\hat{\Omega}_{t_{i+1}} \cup \hat{\Omega}_{t_{i}}\right)=H_{n, t_{i+1}}\left(\hat{\Omega}_{t_{i+1}}\right) \\
& \quad+H_{n, t_{i+1}}\left(\hat{\Omega}_{t_{i}} \backslash \hat{\Omega}_{t_{i+1}}\right) \\
& H_{n, t_{i}}\left(\hat{\Omega}_{t_{i+1}} \cap \hat{\Omega}_{t_{i}}\right)=H_{n, t_{i}}\left(\hat{\Omega}_{t_{i}}\right)-H_{n, t_{i}}\left(\hat{\Omega}_{t_{i}} \backslash \hat{\Omega}_{t_{i+1}}\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& H_{n, t_{i+1}}\left(\hat{\Omega}_{t_{i+1}} \cup \hat{\Omega}_{t_{i}}\right)+H_{n, t_{i}}\left(\hat{\Omega}_{t_{i+1}} \cap \hat{\Omega}_{t_{i}}\right) \\
& =H_{n, t_{i+1}}\left(\hat{\Omega}_{t_{i+1}}\right)+H_{n, t_{i}}\left(\hat{\Omega}_{t_{i}}\right)+H_{n, t_{i+1}}\left(\hat{\Omega}_{t_{i}} \backslash \hat{\Omega}_{t_{i+1}}\right) \\
& -H_{n, t_{i}}\left(\hat{\Omega}_{t_{i}} \backslash \hat{\Omega}_{t_{i+1}}\right),
\end{aligned}
$$

with $H_{n, t_{i+1}}\left(\hat{\Omega}_{t_{i}} \backslash \hat{\Omega}_{t_{i+1}}\right)-H_{n, t_{i}}\left(\hat{\Omega}_{t_{i}} \backslash \hat{\Omega}_{t_{i+1}}\right) \geq 0$ since $H_{n, t}$ is decreasing in t. But on the other hand, by
definition of $\hat{\Omega}_{t_{i+1}}$ and $\hat{\Omega}_{t_{i}}$ we have:

$$
\begin{aligned}
& H_{n, t_{i+1}}\left(\hat{\Omega}_{t_{i+1}} \cup \hat{\Omega}_{t_{i}}\right) \leq H_{n, t_{i+1}}\left(\hat{\Omega}_{t_{i+1}}\right), \\
& H_{n, t_{i}}\left(\hat{\Omega}_{t_{i+1}} \cap \hat{\Omega}_{t_{i}}\right) \leq H_{n, t_{i}}\left(\hat{\Omega}_{t_{i}}\right) .
\end{aligned}
$$

Finally we get:

$$
\begin{aligned}
& H_{n, t_{i+1}}\left(\hat{\Omega}_{t_{i+1}} \cup \hat{\Omega}_{t_{i}}\right)=H_{n, t_{i+1}}\left(\hat{\Omega}_{t_{i+1}}\right), \\
& H_{n, t_{i}}\left(\hat{\Omega}_{t_{i+1}} \cap \hat{\Omega}_{t_{i}}\right)=H_{n, t_{i}}\left(\hat{\Omega}_{t_{i}}\right) .
\end{aligned}
$$

Proceeding by induction we have, for every m such that $k+m \leq K$:

$$
\begin{aligned}
& H_{n, t_{i+m}}\left(\hat{\Omega}_{t_{i}} \cup \hat{\Omega}_{t_{i+1}} \cup \ldots \cup \hat{\Omega}_{t_{i+m}}\right)=H_{n, t_{i+m}}\left(\hat{\Omega}_{t_{i+m}}\right), \\
& H_{n, t_{i}}\left(\hat{\Omega}_{t_{i}} \cap \hat{\Omega}_{t_{i+1}} \cap \ldots \cap \hat{\Omega}_{t_{i+m}}\right)=H_{n, t_{i}}\left(\hat{\Omega}_{t_{i}}\right) .
\end{aligned}
$$

Taking ($\mathrm{i}=1, \mathrm{~m}=\mathrm{k}-1$) for the first equation and ($\mathrm{i}=\mathrm{k}$, $\mathrm{m}=\mathrm{K}-\mathrm{k}$) for the second completes the proof.

Proof of Theorem 1

We shall use the following lemma:
Lemma 2.1. With probability at least $1-\delta$, for $k \in$ $\{1, \ldots, K\}, 0 \leq E M^{*}\left(t_{k}\right)-E M_{s_{K}}\left(t_{k}\right) \leq 2 \Phi_{n}(\delta)$.

Proof of Lemma 2.1;

Remember that by definition of $\hat{\Omega}_{t_{k}}: H_{n, t_{k}}\left(\hat{\Omega}_{t_{k}}\right)=$ $\max _{\Omega \in \mathcal{G}} H_{n, t_{k}}(\Omega)$ and note that:
$E M^{*}\left(t_{k}\right)=\max _{\Omega \text { meas. }} H_{t_{k}}(\Omega)=\max _{\Omega \in \mathcal{G}} H_{t_{k}}(\Omega) \geq H_{t_{k}}\left(\hat{\Omega}_{t_{k}}\right)$.
On the other hand, using (5), with probability at least $1-\delta$, for every $G \in \mathcal{G},\left|\mathbb{P}(G)-\mathbb{P}_{n}(G)\right| \leq \Phi_{n}(\delta)$. Hence, with probability at least $1-\delta$, for all $\Omega \in \mathcal{G}$:

$$
H_{n, t_{k}}(\Omega)-\Phi_{n}(\delta) \leq H_{t_{k}}(\Omega) \leq H_{n, t_{k}}(\Omega)+\Phi_{n}(\delta)
$$

so that, with probability at least $(1-\delta)$, for $k \in$ $\{1 . ., K\}$,

$$
\begin{aligned}
H_{n, t_{k}}\left(\hat{\Omega}_{t_{k}}\right)-\Phi_{n}(\delta) & \leq H_{t_{k}}\left(\hat{\Omega}_{t_{k}}\right) \\
& \leq E M^{*}\left(t_{k}\right) \\
& \leq H_{n, t_{k}}\left(\hat{\Omega}_{t_{k}}\right)+\Phi_{n}(\delta),
\end{aligned}
$$

whereby, with probability at least $(1-\delta)$, for $k \in$ $\{1, . ., K\}$,

$$
0 \leq E M^{*}\left(t_{k}\right)-H_{t_{k}}\left(\hat{\Omega}_{t_{k}}\right) \leq 2 \Phi_{n}(\delta) .
$$

The following Lemma is a consequence of the derivative property of $E M^{*}$ (Proposition 1)

Lemma 2.2. Let k in $\{1, \ldots, K-1\}$. Then for every t in $\left.] t_{k+1}, t_{k}\right], 0 \leq E M^{*}(t)-E M^{*}\left(t_{k}\right) \leq \lambda\left(t_{k+1}\right)\left(t_{k}-\right.$ $\left.t_{k+1}\right)$.

Combined with Lemma 2.1 and the fact that $E M_{s_{K}}$ is non-increasing, and writing $E M^{*}(t)-E M_{s_{K}}(t)=$ $\left(E M^{*}(t)-E M^{*}\left(t_{k}\right)\right)+\left(E M^{*}\left(t_{k}\right)-E M_{s_{K}}\left(t_{k}\right)\right)+$ ($\left.E M_{s_{K}}\left(t_{k}\right)-E M_{s_{K}}(t)\right)$ this result leads to:
$\left.\forall k \in\{0, \ldots, K-1\}, \forall t \in] t_{k+1}, t_{k}\right]$,
$0 \leq E M^{*}(t)-E M_{s_{K}}(t) \leq 2 \Phi_{n}(\delta)+\lambda\left(t_{k+1}\right)\left(t_{k}-t_{k+1}\right)$
which gives Lemma 2 stated in section Technical Details. Notice that we have not yet used the fact that f has a compact support.

The compactness support assumption allows an extension of Lemma 2.2 to $k=K$, namely the inequality holds true for t in $\left.\left.\left.] t_{K+1}, t_{K}\right]=\right] 0, t_{K}\right]$ as soon as we let $\lambda\left(t_{K+1}\right):=\operatorname{Leb}($ suppf $)$. Indeed the compactness of suppf implies that $\lambda(t) \rightarrow \operatorname{Leb}($ suppf $)$ as $t \rightarrow 0$. Observing that Lemma 2.1 already contains the case $k=K$, this leads to, for k in $\{0, \ldots, K\}$ and $\left.t \in] t_{k+1}, t_{k}\right],\left|E M^{*}(t)-E M_{s_{K}}(t)\right| \leq 2 \Phi_{n}(\delta)+$ $\lambda\left(t_{k+1}\right)\left(t_{k}-t_{k+1}\right)$. Therefore, λ being a decreasing function bounded by $\lambda(\operatorname{Leb}($ suppf $))$, we obtain the following: with probability at least $1-\delta$, we have for all t in $] 0, t_{1}$]:

$$
\begin{aligned}
& \left|\mathrm{EM}^{*}(t)-\mathrm{EM}_{s_{K}}(t)\right| \\
& \qquad \begin{array}{l}
\leq(A+\sqrt{2 \log (1 / \delta)}) \frac{1}{\sqrt{n}} \\
\quad+\lambda(\operatorname{Leb}(\operatorname{supp} f)) \sup _{1 \leq k \leq K}\left(t_{k}-t_{k+1}\right) .
\end{array}
\end{aligned}
$$

Proof of Theorem 2

The first part of this theorem is a consequence of (10) combined with:

$$
\begin{aligned}
\sup _{\left.t \in] 0, t_{N}\right]}\left|E M^{*}(t)-E M_{s_{N}}(t)\right| & \leq 1-E M_{s_{N}}\left(t_{N}\right) \\
\leq & 1-E M^{*}\left(t_{N}\right)+2 \Phi_{n}(\delta)
\end{aligned}
$$

where we use the fact that $0 \leq E M^{*}\left(t_{N}\right)-$ $E M_{s_{N}}\left(t_{N}\right) \leq 2 \Phi_{n}(\delta)$ following from Lemma 2.1 To see the convergence of $s_{N}(x)$, note that:

$$
\begin{aligned}
& s_{N}(x)=\frac{t_{1}}{\sqrt{n}} \sum_{k=1}^{\infty} \frac{1}{\left(1+\frac{1}{\sqrt{n}}\right)^{k}} \mathbb{1}_{x \in \hat{\Omega}_{t_{k}}} \mathbb{1}_{\{k \leq N\}} \\
& \leq \frac{t_{1}}{\sqrt{n}} \sum_{k=1}^{\infty} \frac{1}{\left(1+\frac{1}{\sqrt{n}}\right)^{k}}<\infty,
\end{aligned}
$$

and analogically to remark 1 observe that $E M_{s_{N}} \leq$ $E M_{s_{\infty}}$ so that $\sup _{\left.t \in] 0, t_{1}\right]}\left|E M^{*}(t)-E M_{s_{\infty}}(t)\right| \leq$ $\sup _{\left.t \in j 0, t_{1}\right]}\left|E M^{*}(t)-E M_{s_{N}}(t)\right|$ which prooves the last part of the theorem.

Proof of Lemma 3

By definition, for every class of set $\mathcal{H}, E M_{\mathcal{H}}^{*}(t)=$ $\max _{\Omega \in \mathcal{H}} H_{t}(\Omega)$. The bias $E M^{*}(t)-E M_{\mathcal{G}}^{*}(t)$ of the model \mathcal{G} is majored by $E M^{*}(t)-E M_{\mathcal{F}}^{*}(t)$ since $\mathcal{F} \subset \mathcal{G}$. Remember that $f_{F}(x):=\sum_{i \geq 1} \mathbb{1}_{x \in F_{i}} \frac{1}{\left|F_{i}\right|} \int_{F_{i}} f(y) d y$ and note that for all $t>0,\left\{f_{F}>t\right\} \in \mathcal{F}$. It follows that:

$$
\begin{aligned}
& E M^{*}(t)-E M_{\mathcal{F}}^{*}(t)=\int_{f>t}(f-t)-\sup _{C \in \mathcal{F}} \int_{C}(f-t) \\
& \leq \int_{f>t}(f-t)-\int_{f_{F}>t}(f-t) \text { since }\left\{f_{F}>t\right\} \in \mathcal{F} \\
&= \int_{f>t}(f-t)-\int_{f_{F}>t}\left(f_{F}-t\right) \\
& \quad \text { since } \forall G \in \mathcal{F}, \int_{G} f=\int_{G} f_{F} \\
&= \int_{f>t}(f-t)-\int_{f>t}\left(f_{F}-t\right)+\int_{f>t}\left(f_{F}-t\right) \\
&= \int_{f>t}\left(f-\int_{f_{F}>t}\left(f_{F}-t\right)\right. \\
&=\int_{\{f>t\} \backslash\left\{f_{F}>t\right\}}\left(f_{F}-t\right) \\
&-\int_{\left\{f_{F}>t\right\} \backslash\{f>t\}}\left(f_{F}-t\right) .
\end{aligned}
$$

Observe that the second and the third term in the bound are non-positive. Therefore:

$$
E M^{*}(t)-E M_{\mathcal{F}}^{*}(t) \leq \int_{f>t}\left(f-f_{F}\right) \leq \int_{\mathbb{R}^{d}}\left|f-f_{F}\right|
$$

References

[1] H. Federer. Geometric Measure Theory. Springer, 1969.

