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Set-Membership Method for Discrete Optimal Control

Rémy GUYONNEAU, Sébastien LAGRANGE, Laurent HARDOUIN,

Mehdi LHOMMEAU

1. Problem

Considered System

We consider a control system, defined by the differential equa-

tion

ẋ(t) = f(x(t),u(t)) (1)

x(t) ∈ R
n the state vector

u(t) ∈ U the control vector

The system is studied over [t0, tf ]

tk = t0+ k ×δt, tk ≤ tf ,k ∈ {1, · · · ,m} (2)

It is assumed that u(tk) is bounded over [tk, tk+1] so it is possible to

determinate a box [uk] such that u(tk) ∈ [uk] over [tk, tk+1]

The flow map of the system is defined as

ϕ(t0, tk;x0,u(t)) = x(t) (3)

The reachable set of the system at time tk is

ϕ(t0, tk;X0,U) = {ϕ(t0, tk;x0,u(t))|ϕ(t0, t0;x0,u(t)) = x0

and ϕ : [t0, tk]×X0×U → R
n is a

solution of (1) for some u(t) ∈ U} (4)

where U = {u : [t0, tk−1] → U|u is continuous over [tk, tk+1]} de-

notes the set of admissible controls and X0 a set of possible initial

values x0

Objective

Evaluate Ct0,tf
the subset of initial states of K (state constraint)

from wich there exists at least one solution of (1) reaching the tar-

get T in finite time tf starting at a time t0:

Ct0,tf
= {x0 ∈ K|∃u(t) ∈ U,ϕ(t0, tf ;x0,u(t)) ∈ T} (5)

Using interval analysis to compute an inner and an outer

caracterisations of Ct0,tf

C−
t0,tf

⊆ Ct0,tf
⊆ C+

t0,tf
(6)

2. Caracterisation computation

Proposed approach
For each time tk the algorithm computes a gridding of K (a

slice), noted S(tk). The resolution of the gridding is δK =
(δx1

, · · · ,δxi
, · · · ,δxn

) where δxi
corresponds to the i

th dimension

of K
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Slice computation
We propose an iterative algorithm that classifies the cells of each

slice in three categories:

- unreachable (blue), no state inside the cell allows the system to

reach the target at time tf

- reachable (red), all the states inside the cell allow the system to

reach the target at time tf

- indeterminate (yellow), neither reachable nor unreachable
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The slices are built from S(tf) to S(t0)

3.Optimal discrete path evaluation

Slice modification and graph
building

For each cell si ∈ S(tk) is defined a

set of input vectors U(si) that leads si to

reachable or indeterminate cells of S(tk+1)

Gather the cells into nodes and build

a graph
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J(P(n0,n1,n11,n111,nT)) = [6,10]
J(P(n0,n1,n12,n121,nT)) = [11,15]
J(P(n0,n2,n21,n211,nT)) = [5,9]

J(P(n0,n2,n21,n212,nT)) = [14,18]

Obtained paths

Using the graph and a shortest path

algorithm (e.g. Interval Dijkstra) it is possi-

ble to compute:

- an enclosure (P∗) of the optimal discrete

control vector to reach the target from an

initial state [x0] ∈ Ct0,tf

- an evaluation of the cost (J(P∗)) of this

control vector

For instance

P∗ = {P(n0,n1,n11,n111,nT),

P(n0,n2,n21,n211,nT)}

J(P∗) = [6,10]∪ [5,9] = [5,9]si
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