

Set-Membership Method for Discrete Optimal Control

Rémy Guyonneau, Sébastien Lagrange, Laurent Hardouin, Mehdi Lhommeau

▶ To cite this version:

Rémy Guyonneau, Sébastien Lagrange, Laurent Hardouin, Mehdi Lhommeau. Set-Membership Method for Discrete Optimal Control. 10th International Conference on Informatics in Control, Automation and Robotics, ICINCO, 2013, Reykjavik, Iceland. 2013, 10.5220/0004458001930200. hal-01113457

HAL Id: hal-01113457 https://hal.science/hal-01113457

Submitted on 5 Feb 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Set-Membership Method for Discrete Optimal Control

(2)

(3)

2. Caracterisation computation

Proposed approach

For each time t_k the algorithm computes a gridding of **K** (a slice), noted $S(t_k)$. The resolution of the gridding is $\delta_{\mathbf{K}} =$ $(\delta_{x_1}, \dots, \delta_{x_i}, \dots, \delta_{x_n})$ where δ_{x_i} corresponds to the *i*th dimension of **K**

 $\mathbf{x}(t) \in \mathbb{R}^n$ the state vector

 $\mathbf{u}(t) \in \mathbf{U}$ the control vector

The system is studied over $[t_0, t_f]$

 $t_k = t_0 + k \times \delta_t, t_k \leq t_f, k \in \{1, \cdots, m\}$

It is assumed that $\mathbf{u}(t_k)$ is bounded over $[t_k, t_{k+1}]$ so it is possible to determinate a box $[\mathbf{u}_k]$ such that $\mathbf{u}(t_k) \in [\mathbf{u}_k]$ over $[t_k, t_{k+1}]$

- The flow map of the system is defined as $\varphi(t_0, t_k; \mathbf{x}_0, \mathbf{u}(t)) = \mathbf{x}(t)$
- The reachable set of the system at time t_k is

 $\varphi(t_0, t_k; \mathbf{X}_0, \mathbf{U}) = \{\varphi(t_0, t_k; \mathbf{x}_0, \mathbf{u}(t)) | \varphi(t_0, t_0; \mathbf{x}_0, \mathbf{u}(t)) = \mathbf{x}_0\}$ and $\varphi : [t_0, t_k] \times \mathbf{X}_0 \times \mathbf{U} \to \mathbb{R}^n$ is a

> solution of (1) for some $\mathbf{u}(t) \in \mathcal{U}$ (4)

where $\mathcal{U} = \{\mathbf{u} : [t_0, t_{k-1}] \rightarrow \mathbf{U} | \mathbf{u} \text{ is continuous over } [t_k, t_{k+1}] \}$ denotes the set of admissible controls and X_0 a set of possible initial values \mathbf{x}_0

Slice computation

We propose an iterative algorithm that classifies the cells of each slice in three categories:

- *unreachable* (blue), no state inside the cell allows the system to reach the target at time t_f
- *reachable* (red), all the states inside the cell allow the system to reach the target at time t_f
- *indeterminate* (yellow), neither *reachable* nor *unreachable*

Objective

Evaluate C_{t_0,t_f} the subset of initial states of **K** (state constraint) from wich there exists at least one solution of (1) reaching the target **T** in finite time t_f starting at a time t_0 :

> $\mathbf{C}_{t_0,t_f} = \{\mathbf{x}_0 \in \mathbf{K} | \exists \mathbf{u}(t) \in \mathcal{U}, \phi(t_0,t_f;\mathbf{x}_0,\mathbf{u}(t)) \in \mathbf{T}\}$ (5)

Using interval analysis to compute an inner and an outer caracterisations of C_{t_0, t_f}

$$\mathbf{C}_{t_0,t_f}^{-} \subseteq \mathbf{C}_{t_0,t_f} \subseteq \mathbf{C}_{t_0,t_f}^{+} \tag{6}$$

$$S(t_{k+1})$$

$$t_{k+1}$$

$$[\mathbf{x}_{2}]$$

$$T_{\mathbf{x}_{2}}$$

$$S(t_{k})$$

3.Optimal discrete path evaluation

Slice modification and graph building

Ν			
	-		 -

Obtained paths

For each cell $s_i \in S(t_k)$ is defined a set of input vectors $\mathbf{U}(s_i)$ that leads s_i to reachable or indeterminate cells of $S(t_{k+1})$

algorithm (e.g. Interval Dijkstra) it is possible to compute:

- an enclosure (\mathbf{P}^*) of the optimal discrete control vector to reach the target from an initial state $[\mathbf{x}_0] \in \mathbf{C}_{t_0, t_f}$ - an evaluation of the cost $(J(\mathbf{P}^*))$ of this control vector

> For instance $\mathbf{P}^* = \{ P(n_0, n_1, n_{11}, n_{111}, n_{\mathbf{T}}),$ $P(n_0, n_2, n_{21}, n_{211}, n_T)$ $J(\mathbf{P}^*) = [6, 10] \cup [5, 9] = [5, 9]$