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Introduction

Many problems in the optimization theory and other fields of mathematics are non-linear in the traditional sense but appear to be linear over idempotent semirings (e.g., see [START_REF] Baccelli | Synchronization and Linearity : An Algebra for Discrete Event Systems[END_REF][START_REF] Carré | Graphs and Networks[END_REF][START_REF] Cuninghame-Green | Minimax Algebra[END_REF][START_REF] Gaubert | Maxplus convex geometry[END_REF]). Idempotency of the additive law induces that idempotent semirings are (partially) ordered sets. The Residuation theory [START_REF] Blyth | Residuation Theory[END_REF][START_REF] Croisot | Applications résiduées[END_REF][START_REF] Derderian | Residuated mappings[END_REF] is a suitable tool to deal with inverse problems of order preserving mappings. It is usually used to solve equations defined over idempotent semiring [START_REF] Baccelli | Synchronization and Linearity : An Algebra for Discrete Event Systems[END_REF][START_REF] Cuninghame-Green | Minimax Algebra[END_REF][START_REF] Cuninghame-Green | The equation ax= by over (max,+)[END_REF], for instance the greatest solution of inequality Ax b may be computed by means of this theory.

Interval mathematics was pioneered by R.E. Moore (see [START_REF] Moore | Methods and Applications of Interval Analysis[END_REF]) as a tool for bounding rounding errors in computer programs. Since then, interval mathematics has been developed into a general methodology for investigating numerical uncertainty in numerous problems and algorithms. In [START_REF] Litvinov | Idempotent Interval Analysis and Optimization Problems[END_REF] the idempotent version is addressed. The authors show that idempotent interval mathematics appears to be remarkably simpler than its traditional analog. For example, in the traditional interval arithmetic, multiplication of intervals is not distributive with respect to addition of intervals, while idempotent interval arithmetic keeps this distributivity. This paper deals first with solution of inequality A ⊗ x b, where A, x and b are interval matrices (see proposition 31). When equality is achieved, according to definition given in [START_REF] Cechlárova | Interval systems of maxseparable linear equations[END_REF], the equations system is said weakly solvable since at least one of its subsystems is solvable. In a second step, the paper deals with the computation of a pair of intervals, (x, y) which satisfies the equation A ⊗ x = B ⊗ y. It will be shown that this equation may be solved by considering the interval version of the iterative scheme proposed in [START_REF] Cuninghame-Green | The equation ax= by over (max,+)[END_REF].

Preliminaries Definition 1.

A semiring S is a set endowed with two internal operations denoted by ⊕ (addition) and ⊗ (multiplication), both associative and both having neutral elements denoted by ε and e respectively, such that ⊕ is also commutative and idempotent (i.e. a ⊕ a = a). The ⊗ operation is distributive with respect to ⊕, and ε is absorbing for the product (i.e. ∀a,

ε ⊗ a = a ⊗ ε = ε).
When ⊗ is commutative, the semiring is said to be commutative.

Semirings can be endowed with a canonical order defined by : a b iff a = a ⊕ b. Then they become sup-semilattices and a ⊕ b is the least upper bound of a and b. A semiring is complete if sums of infinite number of terms are always defined, and if multiplication distributes over infinite sums too. In particular, the sum of all elements of a complete semiring is defined and denoted by (for 'top'). A complete semiring (sup-semilattice) becomes a complete lattice for which the greatest lower bound of a and b is denoted a ∧ b, i.e., the least upper bound of the (nonempty) subset of all elements which are less than a and b (see Definition 5 (Principal order ideal). Let S be an idempotent semiring. An order ideal set is a nonempty subset X of S such that (x ∈ X and y x) ⇒ y ∈ X . A principal order ideal (generated by x) is an order ideal, denoted ↓ X x , of the form ↓ X x := {y ∈ S|y x}.

[1, §4]).
The residuation theory provides, under some assumptions, greatest solutions to inequalities such as f (x) b where f is an order preserving mapping (i.e., a b ⇒ f (a) f (b)) defined over ordered sets.

Definition 6 (Residual and residuated mapping). An order preserving mapping f : D → E, where D and E are ordered sets, is a residuated mapping if for all y ∈ E, the least upper bound of the subset {x|f (x) y} exists and belongs to this subset. It is then denoted by f (y). Mapping f is called the residual of f .

When f is residuated, f is the unique order preserving mapping such that

f • f IdE and f • f IdD, ( 1 
)
where Id is the identity mapping respectively on D and E.

Property 7. Let f : D → E be a residuated mapping, then For matrices, the practical computation is obtained as follows,

y ∈ Imf ⇔ f (f (y)) = y. Property 8 ([1, Th. 4.56]). If h : D → C and f : C → B are residuated mappings, then f • h is also residuated and (f • h) = h • f . (2 
F . Then, f is residuated iff f (ε E ) = ε F and f ( x∈G x) = x∈G f (x) for each G ⊆ E (i.e., f is lower-semicontinuous).
(A• \B) ij = k=1...n (A ki • \B kj ) , (3) 
(B• /C) ij = k=1...m (B ik • /C jk ) (4) with A ∈ S n×p , B ∈ S n×m and C ∈ S p×m . Example 11. Let A =      1 2 3 4 5 6      and B =      8 9 10     
be matrices with entries in (max, +) algebra.

In (max, +) algebra a ij • \b j = b j -a ij then the greatest x such that A ⊗ x b is given by :

x = A• \B =   (1• \8) ∧ (3• \9) ∧ (5• \10) (2• \8) ∧ (4• \9) ∧ (6• \10)   =   5 4   Example 12. Let A =      1 2 3 4 5 6      and B =      8 1 10     
be matrices with entries in

(max, min) algebra. In (max, min) algebra, if b j a ij then a ij • \b j = b j else a ij • \b j = . A• \B =   (1• \8) ∧ (3• \1) ∧ (5• \10) (2• \8) ∧ (4• \1) ∧ (6• \10)   =   8 8  
The problem of mapping restriction and its connection with the residuation theory is now addressed.

Property 13 ([2]

). Let Id |S sub : S sub → S, x → x be the canonical injection from a complete subsemiring into a complete semiring. The injection Id |S sub is residuated and its residual is a projector which will be denoted by Pr S sub , with :

PrS sub = Id |S sub = PrS sub • PrS sub .
Definition 14 (Restricted mapping). Let f : E → F be a mapping and

A ⊆ E. We will denote f |A : A → F the mapping defined by

f |A = f • Id |A where Id |A : A → E is the canonical injection from A to E. Similarly, let B ⊆ F with Imf ⊆ B. Mapping B| f : E → B is defined by f = Id |B • B| f , where
Id |B : B → F.
Property 15. Let f : D → E be a residuated mapping and D sub (resp. E sub ) be a complete subsemiring of D (resp. E).

1. Mapping f |D sub is residuated and its residual is given by :

(f |D sub ) = (f • Id |D sub ) = PrS sub • f .

If

Imf ⊂ E sub then mapping E sub | f is residuated and its residual is given by:

E sub | f = f • Id |E sub = f |E sub .
Proof. Statement 1 follows directly from property 8 and proposition 13. Statement 2 is obvious since f is residuated and Imf ⊂ E sub ⊂ E.

In [START_REF] Cuninghame-Green | The equation ax= by over (max,+)[END_REF], the authors propose to compute a pair (x, y) satisfying the following equation :

a ⊗ x = b ⊗ y. (5) 
Theorems 16 and 17 given below recall how to compute such a pair, called simply a solution hereafter.

Theorem 16. Let

Π : x → L a • L b • L b • L a (x) = a• \(b ⊗ (b• \(a ⊗ x)))
be a mapping defined over a semiring S and consider the following iterative scheme :

Let x 0 ∈ S be an arbitrary element

do x n+1 = Π(x n ) until x m+1 = x m for m ∈ N
If function Π admits a fixed point x such that x Π(x 0 ) and x = ε then the previous algorithm converges toward the greatest finite fixed point in the following principal order ideal ↓ X Π(x0) = {x|x Π(x 0 )}.

Proof. First let us recall that a lower-bounded non increasing integer sequence converges in a finite number of steps to the greatest fixed point. Then if function Π admits a fixed point x such that x Π(x 0 ) and x = ε then it is sufficient to show that the sequence x n (n = 1, 2, ..) is non increasing. Definition 6 yields

that L b • L b Id and L a • L a Id, then Π(x) L a • L a (x) and Π • Π = L a • L b • L b • L a • L a • L b • L b • L a (6) Π • Π L a • L b • L b • L a = Π (7) 
therefore x n+1 x n , i.e. the sequence is non increasing.

Obviously if x n+1 = Π(x n ) then x n+1 Π(x 0 ), and it is the greatest in ↓ X Π(x0) .

Theorem 17. Define y = L b • L a (x) = b• \(a ⊗ x).
If the function Π defined in theorem 16 admits a fixed point x = ε, then the pair (x, y) is a solution of (5).

Proof. If x = Π(x) and y = L b • L a (x) then, by using twice equation (1), we obtain

L a (x) = L a • L a • L b • L b • L a (x) L b • L b • L a (x) = L b (y) L a (x).
Therefore all these terms are equal, and a ⊗ x = L a (x) = L b (y) = b ⊗ y.

Semiring of intervals

A semiring of interval may be constructed by considering a semiring of pairs.

The set of pairs (x , x ) with x ∈ S and x ∈ S endowed with the following coordinate-wise algebraic operations :

(x , x ) ⊕ (y , y ) (x ⊕ y , x ⊕ y ) and (x , x ) ⊗ (y , y ) (x ⊗ y , x ⊗ y ),
is a semiring denoted by C(S) with (ε, ε) as the zero element and (e, e) as the identity element (see definition 1). Some of the preliminary statements of this section are adapted from [START_REF] Litvinov | Idempotent Interval Analysis and Optimization Problems[END_REF]. Proof. Observe that L (a ,a ) ) is a projector denoted by Pr CO(S) . Its practical computation is given by :

(x ,x )∈X (x , x ) = (x ,x )∈X L (a ,a ) (x , x ), (for every subset X of C(S)), moreover L (a ,a ) (ε, ε) = (a ⊗ ε, a ⊗ ε) = (ε, ε). Then L (a ,
Pr CO(S) ((x , x )) = (x ∧ x , x ) = ( x , x ). (8) 
Proof. It is a direct application of proposition 13, since C O (S) is a subsemiring of C(S). Practically, let (x , x ) ∈ C(S), we have Pr CO(S) ((x , x )) = ( x , x ) = (x ∧ x , x ), which is the greatest pair such that : 

C O (S)| L ( a , a ) |C O (S) = L ( a , a ) • Id |CO(S) • Id |CO(S) = Pr CO(S) • L ( a , a ) • Id |CO(S) .
Then, by considering ( b , b Remark 28. Operations [START_REF] Gaubert | Théorie des Systèmes Linéaires dans les Dioïdes[END_REF] give the tightest interval containing all results of the same operations to arbitrary elements of its interval operands.

) ∈ C O (S) ⊂ C(S), the greatest solution in C O (S) of L ( a , a ) (( x , x )) = ( a , a ) ⊗ ( x , x ) ( b , b ) is L ( a , a ) (( b , b )) = ( x , x ) = ( a , a )• \( b , b ) = Pr CO(S) (( a • \ b , a • \ b )) = ( a • \ b ∧ a • \ b , a • \ b ).
Remark 29. Let S be a complete semiring and {x α } be an infinite subset of I(S), the infinite sum of elements of this subset is :

α xα = α x α , α xα .
Remark 30. If S is a complete semiring then I(S) is a complete semiring. Its top element is given by = [ , ].

Note that if x and y are intervals in I(S), then x ⊂ y iff y x x y. In particular, x = y iff x = y and x = y.

An interval for which x = x is called degenerate. Degenerate intervals allow to represent numbers without uncertainty. In this case we identify x with its element by writing x ≡ x. 

Π : x → a - • \ (b - ⊗ (b - • \ (a - ⊗ x))). (10) 
According to theorem 17, if Π admits a fixed point x = [ε, ε], the pair (x, y) . These computations may be obtained thanks to the (max, +) toolboxes interfaced with Scilab (see [START_REF] Hardouin | Minmaxgd a library for computation in semiring of formal series[END_REF][START_REF] Lhommeau | Data processing tool for calculation in dioid[END_REF]) and this specific example may be obtained at http: // www. istia-angers. fr/ ~hardouin/ LAAA. html .

with y = b - • \ (a - ⊗ x)
Example 35. By considering these same matrices in (max, min) algebra, the same algorithm with the rules given in example 12, the vectors obtained are : 

Conclusion

This work shows that Residuation theory and resolution of matrix systems of the form Ax B over interval semirings is not so straightforward as interval extension of simpler linear-algebraic operations considered in [START_REF] Litvinov | Idempotent Interval Analysis and Optimization Problems[END_REF]. Nevertheless, by considering the right calculus rule the classical algorithm (see [START_REF] Cuninghame-Green | The equation ax= by over (max,+)[END_REF]) remains efficient to solve some interval systems. Example are given both in (max, +)

semiring and (max, min) semiring but may be extended to other semirings such as semiring of series introduced in [START_REF] Baccelli | Synchronization and Linearity : An Algebra for Discrete Event Systems[END_REF][START_REF] Gaubert | Théorie des Systèmes Linéaires dans les Dioïdes[END_REF] and can be useful to solve control problems such as the one considered in [START_REF] Lhommeau | Interval analysis in dioid : Application to robust open loop control for timed event graphs[END_REF][START_REF] Ouerghi | A precompensator synthesis for p-temporal event graphs[END_REF].

Example 2 (

 2 (max, +) algebra). The set Z = Z ∪ {-∞, +∞} endowed with the max operator as ⊕ and the classical sum as ⊗ is a complete idempotent semiring of which ε = -∞, e = 0 and = +∞ and the greatest lower bound a ∧ b = min(a, b). Example 3 ((max, min) algebra). The set Z = Z∪{-∞, +∞} endowed with the max operator as ⊕ and the min operator as ⊗ is a complete idempotent semiring of which ε = -∞, e = +∞ and = +∞ and the greatest lower bound a ∧ b = min(a, b). Definition 4 (Subsemiring). A subset C of a semiring is called a subsemiring of S if • ε ∈ C and e ∈ C ; • C is closed for ⊕ and ⊗, i.e, ∀a, b ∈ C, a ⊕ b ∈ C and a ⊗ b ∈ C.

) Theorem 9 ([ 1 ,

 91 §4.4.2]). Consider the mapping f : E → F where E and F are complete semirings. Their bottom elements are, respectively, denoted by ε E and ε

Corrollary 10 .

 10 The mappings L a : x → a ⊗ x and R a : x → x ⊗ a defined over a complete semiring S are both residuated. Their residuals are usually denoted, respectively, by L a (x) = a• \x and R a (x) = x• /a in literature. Therefore, a• \b (resp. b• /a) is the greatest solution of a ⊗ x b (resp. x ⊗ a b).

Remark 18 .

 18 The operation ⊕ generates the corresponding canonical partial order C in C(S) : (x , x ) ⊕ (y , y ) = (y , y ) ⇔ (x , x ) C (y , y ) ⇔ x S y and x S y where S is the order relation in S. Property 19. If the semiring S is complete, then the semiring C(S) is complete and its top element is given by ( , ). Notation 20. Consider the following mappings over C(S) : L (a ,a ) : (x , x ) → (a , a ) ⊗ (x , x ) (left multiplication by (a , a )) R (a ,a ) : (x , x ) → (x , x ) ⊗ (a , a ) (right multiplication by (a , a )). Property 21. The mappings L (a ,a ) and R (a ,a ) defined over C(S) are both residuated. Their residuals are equal to L (a ,a ) (b , b ) = (a , a )• \(b , b ) = (a • \b , a • \b ) and R (a ,a ) (b , b ) = (b , b )• /(a , a ) = (b • /a , b • /a ).

  a ) is residuated (due toTheorem 9). Therefore, we have to find, for given (b , b ) and (a , a ), the greatest solution (x , x ) for inequality (a , a ) ⊗ (x , x ) C (b , b ) ⇔ (a ⊗ x , a ⊗ x ) C (b , b ), moreover according to Remark 18 on the order relation induced by ⊕ on C(S) we have, a ⊗ x S b and a ⊗ x S b . Since the mappings x → a ⊗ x and x → a ⊗ x are residuated over S (cf. Corollary 10), we have x S a • \b and x S a • \b . Then, we obtain L (a ,a ) (b , b ) = (a • \b , a • \b ). Notation 22. The set of pairs ( x , x ) s.t. x x is denoted by C O (S). Property 23. Let S be a complete semiring. The set C O (S) is a complete subsemiring of C(S). Proof. Clearly C O (S) ⊂ C(S) and it is closed for ⊕ and ⊗ since x ⊕ y x ⊕ y and x ⊗ y x ⊗ y whenever x x and y y . Moreover zero element (ε, ε), unit element (e, e) and top element ( , ) of C(S) are in C O (S). Therefore definition 4 yields the result. Property 24. The canonical injection Id |CO(S) : C O (S) → C(S) is residuated. Its residual (Id |CO(S)

  Property 25. Let ( a , a ) ∈ C O (S), then the mapping C O (S)| L ( a , a ) |C O (S) : C O (S) → C O (S) is residuated. Its residual is given by C O (S)| L ( a , a ) |C O (S) = Pr CO(S) • L ( a , a ) • Id |CO(S) . Proof. Since ( a , a ) ∈ C O (S) ⊂ C(S), it follows directly from proposition 21 that mapping L ( a , a ) defined over C(S) is residuated. Furthermore, C O (S) being closed for ⊗ we have ImL ( a , a )| CO(S) ⊂ C O (S), it follows from definition 14 and proposition 15 that :

Definition 26 .

 26 A (closed) interval in semiring S is a set of the form x = [x, x] = {t ∈ S|x t x}, where (x, x) ∈ C O (S), x (respectively, x) is said to be the lower (respectively, upper) bound of the interval x. Property 27. The set of intervals, denoted by I(S), endowed with the following coordinate-wise algebraic operations : is a semiring, where the interval ε ε ε = [ε, ε] (respectively, e = [e, e]) is zero (respectively, unit) element of I(S). Moreover, the semiring I(S) is isomorphic to C O (S). Proof. First, x ⊕ y x ⊕ y and x ⊗ y x ⊗ y whenever x x and y y, then I(S) is closed with respect to the operations -From definition 1, it follows directly that it is a semiring. Obviously, it is isomorphic to C O (S), indeed let Ψ : C O (S) → I(S), ( x , x ) → [x, x] = [ x , x ] be the mapping which maps an interval to an ordered pair. Obviously Ψ -1 is well defined and the both mappings are homomorphisms.

Property 31 .

 31 Mapping L a : I(S) → I(S), x → a -⊗ x is residuated. Its residual is equal toL a : I(S) → I(S), (x) → a• \x = [a• \x ∧ a• \x, a• \x].Therefore, a• \b is the greatest solution of a -⊗ x b, and the equality is achievedif b ∈ ImL a . Proof. Let Ψ : C O (S) → I(S), ( x , x ) → [x, x] = [ x ,x ] be the mapping which maps an interval to an ordered pair. This mapping defines an isomorphism, since it is sufficient to handle the bounds to handle an interval. Then the result follows directly from proposition 25.Remark 32. We would show in the same manner that mapping R a : I(S) →I(S), x → x -⊗ a is residuated.Remark 33. These results show that it is not sufficient to consider independently the intervals bounds to compute the solution of the equation a -⊗ x b. Therefore solution (x, y) of equality a -⊗ x = b -⊗ y can not be obtained by using the algorithm proposed in theorem 16 independently for each bounds. The following interval version needs to be used with the following mapping

  is a solution of equation a -⊗ x = b -⊗ y and obviously the iterative scheme given in theorem 16 still valid. Example 34. Let A = with entries in (max, +) semiring. By considering interval version of algorithm proposed in theorem 16, with x 0 =