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Abstract: One of the pinnacles of form in classical Western music, the fugue is often used in the teaching of music
analysis and composition. Fugues alternate between instances of a subject and other patterns and modulatory sections,
called episodes. Musicological analyses are generally built on these patterns and sections.

We have developed several algorithms to perform an automated analysis of a fugue, starting from a score in which
all the voices are separated. By focusing on the diatonic similarities between pitch intervals, we detect subjects and
countersubjects, as well as partial harmonic sequences inside the episodes. We also implemented tools to detect subject
scale degrees, cadences, and pedals, as well as a method for segmenting the fugue into exposition and episodic parts.

Our algorithms were tested on a corpus of 36 fugues by J. S. Bach and Dmitri Shostakovich. We provide formalized
ground-truth data on this corpus as well as a dynamic visualization of the ground truth and of our computed results.
The complete system showed acceptable or good results for about one half of the fugues tested, enabling us to depict
their design.

A fugue is a polyphonic musical piece built on
several melodic themes that consist of a subject
and, in most cases, one or more countersubjects.
The Italian word fuga is related to the Latin words
fugere (to flee) and fugare (to chase): The patterns
are played by each voice, one following the other in
succession. They occur either in their initial form
or, more often, altered or transposed, building a
complex harmonic texture. Many composers wrote
fugues or included fugal parts in larger pieces. The
two books of J. S. Bach’s Well-Tempered Clavier are
a particularly consistent corpus in their exploration
of the 24 major and minor tonalities in 48 pairs of
preludes and fugues. Fugues are often viewed as one
of the highest forms of classical Western music, and
therefore are often used in the teaching of music
analysis and of composition (Bergerault 2011).
Although its structure may appear formal, the fugue
enables high levels of creativity. Many treatises
have been written on fugues and on counterpoint
in general, such as those by François-Joseph Fétis
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(1825), André Gedalge (1901), Hugo Norden (1977),
and Kent Kennan (1999). Some studies have included
a complete musicological analysis of Bach’s Well-
Tempered Clavier, such as the books by Ebenezer
Prout (1910) and Siglind Bruhn (1993).

The analysis of a fugue requires an understanding
of its structure on both local and global scales.
Fugues are thus good candidates for music infor-
mation retrieval (MIR) research, stimulating the
development of algorithms on symbolic scores. We
believe that this research should go beyond generic
problems such as pattern matching or inference or
local key estimation. The research should include
algorithms that predict actual “analytical elements”
that will contribute to a large-scale analysis.

We describe here a system for automated fugue
analysis, starting from a symbolic score that is
separated into voices. We complete and extend
methods to detect subjects and countersubjects,
based on an analysis of repeating patterns, and
methods to study episodes focusing on harmonic
sequences (Giraud, Groult, and Levé 2012, 2013).
Our aim is to provide algorithms with high precision
rather than high recall. As all the content of a fugue
is somewhat derived from the base patterns, what
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Figure 1. Opening
measures of J. S. Bach’s
Fugue in C minor (Fugue
No. 2, BWV 847).
Subjects (S),
countersubjects (CS1 and

CS2), and first two
episodes (E1 and E2). The
notes ending the subjects,
as described in the ground
truth file, are circled, and
the notes ending the

countersubjects are boxed.
Inside the episodes, the
inner brackets show the
recurring patterns (three
occurrences in E1, and two
occurrences in E2).

is interesting is not to locate as many approximate
occurrences as possible or to infer very short
patterns, but to provide an analysis with some
semantics: The occurrences of the patterns and of
other analytical elements should be organized into a
meaningful analysis.

The next sections provide background informa-
tion on fugues and on the related work in MIR.
We then present a ground-truth analysis of a cor-
pus of 24 fugues by Bach and 12 fugues by Dmitri
Shostakovich. We then explain our generic strategy
for matching of repeated patterns with diatonic sim-
ilarities, and discuss algorithms studying specific
elements, including thematic patterns, harmonic
sequences, cadences, and pedals. We also explain the
combination of these different analyses in a global
analysis. The last section discusses our implemen-
tation, describes an interface for visualization, and
compares the results of these algorithms with the
ground truth.

Elements of Fugues

The following components of fugue analysis are il-
lustrated by the Fugue in C minor (Fugue No. 2, BWV
847) from the first book of Bach’s Well-Tempered
Clavier, which has a very regular construction. A
fugue is structured as a set of voices, where each
voice is a mostly monophonic sequence of notes.
Fugue No. 2 consists of three voices. A fugue is built
on a theme called a subject (S). The first three entries
(or occurrences) of the subject in Fugue No. 2 are
shown in Figure 1: The subject is stated in one voice
(the alto), beginning on C, until the second voice
enters (the soprano, measure 3). The subject is then
stated in the second voice, this time transposed up a
fifth. Meanwhile, the first voice continues with the
first countersubject (CS1), which combines with the
subject.

The fugue alternates between other entries of
the subject and the countersubjects (eight instances
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Figure 2. End of the Bach
Fugue in C minor (Fugue
No. 2, BWV 847). The
concluding perfect
authentic cadence (PAC,

middle of measure 29) is
followed by a bass pedal
and a final exposition of
the subject in the soprano
voice.

of S, six instances of CS1, and five instances of the
second countersubject, CS2), and developments on
these patterns called episodes (E). Figure 1 shows the
first two episodes of Fugue No. 2. The first episode
is sometimes called codetta; the term “episode”
can be applied to the ones after the exposition of all
voices. The episodes can contain cadential passages
that release tension. They often consist of harmonic
sequences, which are passages where a pattern is
consecutively repeated starting on a different pitch,
possibly modulating from one tonality to another.
The end of the fugue frequently includes a stretto
(i.e., a succession of overlapping, often incomplete
entries of S, in all voices). The final cadence is
typically followed by a bass pedal (i.e., a note
sustained over several harmonies) possibly with a
last exposition of the subject (see Figure 2). Figure 3
shows an outline of the entire Fugue No. 2.

The subject and the countersubject form the foci
of cognition when listening or playing to a fugue.
As stated by Bruhn, “The perfect little musical
entity we call subject is in fact at the origin of the
fugue. . . . The subject is responsible for the feelings
of density and relaxation in the fugue, and it is the
main force in creating structure” (Bruhn 1993, p. 43).
Therefore, most fugue analyses first consider these
thematic patterns. On the other hand, the episodes
induce variety and contrast. Messiaen (1956, p. 40)
even stated: “Without constraining ourselves to
making regular fugues, we shall keep the most
essential parts of them: the episode and the stretto.”
Indeed, fugal passages in Messiaen’s music are very
far from the usual schema.

In regular fugues, it is the succession of the
exposition and the episodic parts that builds the
musical interest through contrasting phases of
tension and release: “An episode can establish three

crucial relationships to its surroundings: It can
link two subject statements by leading from one
toward the next, it can be conclusive by resolving
tension that was built up during a preceding subject
statement, or it can represent a different register and
serve as a color contrast” (Bruhn 1993, p. 50). This
succession of exposition and episodic parts can be
revealed by musicological analysis, and forms the
basis of further aesthetic analysis.

Related Work: MIR and Fugue Analysis

Many generic MIR techniques can be applied to
fugues, mostly in searches for repeating or musically
salient elements (e.g., motifs, patterns, themes,
or streams). For example, algorithms can be used
to compute the similarity between monophonic
sequences, such as the algorithms described by
Mongeau and Sankoff (1990) and their extensions.
One can also use methods for approximate pattern
matching (Crawford, Iliopoulos, and Raman 1998;
Clifford and Iliopoulos 2004), allowing a given
number of mismatches.

Discovering patterns in music is an established
field of MIR research (Jansen et al. 2014). Several
studies have focused on finding maximal repeating
patterns, thus discarding patterns that are sub-
patterns of a larger pattern that occurs with the
same frequency as the sub-patterns (Hsu, Liu,
and Chen 1998; Liu, Hsu, and Chen 1999; Karydis,
Nanopoulos, and Manolopoulos 2007). The repeating
patterns can be searched using encodings more
adapted to melody recognition, such as in the step-
leap representation used by Cambouropoulos and
colleagues (2005).
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Figure 3. Analysis of Bach
Fugue No. 2 in C minor
from the first book of the
Well-Tempered Clavier
(BWV 847). Extract from
the ground truth file (a),
showing measures that
contain entries of the
subject (S), first
countersubject (CS1) in
soprano (S), alto (A), and
tenor (T) voices. The
position of each
occurrence is given by the
number of the measure in

which it occurs (3 is the
first beat of measure 3).
The actual start is,
moreover, shifted from this
logical position (one eighth
for S, one sixteenth for
CS1, except for some
occurrences where there is
an additional “start”
keyword). This fugue also
contains perfect and
imperfect authentic
cadences (PAC and IAC)
on the tonic (i, I) and
dominant (v). Uppercase is

used to indicate major
keys and lowercase
indicates minor.
Visualization of this
ground truth file, and
results of the proposed
system for the same fugue
(b). The algorithms
retrieve all the entries of
the subject (and, in Roman
numerals, the scale
degrees of the subject
relative to the global key),
occurrences of the “head”
of the subject (small boxes

inside the episodes), all
but one of the entries of
the countersubject and
second countersubject,
harmonic sequences (1, 2,
3), three out of the four
cadences and the final
pedal. The cadences are
denoted here by their root.
In this example the
algorithm has a perfect
precision.

Other studies try to find musically significant
elements, with algorithms considering the number
of occurrences (Smith and Medina 2001), but also
the melodic contour or other features (Meek and
Birmingham 2003). Lartillot (2007) proposed a
theory of “motivic pattern mining,” inferring an
exhaustive list of repeating patterns, taking into
account cognitive elements. Information about
repetition can also be used, as in the local boundary
detection model (cf. Cambouropoulos 2006). Many
different features of theme extraction have also been
discussed by Meek and Birmingham (2003).

Several techniques have been put forward to
deal with polyphonic data. Meredith, Lemström,
and Wiggins (2002; see also Meredith 2006a) have
described a geometric encoding of notes (length,
pitch) using techniques such as translation vectors
for pattern discovery and matching. Conklin and
Bergeron (2010) implemented a method to find
short contrapuntal patterns that embed relations
of consonance and dissonance between voices.
Rafailidis et al. (2008) consider information about

melody, pitch, and rhythm to gather notes into
stream segments, predicting phrasal boundaries but
also some vertical groupings.

Conklin (2010a,b) focused on maximally general
distinctive patterns, overrepresented in a corspu
with respect to an “anticorpus.”

Many of these techniques may be used to give
relevant pattern information in fugues. Any person
or algorithm trying to do an actual analysis should,
however, make wise choices of which elements
to consider in undertaking a meaningful analysis.
Using or extending some of these techniques, sev-
eral MIR studies have already focused on fugues,
attempting to achieve a musicological analysis of
this repertoire. Weng and Chen (2005) built a tool
to decide whether a piece is a fugue, but no de-
tails were given regarding the algorithm. Browles
(2005) worked on fugue analysis, investigating sev-
eral heuristics to aid in the selection of candidate
fugue subjects, using algorithms for repeated pat-
tern extraction developed by Hsu, Liu, and Chen
(1998). These algorithms maximize the number of
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occurrences of repeating patterns. The Web site
www.earsense.org has also produced analyses of
fugues by extracting sequences of some repeating
patterns, but without precise formal analysis or
precise bounds.

A Corpus of Fugues with Ground-Truth Analysis

Because evaluating algorithms is always challenging
in MIR, there is the need for public data sets
to evaluate and compare different algorithms.
Previous works on fugue analysis were not evaluated
against detailed ground-truth data. The evaluation
developed by Weng and Chen (2005) was limited
to determining whether a piece was a fugue or
not. Browles’ bachelor’s thesis (2005) reported
that the fugal subjects identified by her method
were “missing or including an extra 1 to 4 notes.”
She discussed some individual results but did not
describe any formalized ground truth.

We present here our corpus and the musicological
sources, and argue why a specific ground truth for
fugues is meaningful. The goal is to provide in a
computer-readable format analytical elements that
could be used in a musicological analysis of the
fugue.

The Corpus and the Musicological Sources

We selected a corpus of the 24 fugues in the first book
of Bach’s Well-Tempered Clavier (BWV 846–869),
and the first 12 fugues in Shostakovich’s 24 Preludes
and Fugues (op. 87, 1952). Bach’s Well-Tempered
Clavier has been extensively studied, and systematic
analyses of Bach’s fugues have been published by
Prout (1910), Tovey (1924), Keller (1965), and Bruhn
(1993). All these studies discuss the S, CS1, and CS2
patterns and global characteristics of each fugue.
Moreover, the detailed books by Bruhn list and
discuss all entries of patterns. Charlier (2009) offers
multi-thematic fugal analyses, some of which differ
from more generally accepted ones. Shostakovich’s
fugues have received less attention than Bach’s
fugues. One systematic study has focused on their
interpretation (Plutalov 2010), but it does not
include a detailed formal analysis of the positions of

patterns. The Web site www.earsense.org provides
some analytic elements of the fugues of both Bach
and Shostakovich, including a discussion of their
S, CS1, and CS2 patterns and the number of their
entries (but not their positions).

Is a Ground Truth Meaningful?

There is not just one correct analysis of a given
piece—musicologists often disagree, or they will
at least advocate several different points of view.
There may be no consensus among musicologists
regarding even some basic analytical elements.
The notions of “subject,” “countersubject,” or
“cadence” are not so well defined and involve
implicit or explicit musical knowledge: Somehow,
if these notions were perfectly formalized, we
could have exact algorithms giving perfect results.
Moreover, these notions are more musicological
(discussed in treatises) than empirical (tested with
music cognition experiments).

In 8 of the 24 fugues by Bach, at least two sources
disagreed on the end of the subject (see Figure 4).
This ambiguity can be a part of the music, building
an elaborate construction of the piece. On Fugue
No. 9, in E major, Tovey (1924, p. 79) writes: “It
is not worthwhile settling where the subject ends
and where the countersubject begins.” There is
indeed a continuous flow from the subject to the
countersubject.

We still argue that some formalized ground truth
is meaningful. In 16 of the 24 same fugues, all
our sources (except Charlier) agree exactly on the
definition of the subjects. This consensus can be also
found with other elements—the sources agree on the
analytical elements on the very regular Fugue No. 2
depicted in Figure 3. The goal of such a ground truth
is thus to formalize what is commonly perceived
as analytical elements by traditional musicological
analysis.

The Ground Truth

Prior to the present study, no computer-readable
analysis has been performed on the fugues of
either Bach or Shostakovich. We propose the first
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Figure 4. The eight
subjects in the first book of
Bach’s Well-Tempered
Clavier where at least two
sources disagree on the
end of the subject. Circled
notes show the proposed

endings of the subjects.
(Charlier has a motivic
approach, resulting in
shorter subjects.) Boxed
notes show the ends found
by our method.

formalized ground-truth analysis of these fugues,
which is usable in MIR evaluation and is built on
the aforementioned sources and our own analysis.
The ground-truth files (see Figure 3a) give the
symbolic positions (measure number and position
in measure) of the entries of the subject and the
countersubject, as well as cadences and pedals.
We also report slight modifications to S, CS1, and
CS2, such as actual start, delayed resolutions, and
other potentially useful information. Hence, we
provide some analytic elements that could be part

of a musicological analysis. We do not claim to
provide a full musicological analysis, however—
these analytical elements are not the goal of the
musicological analyses, but simply a part of these
analyses. In particular, we do not analyze some high-
level concepts such as the texture or the evolution
of tension, nor the detailed transformation of the S,
CS1, and CS2 patterns.

The ground-truth data should include analyses
by different musicologists. But different analysis
will focus on different aspects that are not easily
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formalizable, and, as indicated, most of them do
not enter into the detail of each pattern occurrence.
We at least report alternative subject definitions in
the ground-truth files (but do not report alterna-
tive CS1/CS2).

The current release of our data set (2015.01)
includes the position of all complete subjects and
countersubjects, as well as cadences and pedals—a
total of more than 1,000 annotations. These files
are available online at www.algomus.fr/datasets
under open-source database licenses. In addition to
evaluating fugue analysis, this data set might be
useful in other situations besides the evaluation of
fugue analysis, such as the evaluation of algorithms
for pattern extraction or structure analysis.

Detecting Repeated Patterns

A fugue contains many repeated patterns in either
entries or episodes. Not all the instances of S, CS1,
and CS2 are exact repetitions, however, and the
patterns can be transposed or altered in various
ways. Similarly, the patterns that form harmonic
sequences in episodes are not always repeated
exactly. Starting with the voice-separated data,
we aim to detect such repeating patterns under a
substitution function by considering the diatonic
similarity of pitch intervals and by redefining the
duration of all except the first and the last notes to
take on the same value (the duration of the notes
at the extremities of a pattern are altered more
frequently).

Representation of Music

A note x is described by a triplet (p, o, d), where
p is the pitch, o the onset, and d the duration.
The pitch is an integer describing information that
can be either diatonic (based on the succession
of notes in a scale) or based on semitones. We
consider ordered sequences of notes x1 . . . xm, that
is, x1 = (p1, o1, d1), . . . , xm = (pm, om, dm), where 0 ≤
o1 ≤ o2 ≤ . . . ≤ om (see Figure 5). A sequence is
monophonic if two notes never sound at the
same onset, that is, for every i with 1 ≤ i < m,

Figure 5. A monophonic
sequence of notes (start of
Bach’s Fugue No. 2, see
Figure 1), represented by
(p, o, d) or (�p, o, d) triplets.

In this example, onsets
and durations are counted
in sixteenth notes, and
pitches and intervals are
counted in semitones.

we have oi + di ≤ oi+1. There is a silence between
two notes xi and xi+1 if oi + di < oi+1, and the
duration of this silence is oi+1 − (oi + di). To be
able to match transposed patterns, we consider
relative pitches, which are also called intervals. The
interval sequence is defined as �x2 . . .� xm, where
�xi = (� pi, oi, di) and � pi = pi − pi−1.

An Adapted Mongeau-Sankoff Algorithm

The similarity score between a pattern and the
rest of the fugue can be computed via dynamic
programming, using equations similar to those
developed by Mongeau and Sankoff (1990). Let
x = x1 . . . xm be a pattern and y = y1 . . . yn be a voice.
When a ≤ m, let S(a, b) be the best number of
matched intervals when aligning the start of the
pattern x1 . . . xa against yi . . . yb, a part of the voice
y finishing at b, and let Sf (m, b) be the best number
of matched intervals when aligning the complete
pattern x1 . . . xm (a candidate pattern) against the
same part yi . . . yb. The tables S and Sf are computed
using the following dynamic programming equation:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S(1, b) = 0

∀a ≥ 2, S(a, b) = S(a − 1, b− 1) + δ(�xa, �yb)
(match, substitution)

∀m≥ 2, Sf (m, b) = S(m− 1, b− 1) + δ f (�xm, �yb)
(finishing).

(1)
The alignment then can be retrieved through

backtracking in the dynamic programming table.
The substitution functions δ and δ f are defined as
follows (the relation ≈ is a similarity relation on
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Figure 6. Alignment
between four similar
patterns in Bach Fugue No.
5. Considering diatonic
steps, the pitch intervals of
the first pattern (m2) are
(�x2 . . . �x6) =

(−1, −1, −1, +1, −4). The
pattern would be exactly
matched in the diatonic
transposition T, which
does not occur in the
fugue. In the actual
occurrences of the pattern,

the first note (circled) is
either fragmented (in m8)
or substituted (in m5), and
the length of the last note
(circled) is not preserved.
The pattern is further
modified by an insertion

(boxed pitch B) that is
better viewed as a
fragmentation of the
preceding note, D.

pitch intervals):

δ((� p, o, d), (� p′, o′, d′))

=

⎧⎪⎨
⎪⎩

+1 if � p ≈ � p′ and d = d′

0 if � p �≈ � p′ and d = d′

−∞ otherwise (d �= d′).

(2)

δ f ((� p, o, d), (� p′, o′, d′))

=
{

+1 if � p ≈ � p′

0 otherwise (� p �≈ � p′).
(3)

Note that δ checks pitch intervals and durations,
whereas δ f only considers intervals, ignoring the
durations of the last notes. Neither of the durations
of the first notes (x1 and y1) is checked, as the
algorithm actually compares �x2 . . . �xa against
�y2 . . . �yb. This is because the first and the last
notes of thematic patterns are transformed more
frequently than the other notes, as in Figure 6.

These substitution functions are very conserva-
tive, allowing only substitution errors and strict
length matching to retrieve as few false positives
as possible while keeping a high recognition rate.
For example, in the alignment of Figure 6, the
pattern at measure 2 perfectly matches its dia-
tonic transposition T: Sf (m2, T) = 5. As soon as
the pattern is mutated, however, the pattern is not
recognized: here Sf (m2, m8) = Sf (m2, m5) = −∞.
The equations can be extended to consider other
editing operations. For example, allowing insertion

or deletion operations with a score of zero will give
Sf (m2, m8) = 4 and Sf (m2, m5) = 2. Appropriate
fragmentation operations with a score of 1 will raise
the score Sf (m2, m5) to 4. The comparison of Sf
values with a threshold will decide whether the
occurrence is kept or not. A threshold of 3 will
allow here up to two interval mismatches. However,
when the constraints are relaxed, because almost
all the content of a fugue is somewhat derived from
a subject or some countersubject, any part would
match a part of the subject or another base pattern
within a given threshold.

Many similarities ≈ can be selected, from a
strict pitch equality to very relaxed “up/down”
classes defining the melodic contour (Ghias et al.
1995). Some intermediary interval classes may be
defined as “step/leap intervals” (Cambouropoulos
et al. 2005) or “quantized partially overlapping
intervals” (see Lemström and Laine 1998). The
quantized partially overlapping interval model
defines short intervals (from one to three semitones),
medium intervals (from three to seven semitones),
and large intervals (starting from six semitones).
When the pitch names are available—or when they
can be computed with pitch spelling algorithms,
such as those developed by Meredith (2006b)—the
similarity can be directly computed on diatonic
pitches. A diatonic model is relevant for tonal music
because it is sensible enough to allow mode changes
while remaining specific—that is, a scale will
always match only a scale (Orpen and Huron 1992;
Cambouropoulos 1996; Hiraga 1997; Perttu 2000).
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Figure 7. Relative start
(s, s′) and end (e) positions
of countersubjects (1:CS1,
2:CS2) described in the
ground truth file. These
positions are computed as
a number of notes

compared to the
corresponding S start and
end positions. The
histograms show the
distribution of these
values on the 36 fugues of
the corpus. Usually s′

1 = 0

(CS1 starts right after the
subject) and e1 = e2 = 0
(CS1 and CS2 finish
exactly at the end of
the subject).

Algorithms for Fugue Analysis

We have developed several tools that give struc-
tural information about fugues. Using the adapted
Mongeau-Sankoff algorithm and other discrete tech-
niques, we aim to compute the end of the subject
and then to infer CS1 and, possibly, CS2. Determin-
ing these patterns and their complete occurrences
(including augmented or inverted ones) and their
transpositions will help to shape the structure of the
fugue. We identify harmonic sequences, cadences,
and pedals. We also combine some of these elements
into a global segmentation with statistical model-
ing. The result of these algorithms on Bach’s Fugue
No. 2 was depicted at the bottom of Figure 3 (in the
block labeled “Computed analysis”). The output of
our method is thus both the different elements and
the prediction of the global segmentation.

Subject Identification

Finding the end of the subject is necessary for finding
the countersubject and for building the complete
structure of a fugue, including all the occurrences
of these patterns. At the beginning of a fugue, the
subject is first heard alone and is played by a single
voice until the second voice enters. Fugue No. 6
from Shostakovich’s op. 87 is a counterexample
in which the first entry of the subject, in the bass
voice, is doubled at the octave, although this can be
viewed as a difference of texture.

The end of the subject is generally not exactly
at the start of the second voice, however. For

example, in Bach’s Fugue No. 2, according to the
four musicological references of our ground truth,
the first subject ends on an alto note E�, which
is two notes (two sixteenths) before the start of
the soprano voice (i.e., the first circled note in
Figure 1). Several parameters contribute to this
perception. Metrically, the phrase ends on a strong
beat; harmonically, the five preceding notes, F G
A� G F, suggest a dominant seventh chord, which
resolves on the E�, suggesting the C minor tonic.
The subject ends with a succession of sixteenth
notes with small intervals, whereas the following
note (C) belongs to CS1, being separated from the
E� by a large leap and starting a descending scale
of sixteenth notes. In the 36 fugues of our corpus,
the end of the subject is between −8 and +6 notes
(inclusive) relative to the start of the second subject
(except for Shostakovich’s Fugue No. 6 in B minor,
−18 notes), and in the majority of cases, between −4
and +1 notes (inclusive, see s1 in Figure 7).

Here, a simple algorithm, based only on similar-
ities, is able to precisely detect most of the subject
ends (Giraud, Groult, and Levé 2013). In the first
voice, we test patterns that finish between eight
notes before and six notes after the start of the
second voice: Let z be the position of the note of the
first voice heard before or at the start of the second
voice, and g ∈ [−8, 6]. Each of these candidates,
finishing at z + g, is matched against all the voices.
This matching is done with the function described
in the previous section (strict length matching
except for the first and the last notes and only
pitch interval substitution). The “best” one (that is,
the candidate having the best total score on all its
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occurrences) is then selected. The chosen subject is
the one finishing at z + g that maximizes the sum
of the scores of its occurrences, that is, the sum of
the Sf (z + g, i) values for some position i, such that
Sf (z + g, i) is greater than or equal to a threshold,
depending on the length of the pattern.

Moreover, a subject is more likely to end on a
strong beat, and the pitch of the last note of the
subject is, in most cases, a note of the tonic chord.
These constraints could be encoded as additional
scores in the matching process in order to improve
the detection in some cases.

Countersubject Identification

The CS1 usually starts immediately after the subject
(see s′

1 in Figure 7), except in some cases, such as in
Bach’s Fugue No. 16 in G minor, or in Shostakovich’s
Fugue No. 2 in A minor. CS2, when it exists, starts
later, approximately at the start of the third entry
of the subject (possibly after a codetta) and ends
approximately at the end of this third subject (and
at the second entry of CS1). Figure 7 shows the
distribution of these relative positions in the corpus.
In the majority of cases, countersubjects end at
exactly the same position as the subjects (see boxed
notes on Figure 1). This reinforces the perception of
closure of the S/CS1/CS2 set, and helps to mark a
transition between the exposition and the episodic
material. To discover CS1, we test patterns starting
just after the subject and finishing roughly after the
end of the second subject (between two notes before
and four notes after). We select the best candidate,
again by choosing the z that maximizes the sum
of Sf (z + g, i) for all occurrences i of the candidate
pattern. Note that a bad S detection can thus lead
to a bad CS1 detection. The CS2 is even more
difficult to find, because it can be shorter, and its
starting position is difficult to predict. Moreover,
musicologists do not always achieve consensus on
the presence of CS2.

Detection of All Occurrences

Once the S, CS1, and CS2 patterns have been
identified, it is possible to launch further dynamic

programming to detect more occurrences of these
patterns. The very conservative substitution func-
tions δ and δ f could be relaxed to allow duration
substitutions or, at least, fragmentations and con-
solidations that preserve the total duration. When
we lower the global threshold, we find incomplete
occurrences of S that are not proper entries. These
relaxed constraints should not be used in the pattern
identification phase because they are insufficient to
detect endings. Moreover, we specifically look at the
“head” of a subject by searching patterns limited to
the first five notes of the subject (see Figure 3).

We add other constraints for the detection of
CS1 and CS2, allowing a CS1 only when there is
a concurrent S and a CS2 only when there is a
CS1 in a “compatible” position. Finally, in some
fugues, the subject appears inverted (or “upside
down”, i.e., all intervals are mirrored) or augmented
(e.g., all durations are doubled). When the subject is
known, the same matching algorithm retrieves any
inversions and augmentations of the subject.

Subject Scale Degrees and Local Tonalities

After an exposition using the tonic and dominant
(I and V degrees), the fugue often moves to relative
or more distant tonalities, returning to the tonic for
the conclusion. Determining these local tonalities
is a part of a complete analysis. Such tonalities
could be estimated by using the classical algorithms
described in the works of Krumhansl and Kessler
(1982) or Temperley (1999), and their extensions,
or using the more recent findings of Madsen and
Widmer (2007) or Robine, Rocher, and Hanna (2008).
These algorithms may, however, incorrectly assign
tonalities in rapidly modulating passages, such as
some episodes.

We do not use any key finding but instead use a
much simpler method, taking advantage of subject
detection and not trying to study the tonality in
episodes. We focus on the subjects (which are points
in which the local tonality is more stable), and
determine the transposition interval between the
current subject and the first subject, which is at the
tonic, I. For this, we compute the average pitch, in
semitones, of each subject entry. The scale degrees of
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Figure 8. Bach Fugue No.
22 in B� minor. The subject
is stated in the soprano in
measures 55–57. The line
of parallel thirds between
soprano and alto starts a
pattern used for the

following episode. A
partial harmonic sequence
is detected starting from
measure 56, lasting for two
phrases of two measures
(eight quarter notes)
each—this sequence is not

exact, as the end of the
pattern is varied. Another
partial harmonic sequence
with 2×1 measure is
detected later.

the subjects are then computed relative to the global
key as established for the first subject. When the
subject is transposed from the tonic to the dominant,
some slight modifications in the subject can happen
(known as a tonal answer), usually in the very first
notes of the subject (for instance, the dominant pitch
may be transposed to the tonic pitch instead of the
supertonic). These modifications are compensated
for by the other notes in the average pitch, so the
computation of the scale degree is still correct. This
does not allow the detection of changing tonalities
inside a subject, however. Many subjects indeed
start from the tonic and modulate towards the
dominant. Knowing the degrees of the greater part
of the subjects gives insight, nevertheless, into the
tonal path of the complete piece.

For example, this tonal path can be seen in Bach’s
Fugues No. 2 (see Figure 3) and No. 18 (G� minor,
discussed subsequently); also note that scale degrees
are denoted in roman numerals at the bottom of
the diagrams. Whereas the initial exposition and the
ending of the fugue alternate between the tonic (I)
and either the subdominant or the dominant (IV
or V), the middle sections reach the relative key
(III or VI) or more distant keys.

Harmonic Sequences

In fugues, harmonic sequences are almost exclu-
sively found in the episodic parts. Detecting them
helps to reveal the fugue’s design. In each voice,
we look for consecutive repeating patterns—that
is, two consecutive occurrences pat1 and pat2 of
the same pattern, and possibly three (pat1, pat2,
pat3). We therefore use the substitution function
described in the previous section, which requires

that S(pat1, pati) is above a given threshold for each
occurrence pati.

We try to detect partial harmonic sequences start-
ing at every note occurring at or immediately after
each beat of the score. A sequence is reported when
patterns in at least two different voices are repeated
consecutively with the same transposition (Giraud,
Groult, and Levé 2012). Several periods (pattern
length) are tested: one and two beats (depending on
the meter), one and two measures. Because every
beat is tested, this procedure finds several over-
lapping sequences, with the same period, as soon
as there are strictly more than two occurrences.
Such overlapping sequences are merged into a single
sequence.

This method correctly retrieves most of the
harmonic sequences. Near the beginning of Fugue
No. 2 (see Figure 3), the two harmonic sequences
are detected. The first one, during the codetta, is
shortened because of the shifted start of the two
voices, however. The harmonic sequences are good
markers of episodes. A frequent situation, however,
is that the harmonic sequence begins at the end
of a thematic pattern, continuing in episode (see
Figure 8).

Cadences and Pedals

Cadences and pedals mark structural transitions in
the fugue (ends of expositions, ends of episodes, and
coda with a pedal). Except for some particular cases
(see Figure 9), the pedals are found at the very end of
the fugues, as in Fugue No. 2 (see Figure 2). We label
as “bass pedal” every bass note that lasts strictly
more than four beats (for binary meters) or six beats
(for ternary meters).
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Figure 9. Unusual cases of
pedals. In the middle of
Fugue No. 11 in F major
(a), there is a pedal, which
has been correctly
detected, in the dominant
of the relative key. This

pedal in Fugue No. 18 in
G# minor (b) starts in the
tenor and then continues
in the bass. It could be
detected by geometrical
methods.

Each time the bass moves up a perfect fourth or
down a perfect fifth, we try to identify a cadence V-I
in root position if the following conditions are met.
On the beat, the notes of the chord must be part
of a major, minor, or suspended fourth chord with
the bass tonic as root. The uppermost note must
be either the tonic (perfect authentic cadence, PAC)
or a major or minor third (root position imperfect
authentic cadence rlAC). Note that the arrival chord
is often not a full perfect chord, and sometimes it
can even be limited to the single tonic note, such
as in the PAC of Figure 2. Before the beat, at some
point during the bass note, we must find a dominant
chord (notes included in a dominant seventh, with
at least the leading tone). Because of passing tones,
this point is often not the very last note before the
strong beat.

This method allows us to find about 82 percent
of the PACs in the ground truth. Most of the false
positives are cases where these conditions are met
but the musical phrase continues (see Figure 10).

Global Structure

We use a hidden Markov model (HMM) to combine
different elements of analysis. An HMM consists of
a sequence of states with transition probabilities

and emission probabilities. At each computation
step, the HMM can change its state according to
a transition. The HMM emits symbols, which are
the only output of the system; the sequence of the
corresponding states is hidden. Given an observed
sequence of symbols, the Viterbi algorithm finds the
most likely sequence of states by dynamic program-
ming. Markov models have several applications in
MIR. For example, they have been used to predict
musical labels on segmentations (Paulus and Klapuri
2009).

In fugue analysis, the goal of this model is to
discover the sequence of states that structures
the fugue (exposition, codetta, further expositions,
and further episodes, see Figure 11). The observed
symbols are the primary elements of the analysis
(thematic pattern entries, harmonic sequences),
instead of the raw notes. The symbols are for each
quarter note of the score. Examples of the HMM’s
output can be seen at the bottom of Figures 3, 12,
13, and 14.

Implementation and Visualization of the Analysis

All the algorithms described were implemented
in Python. The music21 framework (Cuthbert and
Ariza 2010, version 2.0.0) was used for input (parsing
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Figure 10. Examples of
discovered cadences.
Fugue No. 18 in G# minor,
measures 8–11 (a). There is
an interval of a perfect fifth
at the end of the subject,
leading to spurious
cadences when the subject
is stated in the bass. The
algorithm detects three

cadences here, at the first
beat of each measure. The
first one (first beat of
measure 9), can be viewed
as a real PAC finishing the
exposition of thematic
patterns. The middle
cadence (first beat of
measure 10) is certainly a
false positive. The last one

(first beat of measure 11)
can be viewed as a real
PAC finishing the
harmonic sequence. This
is reinforced by the change
of texture in measure 11,
with a new S entry at the
tenor on the second beat.
Fugue No. 20 in A minor,
measures 46–48 (b). Our

algorithm finds three
consecutive cadences, but
only the one ending on the
first beat of measure 48 is
a real PAC, the notes on
the third beat of measures
46 and 48 being parts of
larger phrases.

Figure 11. Sketch of the
hidden Markov model
used for fugues. The
transition probabilities
were manually selected to
favor some stability in the

states, as the sections
usually span at least one
measure. The first
exposition and the codetta
states are used only during
the exposition. The

emissions shown with
dotted arrows are rare,
with small probabilities
(harmonic sequences
during exposition
sections).
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Figure 12. Ground truth
and results for Bach Fugue
No. 18 in G# minor.
Incomplete CS2s in the
ground truth are denoted
by “inc.” The computed

analysis includes several
spurious cadences because
there is an interval of a
perfect fifth at the end of
the subject (see Figure 10).

Figure 12

Figure 13. Ground truth
and results for
Shostakovich Fugue No. 8
in F# minor.

Figure 13

of MIDI files and Humdrum ∗∗kern-format files). For
performance reasons, however, our algorithms were
based on custom objects that were “lighter” than the
full-featured Stream and Note objects of music21.
We implemented output as text, as scalable vector
graphics (see Figures 3, 12, 13, and 14), and as
HTML5 (www.algomus.fr/fugues). The Web output
allows for switching between the ground truth and
the computed analysis. It displays the score extracts
of the patterns with the music21j Javascript library
(https://github.com/cuthbertLab/music21j).

Evaluation and Discussion

We ran the algorithms on the 36 fugues in our
corpus. Bach’s fugues were taken from Humdrum
∗∗kern files encoded by David Huron, which are
available for academic purposes at KernScores
(http://kern.humdrum.org). Shostakovich’s fugues
were taken from MIDI files encoded by José Oscar
de Almeida Marques (2002).

We compared all our results with the ground-
truth file (version 2015.01). Table 1 shows the
statistics of the results. All the algorithms, except
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Figure 14. Ground truth
and results for Bach Fugue
No. 4 in C� minor, a triple
fugue. The ground truth
describes three subjects (S,
S2, S3), some of which are
incomplete (inc) or varied
(var). The first part is

almost perfectly analyzed.
The second fugue, starting
on measure 35, is not
analyzed. Analyzing this
part would require the
identification of new
thematic patterns.

Table 1. Algorithm Predictions and Ground Truth

J. S. Bach, First Book of Well-Tempered Clavier

� TP FP Recall Precision

S 18/24 266/291 31 91.4 89.6
CS1 8/13 54/107 4 50.5 93.1
CS2 1/3 9/33 1 27.2 90.0
Sinv 21/24 2 87.5 91.3
Saug 3/3 0 100.0 100.0
PAC 57/69 13 82.6 81.4
rIAC 16/24 43 66.7 27.1
Pedal 15/20 10 75.0 60.0

D. Shostakovich, Op. 87, Fugues Nos. 1–12

� TP FP Recall Precision

S 5/12 115/172 14 66.9 89.1
CS1 2/5 42/99 1 42.4 97.7
CS2 2/4 19/51 0 37.3 100.0
Sinv 4/4 0 100.0 100.0

Comparison of the predictions of the algorithms with the
ground truth file (version 2015.01), with the proportion of
correct lengths found among the detected patterns (�), the
number of true positives (TP), false positives (FP), and the
corresponding recall and precision. These values are calculated
for the identification of fugue subject (S), countersubjects (CS1
and CS2), inverted and augmented subjects (Sinv and Saug),
cadences (perfect authentic, PAC, and root-position imperfect
authentic, rIAC), and pedal points.

for cadence identification, were found to have few
false positives. In both the Bach and Shostakovich

corpora, the precision of pattern detection is more
than 85 percent for S, CS1, and CS2. For example,
false positive subjects were found in only three
of Bach’s fugues and in four of the fugues by
Shostakovich. Most of the time, these seemingly
erroneous occurrences are in fact relevant to the
analysis, because they detect incomplete thematic
patterns. Table 2 shows individual results for all the
studied fugues. For each fugue, these results include
a subjective evaluation of the quality of the output.

The algorithms were successful in finding the
structure of several fugues, even if some elements
were missing. For example, the relatively conven-
tional Bach Fugue No. 2 was perfectly analyzed (see
Figure 3), except the last CS1, which included a
change of voice (a case that we did not include in
the present study). The harmonic sequences were
found in all the episodes, and the Markov model
gave a perfect segmentation of the fugue. In Bach’s
Fugue No. 18, almost all entries of S, CS1, and CS2
were identified, as well as harmonic sequences (see
Figure 12). The results of the automatic analysis of
Shostakovich’s Fugue No. 8 in F� minor were also
very good (see Figure 13). One missing subject is an
entry split between several voices (in this encoding).
The two false positive subjects at measures 108 and
109 are relevant as long, incomplete occurrences of
the subject.

In some fugues, the algorithms managed to give
hints, but failed to provide a complete analysis of the
important parts. Finally, the analysis of some fugues
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Table 2. Results of Computational Fugue Analysis

Bach, First Book of Well-Tempered Clavier

S + Sinv/Saug CS1 CS2

Fugue � TP FP � TP FP � TP FP Qual. Notes

1: CM + 22/22 + Perfect S detection, some cadences
undetected

2: Cm + 8/8 + 5/6 + 4/5 + Almost perfect (see Figure 3)
3: C�M + 12/12 − 7/10 − 3/5 1 + Good structure even if CS1 is too

short and only the tail of CS2 is
found

4: C�m + 13/23 + 2/2 − Triple fugue, only the first fugue
subject is retrieved (see
Figure 14)

5: DM − 11/11 25 − 0/9 4 0/6 − Bad S detection (alternative S given
by Charlier, but hides possible
CS1)

6: Dm + 11/12 + 3/5 − 2/3 = Good structure, some S/Sinv and
incomplete CS1 undetected

7: E�M + 9/9 0/7 + Good structure, almost perfect S,
CS1 undetected, spurious
cadences

8: D�m − 15/16 + 10/10 3 + 2 = Good S/Sinv/Saug (even if bad S
length), some spurious cadences

9: EM − 10/12 0/3 − Bad S detection (detected S
overlaps true CS1)

10: Em + 8/8 7/7 + Good structure, almost perfect
11: FM + 10/13 + 2/5 = Some varied/fragmented

occurrences of S are detected as
heads of S

12: Fm − 10/10 − 5/7 0/5 = Good structure, spurious
sequences, CS2/CS3 undetected

13: F�M − 7/8 + 2/5 0/3 + Good structure, some spurious
cadences, some patterns
undetected

14: F�m + 6/7 + 2/2 + 4/6 + Good structure, good S/Sinv/CS1
15: GM + 4/4 + 2/3 0/1 − Good S, but bad incomplete S

detection
16: Gm + 15/16 + 3/12 + Good structure, almost perfect S,

incomplete CS1 undetected
17: A�M + 15/15 + Almost perfect structure, even if

some cadences badly detected
18: G�m + 12/12 + 5/8 − 2/3 + Good structure, some spurious

cadences (see Figure 12)
19: AM + 9/10 1 0/2 = CS1 occurs late and cadences

undetected, FP S is varied S
20: Am + 14/14 + 5/5 0/3 = Good structure, good S/Sinv, many

incomplete S
21: B�M + 8/8 + 7/7 0/6 + Good structure, even if CS2

undetected
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Table 2. Continued.

Bach, First Book of Well-Tempered Clavier

S + Sinv/Saug CS1 CS2

Fugue � TP FP � TP FP � TP FP Qual. Notes

22: B�m + 14/18 + Good structure, some S and
incomplete S undetected

23: BM + 10/10 + 2/2 − 3/4 + Good structure, Sinv detected, even if
bad S length (shifted by one note)

24: Bm − 13/13 = Perfect S (but complex CS with
several parts undetected)

Shostakovich, Op. 87, Fugues Nos. 1–12

S + Sinv/Saug CS1 CS2

Fugue � TP FP � TP FP � TP FP Qual. Notes

1: CM + 11/12 − 7/7 − 5/6 + Good structure, almost perfect
S/CS1/CS2

2: Am − 9/10 0/4 0/3 = Good S, but CS1/CS2 undetected
3: GM − 7/13 2 0/7 0/4 − Many S undetected, CS1/CS2

undetected
4: Em − 7/12 2 0/7 0/4 − Double fugue (only the first subject is

partially retrieved, but bad S length)
5: DM + 9/16 7/8 1 0/6 = Some occurrences of S detected as

head of S, bad length of CS1, CS2
undetected

6: Bm − 0/22 0/12 0/6 − Bad S length and CS1 undetected
(CS1 too far from end of S)

7: AM + 9/13 + 7/9 + 3/4 + Good structure, almost perfect
S/CS1/CS2, except changes of voice

8: F�m − 8/10 2 − 2/7 − 2/3 + Good structure, good S/CS1/CS, S FP
are incomplete S (see Figure 13)

9: EM + 11/11 + 4/4 − 5/5 + Good structure, good S/Sinv
occurrences (even if bad S length)

10: C�m + 21/23 + 14/14 + 9/12 + Good structure, good S/CS1/CS2
11: BM − 9/14 0/7 0/3 = CS1/CS2 undetected
12: G�m − 14/16 8 0/12 = Detects Sinc as S, CS1 undetected

Results from our corpus of 36 fugues, compared to the ground truth file (version 2015.01). For subject (S, Sinv, Saug) and
countersubject (CS1 and CS2) patterns, the columns list good duration detection (�), ratio of true positives (TP), and number of false
positives (FP). A pattern occurrence is denoted as TP when it starts within two quarter notes of an occurrence of the ground truth.
The column headed “Qual.” lists the subjective assessment of the quality of the complete system in sketching the global analysis of
the fugue: good (+), acceptable (=) or bad (−). This assessment considers both isolated elements (subjects and countersubjects,
sequences, cadences, and pedals) and the prediction of the structure.

yielded bad results that were almost unusable,
especially when the subject detection failed. Some
noteworthy cases were the double and triple fugues,
where additional subjects entered with their own

expositions in the middle of the fugue, as in Bach’s
Fugue No. 4 (C� minor; Figure 14). Because the
detection is done at the beginning of the fugue, our
system was not able to analyze these parts.
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Conclusion

We presented a system for the complete analysis
of fugues, starting from a symbolic score that
was already separated into voices. Various MIR
techniques were used to consider pattern repetition,
harmonic analysis, and phrasing. Some of these
techniques could also be used in the analysis of
other genres.

We focused on algorithms with very high preci-
sion. S, CS1, and CS2 patterns were detected with
false positive rates of approximately 10 percent.
Finally, the use of the HMMs allowed sketching of
a global structure, providing an acceptable or good
structural analysis of about one half of our corpus.
To evaluate our results, we published a corpus of 36
manually annotated fugues with more than 1,000
annotations, as well as a web page for interactive
visualization.

We recommend further studies to improve the
analysis of fugues. The tools used for the analysis
could be improved for better recall, still keeping the
high precision. For individual analytical elements,
probabilistic models could be used instead of
binary choices using thresholds (Temperley 2007).
The Markov model could take into account more
elements and predict more sections. Machine
learning could improve the thresholds and weights
of these models, but strategies have to be designed
to address the problem of overfitting, a concern
for data sets as small as these are prone. Future
studies may include work on polyphonic data. The
current system works on voice-separated data. Using
plain MIDI files, one could use voice-separating
algorithms or work directly on detection of patterns,
matches, and cadences.

The algorithms could also be tested on other
Baroque, classical, or Romantic fugues with the
consideration of some practical limitations, such as
the availability of voice-separated files and ground-
truth data. As long as the fugues maintain a strict
structure with a clear subject exposition, we are
confident that our set of algorithms would yield
good results. A further challenge is the successful
analysis of more complex forms and the detection
and analysis of fugue passages (fugato) in larger
works.
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Episodes with Harmonic Sequences for Fugue Analy-
sis.” In Proceedings of the International Conference on
Music Information Retrieval, pp. 457–462.

Giraud, M., R. Groult, and F. Levé. 2013. “Subject and
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