Inferring Same-as Facts from Linked Data: An Iterative Import-by-Query Approach - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Inferring Same-as Facts from Linked Data: An Iterative Import-by-Query Approach

Résumé

In this paper we model the problem of data linkage in Linked Data as a reasoning problem on possibly decentralized data. We describe a novel import-by-query algorithm that alternates steps of sub-query rewriting and of tailored querying the Linked Data cloud in order to import data as specific as possible for inferring or contradicting given target same-as facts. Experiments conducted on a real-world dataset have demonstrated the feasibility of this approach and its usefulness in practice for data linkage and disambiguation.
Fichier principal
Vignette du fichier
al-bakri.pdf (371.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01113463 , version 1 (05-02-2015)

Identifiants

  • HAL Id : hal-01113463 , version 1

Citer

Mustafa Al-Bakri, Manuel Atencia, Steffen Lalande, Marie-Christine Rousset. Inferring Same-as Facts from Linked Data: An Iterative Import-by-Query Approach. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015), Jan 2015, Austin, Texas, United States. ⟨hal-01113463⟩
304 Consultations
391 Téléchargements

Partager

More