Set-Membership Method for Discrete Optimal Control

Rémy Guyonneau, Sébastien Lagrange, Laurent Hardouin, Mehdi Lhommeau

To cite this version:

Rémy Guyonneau, Sébastien Lagrange, Laurent Hardouin, Mehdi Lhommeau. Set-Membership Method for Discrete Optimal Control. 10th International Conference on Informatics in Control, Automation and Robotics, ICINCO, 2013, Reykjavik, Iceland. 2013, 10.5220/0004458001930200.
hal-01113457

HAL Id: hal-01113457

https://hal.science/hal-01113457

Submitted on 5 Feb 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Set-Membership Method for Discrete Optimal Control

universit白
angers
Rémy GUYONNEAU, Sébastien LAGRANGE, Laurent HARDOUIN, Mehdi LHOMMEAU

1. Problem

Considered System

\Rightarrow We consider a control system, defined by the differential equation

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) \tag{1}
\end{equation*}
$$

$\mathbf{x}(t) \in \mathbb{R}^{n}$ the state vector
$\mathbf{u}(t) \in \mathbf{U}$ the control vector
\Rightarrow The system is studied over $\left[t_{0}, t_{t}\right]$

$$
\begin{equation*}
t_{k}=t_{0}+k \times \delta_{t}, t_{k} \leq t_{f}, k \in\{1, \cdots, m\} \tag{2}
\end{equation*}
$$

It is assumed that $\mathbf{u}\left(t_{k}\right)$ is bounded over $\left[t_{k}, t_{k+1}\right]$ so it is possible to determinate a box $\left[\mathbf{u}_{k}\right]$ such that $\mathbf{u}\left(t_{k}\right) \in\left[\mathbf{u}_{k}\right]$ over $\left[t_{k}, t_{k+1}\right]$

The flow map of the system is defined as

$$
\begin{equation*}
\varphi\left(t_{0}, t_{k} ; \mathbf{x}_{0}, \mathbf{u}(t)\right)=\mathbf{x}(t) \tag{3}
\end{equation*}
$$

\square The reachable set of the system at time t_{k} is

$$
\varphi\left(t_{0}, t_{k} ; \mathbf{x}_{0}, \mathbf{U}\right)=\left\{\varphi\left(t_{0}, t_{k} ; \mathbf{x}_{0}, \mathbf{u}(t)\right) \mid \varphi\left(t_{0}, t_{0} ; \mathbf{x}_{0}, \mathbf{u}(t)\right)=\mathbf{x}_{0}\right.
$$

$$
\text { and } \varphi:\left[t_{0}, t_{k}\right] \times \mathbf{X}_{0} \times \mathbf{U} \rightarrow \mathbb{R}^{n} \text { is a }
$$

$$
\begin{equation*}
\text { solution of }(1) \text { for some } \mathbf{u}(t) \in \mathcal{U}\} \tag{4}
\end{equation*}
$$

where $\mathcal{U}=\left\{\mathbf{u}:\left[t_{0}, t_{k-1}\right] \rightarrow \mathbf{U} \mid \mathbf{u}\right.$ is continuous over $\left.\left[t_{k}, t_{k+1}\right]\right\}$ denotes the set of admissible controls and \mathbf{X}_{0} a set of possible initial values \mathbf{x}_{0}

Objective

\square Evaluate $\mathbf{C}_{t_{0}, t_{t}}$ the subset of initial states of \mathbf{K} (state constraint) from wich there exists at least one solution of (1) reaching the target \mathbf{T} in finite time t_{f} starting at a time t_{0} :

$$
\begin{equation*}
\mathbf{C}_{t_{0}, t_{r}}=\left\{\mathbf{x}_{0} \in \mathbf{K} \mid \exists \mathbf{u}(t) \in \mathcal{U}, \varphi\left(t_{0}, t_{f} ; \mathbf{x}_{0}, \mathbf{u}(t)\right) \in \mathbf{T}\right\} \tag{5}
\end{equation*}
$$

\Rightarrow Using interval analysis to compute an inner and an outer caracterisations of $\mathbf{C}_{t_{0}, t_{f}}$

$$
\begin{equation*}
\mathbf{C}_{t_{0}, t_{t}}^{-} \subseteq \mathbf{c}_{t_{0}, t_{t}} \subseteq \mathbf{C}_{t_{0}, t_{t}}^{+} \tag{6}
\end{equation*}
$$

2. Caracterisation computation

Proposed approach

For each time t_{k} the algorithm computes a gridding of \mathbf{K} (a slice), noted $S\left(t_{k}\right)$. The resolution of the gridding is $\delta_{\mathbf{K}}=$ $\left(\delta_{x_{i}}, \cdots, \delta_{x_{i}}, \cdots, \delta_{x_{n}}\right)$ where $\delta_{x_{i}}$ corresponds to the $i^{\text {th }}$ dimension of \mathbf{K}

Slice computation

We propose an iterative algorithm that classifies the cells of each slice in three categories:

- unreachable (blue), no state inside the cell allows the system to reach the target at time t_{f}
- reachable (red), all the states inside the cell allow the system to reach the target at time t_{f}
- indeterminate (yellow), neither reachable nor unreachable

The slices are built from $S\left(t_{f}\right)$ to $S\left(t_{0}\right)$

3.Optimal discrete path evaluation

Slice modification and graph building

\Rightarrow For each cell $s_{i} \in S\left(t_{k}\right)$ is defined a set of input vectors $\mathbf{U}\left(s_{i}\right)$ that leads s_{i} to reachable or indeterminate cells of $S\left(t_{k+1}\right)$
\square Gather the cells into nodes and build a graph

$$
\begin{array}{l:l:l:l}
S\left(t_{0}\right) & S\left(t_{1}\right) & S\left(t_{2}\right) & S\left(t_{3}\right) \\
S\left(t_{f}\right)
\end{array}
$$

$J\left(P\left(n_{0}, n_{1}, n_{11}, n_{111}, n_{\mathrm{T}}\right)\right)=[6,10]$ $J\left(P\left(n_{0}, n_{1}, n_{12}, n_{121}, n_{\mathrm{T}}\right)\right)=[11,15]$ $J\left(P\left(n_{0}, n_{2}, n_{21}, n_{211}, n_{\mathrm{T}}\right)\right)=[5,9]$ $J\left(P\left(n_{0}, n_{2}, n_{21}, n_{212}, n_{\mathrm{T}}\right)\right)=[14,18]$

Obtained paths

\Rightarrow Using the graph and a shortest path algorithm (e.g. Interval Dijkstra) it is possible to compute:

- an enclosure (\mathbf{P}^{*}) of the optimal discrete control vector to reach the target from an initial state $\left[\mathbf{x}_{0}\right] \in \mathbf{C}_{t_{0}, t_{t}}$
- an evaluation of the cost $\left(J\left(\mathbf{P}^{*}\right)\right)$ of this control vector

For instance

$$
\mathbf{P}^{*}=\left\{P\left(n_{0}, n_{1}, n_{11}, n_{111}, n_{\mathrm{T}}\right),\right.
$$

$$
\left.P\left(n_{0}, n_{2}, n_{21}, n_{211}, n_{\mathrm{T}}\right)\right\}
$$

$J\left(\mathbf{P}^{*}\right)=[6,10] \cup[5,9]=[5,9]$

