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An Integrated Control Strategy in Disturbance Decoupling of Max-Plus Linear Systems with Applications to a High Throughput Screening System in Drug Discovery

This paper presents an integrated control strategy solving disturbance decoupling of max-plus linear systems. The classical disturbance decoupling problem (DDP) in geometric control theory means that the controlled outputs will not be changed by any disturbances. The new proposed modified disturbance decoupling problem (MDDP) ensures that the controlled output signals will not delayed more than the existing delays caused by the disturbances in order to achieve the justin-time optimal control. Furthermore, this paper presents the integration of state-feedback and open-loop control strategies to solve the MDDP, as well as the DDP. If these controls can only solve the MDDP, but not the DDP, an evaluation principle is established to compare the distance between the output signals generated by the controllers and the output signals generated by the disturbances. The main results of this paper are illustrated by a high throughput screening system in drug discovery.

I. INTRODUCTION

Max-plus linear systems ( [START_REF] Baccelli | Synchronization and Linearity: An Algebra for discrete-event Systems[END_REF], [START_REF] Boudec | Network Calculus[END_REF]) are used to model for timed discrete-event systems, which represent the system operations as discrete sequences of events in time. The main advantage of max-plus linear systems is incorporating the traditional linear system theory for the nonlinear concurrent behaviors in discrete-event systems. Over the past three decades, many fundamental problems for max-plus linear systems have been studied by researchers, for example, controllability ( [START_REF] Prou | Controllability in the max-algebra[END_REF]), observability ( [START_REF] Hardouin | Observer Design for (max,plus)-Linear Systems[END_REF]), and model reference control ( [START_REF] Maia | On the Model reference control for max-plus linear systems[END_REF]). However, the geometric theory for maxplus linear systems introduced in ([4]) has not been well established as the traditional linear systems ( [START_REF] Basile | Controlled and conditioned invariant subspaces in linear system theory[END_REF], [START_REF] Wonham | Linear Multivariable Control: A Geometric Approach[END_REF]). Only a few existing research results on generalizing fundamental concepts and problems in the geometric control are generalized to max-plus linear systems, such as computation of different controlled invariant sets ( [START_REF] Katz | Max-plus (A,B)-invariant spaces and control of timed discrete-event systems[END_REF], [START_REF] Di Loreto | Duality between invariant spaces for max-plus linear discrete-event systems[END_REF], [START_REF] Maia | On the control of max-plus linear system subject to state restriction[END_REF]) and the disturbance decoupling problem ( [START_REF] Lhommeau | About disturbance decoupling of timed-event graphs in dioids[END_REF]).

This paper reports upon further investigations on the disturbance decoupling problem (DDP) for max-plus linear systems, which means that the output signals remain unchanged in the presence of the disturbances. For max-plus linear systems, the controller can only increase the inputs; i.e., to delay the input dates of tokens in the corresponding timed-event graph (TEG), which is a subclass of timed Petri net models for discrete-event systems in which all places have a single transition upstream and a single one downstream. For a manufacturing system, solving the DDP means that the outputs will be delayed more than the delays caused by the disturbances. From a practical point of view, it would be interesting to ask the question as whether there exists a controller such that the system is not disturbed more than the delays caused by the disturbances. Therefore, the modified disturbance decoupling problem (MDDP) in ( [START_REF] Hardouin | Towards Geometric Control of Max-Plus Linear Systems with Applications to Manufacturing Systems[END_REF], [START_REF] Shang | Open-loop controllers to solve the disturbance decoupling problem for maxplus linear systems[END_REF]) is to find controls such that the output signals generated by the control will not be greater than the output signals caused by the disturbances. This paper presents an integration of the state-feedback controls and the open-loop controls such that the MDDP can be solved. If these controls can only solve the MDDP, but not the DDP, then an evaluation principle is established to compare the distance, which is interpreted as the event delays between the output signals generated by the controllers and the output signals generated by the disturbances. The main results are illustrated by a high throughput screening system in drug discovery.

II. MATHEMATICAL PRELIMINARIES Definition 1:

A semiring is a set S, equipped with two operations ⊕ and ⊗, such that (S, ⊕) is a commutative monoid (the zero element will be denoted ε), (S, ⊗) is a monoid (the unit element will be denoted e), operation ⊗ is right and left distributive over ⊕, and ε is absorbing for the product

(i.e. ε ⊗ a = a ⊗ ε = ε, ∀a). A semiring S is idempotent if a ⊕ a = a for all a ∈ S. In an idempotent semiring S, operation ⊕ induces a partial order relation a ≽ b ⇐⇒ a = a ⊕ b, ∀a, b ∈ S. Then, a ∨ b = a ⊕ b.
An idempotent semiring S is complete if the sum of infinite numbers of terms is always defined, and if multiplication distributes over infinite sums too. In particular, the sum of all the elements of the idempotent semiring is denoted ⊤ (for "top"). In this paper, we denote Z max = (Z ∪ {-∞, +∞}, max, -∞, +, 0), where ε = -∞ is the identity element to max and e = 0 is the identity element to +. the integer max-plus semiring. A non empty subset B of a semiring S is a subsemiring of S if for all a, b ∈ B we have a ⊕ b ∈ B and a ⊗ b ∈ B.

Definition 2: A mapping f : S → S, where S is a complete idempotent semiring, is residuated if and only if f (ε) = ε and f is lower-semicontinuous, that is,

f ( ⊕ i∈I ai ) = ⊕ i∈I f (ai) ,
for any (finite or infinite) set I. The mapping f is said to be residuated and f ♯ is called its residual. When f is residuated, f ♯ is the unique order preserving mapping such that

f • f ♯ ≼ Id f ♯ • f ≽ Id, ( 1 
)
where Id is the identity mapping from S to S. It is straightforward that : L a : S → S, x → ax and R a : S → S, x → xa are lower semi-continuous. Therefore these mappings are both residuated i.e., L a (x) ≼ b (resp. R a (x) ≼ b) admits a greatest solution, then the following notations are considered :

L ♯ a (b) = a • \b = ⊕ {x|ax ≼ b} and R ♯ a (b) = b• /a = ⊕ {x|xa ≼ b} , ∀a, b ∈ S.
All these results admit a natural extension to the matrix case, where the sum and product of matrices are defined with the same rules than in classical theory (see [START_REF] Baccelli | Synchronization and Linearity: An Algebra for discrete-event Systems[END_REF]). Over a complete max-plus algebra, the implicit equation x = ax ⊕ b admits x = a * b as the least solution, where a * = ⊕ i∈N a i (Kleene star operator) with a 0 = e.

III. DISTURBANCE DECOUPLING IN MAX-PLUS LINEAR SYSTEMS

A max-plus linear system can be described the following

x(k) = Ax(k -1) ⊕ Bu(k) ⊕ Sq(k), y(k) = Cx(k), (2) 
where the state is

x(k) ∈ X ∼ = Z n max , the input is u(k) ∈ U ∼ = Z p max , the disturbance is q(k) ∈ Q ∼ = Z r max
, and the output is

y(k) ∈ Y ∼ = Z q max ,
for k ∈ Z. This kind of system makes it possible to describe the behaviors of TEGs, by associating to each transition x i a firing date sequence x i (k) ∈ Z max , and predict the system evolution thanks to Eq. [START_REF] Basile | Controlled and conditioned invariant subspaces in linear system theory[END_REF].

Definition 3: System (2) is called disturbance decoupled by a state-feedback controller u(k) = F x(k -1) ⊕ v(k))(or an open-loop controller u(k) = P v(k)
if and only if any disturbance signal will not affect the system output y(k) for all k ∈ Z, that is, the output signals y(k) remain the same as the output signals of the undisturbed system, for all k ∈ Z.

In manufacturing systems, for example, when the system breaks down for one hour, the control will delay the system operation more than one hour in order to achieve the DDP. In practical scenarios, production lines need to resume as soon as the system breakdown is fixed. Hence, a modified DDP in the next subsection is introduced in order to find the optimal just-in-time controls such that the system will start running as soon as possible once the system breakdown is recovered.

Definition 4: The max-plus linear system described in Eq. ( 2) is called modified disturbance decoupled by a state feedback control

u(k) = F x(k -1) ⊕ v(k) (or an open-loop control u(k) = P v(k))
if and only if the system output signals generated by the controls will not be greater than the output signals generated by only the disturbances.

The MDDP means that, for manufacturing systems, the controls will delay the starting dates of the process such that the finishing date of the output parts would be sooner than the finishing dates after the system breakdown. The next section will present the event-domain approach to solve both the DDP and the MDDP.

IV. SOLVING DDP AND MDDP USING EVENT-DOMAIN APPROACH A. Event-Domain Representation

For a state equation in Eq. ( 2), each increasing sequence {x(k)}, it is possible to define the transformation [START_REF] Baccelli | Synchronization and Linearity: An Algebra for discrete-event Systems[END_REF], p. 228). This transformation is analogous to the ztransform used in discrete-time classical control theory and the formal series X(γ) is a synthetic representation of the trajectory x(k). The set of the formal power series in γ is denoted by Zmax[[γ]] and constitutes an idempotent semiring. Therefore, the state equation in Eq. ( 2) becomes a polynomial equation or a event-domain representation,

X(γ) = ⊕ k∈Z x(k)γ k where γ is a backward shift operator in event domain (i.e., Y (γ) = γX(γ) ⇐⇒ {y(k)} = {x(k -1)}, (see
X(γ) = AX(γ) ⊕ BU (γ) ⊕ SQ(γ), where A = γA, Y (γ) = CX(γ), ( 3 
)
where the state

X(γ) ∈ ( Zmax[[γ]] ) n , the output Y (γ) ∈ ( Zmax[[γ]] ) q , the input U (γ) ∈ ( Zmax[[γ]]
) p , and the disturbance

Q(γ) ∈ ( Zmax[[γ]] ) r , and matrices A γA ∈ ( Zmax[[γ]] ) n×n , B ∈ ( Zmax[[γ]] ) n×p , C ∈ ( Zmax[[γ]] ) q×n and S ∈ ( Zmax[[γ]]
) n×r represent the link between transitions. According to the state equation ( 3), the evolution of the system is

X(γ) = A * BU (γ) ⊕ A * SQ(γ) Y (γ) = CA * BU (γ) ⊕ CA * SQ(γ). ( 4 
)
The trajectories U (γ) and Y (γ) can be related ( [START_REF] Baccelli | Synchronization and Linearity: An Algebra for discrete-event Systems[END_REF], p.

243) by the equation Y

(γ) = H(γ)U (γ), where H(γ) = CA * B ∈ ( Zmax[[γ]]
) q×p is called the transfer matrix of the TEG. Entries of matrix H are periodic series ([1], p. 260) in the idempotent semiring, usually represented by p(γ) ⊕ q(γ)(τ γ ν ) * , where p(γ) is a polynomial representing the transient behavior, q(γ) is a polynomial corresponding to a pattern which is repeated periodically, the period being given by the monomial (τ γ ν ). The disturbances are uncontrollable inputs acting on the system internal's state, which model events that block the system, e.g. machine breakdown, uncontrollable component supply through matrix S, and

CA * S ∈ ( Zmax[[γ]]
) q×r is the transfer function between the disturbances and outputs.

B. Formulation of DDP and MDDP in Event-Domain

The objective of the MDDP is to find the greatest openloop or state-feedback control U (γ) such that the output trajectories will not be disturbed more than the disturbance signals have acted on the system. For example, if a manufacturing system encounters a service breakdown, the control U (γ) will delay the input of parts as much as possible to avoid congestion inside of the system, while the system outputs will remain the same as before. Formally, according to Definition 4, this means to find the greatest control, U (γ), such that the following equation holds, In this paper, the disturbance is assumed to be measurable and the control architecture is given in Fig. 1. The goal is to find U (γ) = F X(γ) ⊕ V (γ) such that the MDDP is solved, where F = γF if u(k) = F x(k-1)⊕v(k) and such an F can be generalized to a general feedback matrix F (γ) consisting γ d with d ≥ 1.

Mathematically, the state and output signals in the event γ-domain are represented as follows:

X(γ) = (A ⊕ BF ) * BV (γ) ⊕ (A ⊕ BF ) * SQ(γ) = (A ⊕ BF ) * [B | S] ( V (γ) Q(γ) ) = (A ⊕ BF ) * B ( V (γ) Q(γ) ) , where B = [B | S] , Y (γ) = CX(γ) = C(A ⊕ BF ) * B ( V (γ) Q(γ) ) . ( 9 
)
Fig. 1: The controller structure for DDP and MDDP.

Based on Definition 3, solving the DDP in event-domain means that the state feedback controller has to achieve the following equality:

C(A ⊕ BF ) * B ( V (γ) Q(γ) ) = C(A ⊕ BF ) * BV (γ). (10) 
Based on Definition 4, solving the MDDP in event-domain means that the state feedback controller has to achieve another equality:

C(A ⊕ BF ) * B ( V (γ) Q(γ) ) = C(A ⊕ BF ) * SQ(γ). ( 11 
)
Equations ( 10) and ( 11) each have three variables, the state feedback structure F , the open-loop controller V (γ), as well as the disturbance input Q(γ). If we need the pair of F and V (γ) to solve the MDDP and the DDP for any arbitrary disturbances, then we can proceed by fixing the open-loop control first and then find state feedback control, or vice versa.

C. Finding the Integrated Control Strategy by Residuation

This subsection will find the pre-filter matrix P first, and then find the state feedback matrix F by residuation. By considering F = ε and by the residuation theory(see [START_REF] Shang | Open-loop controllers to solve the disturbance decoupling problem for maxplus linear systems[END_REF]), we showed that the MDDP is solved if and only if the equation CA * BU (γ) ⊕ CA * SQ(γ) = CA * SQ(γ) holds and the greatest solution solving the equation above is

Popt ( CA * B ) • \ ( CA * S ) = ⊕ P ∈Zmax[[γ]] p×r {CA * BP ≼ CA * S}, (12) 
i.e. such a P opt solves the MDDP for any disturbance Q(γ).

Once the open-loop control V (γ) is fixed, then we can obtain the state feedback F in equations ( 10) and [START_REF] Lhommeau | Disturbance decoupling of timed-event graphs by output feedback controller[END_REF] in order to solve the MDDP and the DDP. The goal is to find a state feedback control U (γ) = F X(γ) ⊕ V (γ) , such that the output signals are the same as the output signals controlled by any open-loop controller V (γ). In summary, that is, the following equality holds

C(A ⊕ B F ) * B ( V (γ) Q(γ) ) = CA * B ( V (γ) Q(γ) ) . ( 13 
)
Proposition 1: ( [START_REF] Lhommeau | Disturbance decoupling of timed-event graphs by output feedback controller[END_REF], [START_REF] Lhommeau | O"ptimal control for (max,+)-linear systems in the presence of disturbances[END_REF]) The greatest controller F opt is given by

F opt = ( CA * B ) • \ ( CA * B ) • / ( A * B ) , ( 14 
)
such that the output trajectories generated by the state feedback controller are the same as the output trajectories generated by the open-loop controller, i.e. the equality (γ) solves the MDDP of the max-plus linear system in Eq. [START_REF] Brunsch | Modeling and control of high-throughput screening systems[END_REF], where the open-loop control is

C ( A ⊕ B F opt ) * B = CA * B holds. Proposition 2: The integrated control law U (γ) = F optX (γ) ⊕ PoptQ
V (γ) = PoptQ(γ) = ( CA * B ) • \ ( CA * S ) Q(γ) and the feed- back control matrix is F opt = ( CA * B ) • \ ( CA * B ) • / ( A * B )
. Proof: If we apply the integrated control law U (γ) = F optX (γ) ⊕ PoptQ(γ) to the max-plus linear system in Eq. ( 3), the following inequalities hold: is named as the correlation matrix of X(γ) over Y (γ). if X(γ) = Y (γ), then the residuation X(γ)• /Y (γ) is called the autocorrelation matrix of X(γ).

The residuation X(γ)• /Y (γ) allows us to evaluate the distances between trajectories X(γ) and Y (γ) in the eventdomain, or in the time-domain if we consider the second order theory in ( [START_REF] Group | Second order theory of min-linear systems and its application to discrete-event systems[END_REF]).

Definition 6: ([19]) Let x(γ) = ⊕ k∈Z x(k)γ k and y(γ) = ⊕ k∈Z y(k)γ k be two scalar γ-series associate to dater function k → x(k) and k → y(k). We denote C x (t) and C y (t) as the counter function associated to x(γ) and y(γ), i.e. x(γ) = ⊕ t∈Z tγ Cx(t) , and y(γ) = ⊕ t∈Z tγ Cy (t) . Distance in the eventdomain is defined by

∆XY = max{|Cx(t) -Cy(t)|s.t. t ∈ Z} (17) = C (x∧y)• /(x⊕y) (0). ( 18 
)
The last term C (x∧y)• /(x⊕y) (0) is the tightest constant upper bound for the tokens in the timed-event graphs. Proposition 4: Let x1(γ) = s1(γ)u(γ) and x2(γ) = s2(γ)u(γ) two scalar γ-series describing the behaviors of two states for max-plus linear systems. The distance between these two trajectories in the event-domain is bounded by the distance between the two transfer function series, that is,

∆x 1 x 2 = C (x 1 ∧x 2 )• /(x 1 ⊕x 2 ) (0) (19) ≤ ∆s 1 s 2 = C (s 1 ∧s 2 )• /(s 1 ⊕s 2 ) (0), (20) 
for any input u(γ).

Proof: Based on the residuation theory in [START_REF] Baccelli | Synchronization and Linearity: An Algebra for discrete-event Systems[END_REF] as well as Appendix, we have the following derivations:

(s1u ∧ s2u)• /(s1u ⊕ s2u) = [(s1u ∧ s2u)• /s1u] ∧ [(s1u ∧ s2u)• /s2u] (due to (f.18)) = [(s1u• /s1u) ∧ (s2u• /s1u)] ∧ [(s1u• /s2u) ∧ (s2u• /s2u)] , (due to (f.17)) = [((s1u• /u)• /s1) ∧ ((s2u• /u)• /s1)] ∧ [((s1u• /u)• /s2) ∧ ((s2u• /u)• /s2)] (due to (f.19)) ≽ [(s1• /s1) ∧ (s2• /s1)] ∧ [(s1• /s2) ∧ (s2• /s2)] (due to (f.15)) = [(s1 ∧ s2)• /s1] ∧ [(s1 ∧ s2)• /s2] (due to (f.17)) = (s1 ∧ s2)• /(s1 ⊕ s2), (due to (f.18)).
Hence, ∀u(γ), the following inequality holds:

(s1u ∧ s2u)• /(s1u ⊕ s2u) ≽ (s1 ∧ s2)• /(s1 ⊕ s2),
which implies directly:

C (x 1 ∧x 2 )• /(x 1 ⊕x 2 ) (0) ≤ C (s 1 ∧s 2 )• /(s 1 ⊕s 2 ) (0),

for any input u(γ).

Theorem 2: ([17] Increasing Correlation Principle) Let X1(γ) = S(γ)U (γ) and X2(γ) = S(γ)V (γ) be the output vectors corresponding to input vectors U (γ) and V (γ), then

X1• /X2 ≽ (V • \U )(S• /S), ( 21 
) X1 • \X2 ≽ (U • \V )Tr ∧ (S• /S), (22) 
where for any matrix A, the dual trace Tr ∧ (A) is defined as

Tr ∧ (A) = ∧ i (A)ii.
We can use the Increasing Correlation Principle to generate the preceding results to matrix forms of transfer series.

Theorem 3: Let X1(γ) = S1(γ)U (γ) and X2(γ) = S2(γ)U (γ) be the output vectors corresponding to the same input vector U (γ), then

X1• /X2 ≽ S1• /S2, (23) X1 • \X2 ≽ Tr ∧ (S2• /S1), (24) 
where

Tr ∧ (S2• /S1) = ∧ i (S2• /S1)ii.
Proof: Based on the residuation theory in ([1]), we have the following derivations:

X1• /X2 = (S1U )• /(S2U ) = ((S1U )• /U )• /S2, due to (f.19) ≽ S1• /S2, due to (f.15)
and

X1 • \X2 = (S1U ) • \(S2U ) = U • \(S1 • \(S2U )), due to (f.11) ≽ U • \((S1 • \S2)U ), due to (f.13) ≽ U • \ [ (Tr ∧ (S2• /S1))U ] , due to Tr ∧ (S2• /S1) = S1 • \S2, ≽ (U • \U )Tr ∧ (S2• /S1), due to Tr ∧ (S2• /S1) is scalar, ≽ Tr ∧ (S2• /S1) due to U • \U ≽ Id.
In the remaining section, we will apply the preceding results in order to compare the difference between the output trajectories induced by controls and by disturbances, i.e, the distance between Y1 = CA * BPoptQ(γ), and Y2 = CA * SQ(γ).

The two output trajectories are obviously ordered because . The distance between these two output trajectories in the event domain is bounded by the distance between the two transfer function series, that is,

Popt = ( CA * B ) • \ ( CA * S ) , i.e. Y 1 ≼ Y 2 ,
∆Y 1 Y 2 = C Y 1 • /Y 2 (0) ≤ C (CA * BPopt)• /(CA * S) (0), (25) 
for any distance input Q(γ).

Proof: Using Eq. ( 23) in Theorem 3, we can obtain that

Y1• /Y2 = (CA * BPoptQ)• /(CA * SQ) ≽ (CA * BPopt)• /(CA * S).
Therefore, the distance between these two output trajectories in the event-domain satisfies the following equality

∆Y 1 Y 2 = C Y 1 • /Y 2 (0) ≤ C (CA * BP opt )• /(CA * S) (0).

VI. APPLICATION TO A HIGH THROUGHPUT SCREENING

SYSTEM IN DRUG DISCOVERY High throughput screening (HTS) is a standard technology in drug discovery. In HTS systems, optimal scheduling is required to finish the screening in the shortest time, as well as to preserve the consistent time spending on each activity. This section is using a HTS system to illustrate the main results in this paper. This HTS system, adapted from [START_REF] Brunsch | Modeling and control of high-throughput screening systems[END_REF], has three nested activities running on three different singlecapacity resources: pipettor (activity 1), reader (activity 2), and incubator (activity 3). The Gantt chart for this HTS system is shown in Fig. 2. One cycle of events is shown as follows: first, the pipettor drops the DNA/RNA compounds into the microplate, then the microplate is transferred to the reader to be scanned, and then the microplate is transferred to the incubator to develop. After the first cycle of events, the second cycle of event will start. Moreover, the three activities are overlapping during the transition time, for instance, the reader starts scanning 3 time units before the pipettor finishes its task, and finishes scanning 7 units after incubator starts the task, as shown in Fig. 2. Fig. 2: The Gantt chart of one cycle of activities. If we are interested in the start and release event time of each activity, we can model the HTS system as a TEG model, shown in Fig. 3, in which x 1 and x 2 denote the start and release time of the activity 1 on the pipettor, x 3 and x 4 denote the start and release time of the activity 2 on the reader, and x 5 and x 6 denote the start and release time of the activity 3 on the incubator. The input u is the starting time of the pipettor which users can decide when to load the chemical compounds. The disturbance q is the starting time of the incubator, such as transition time delay from the reader to the incubator due to system malfunction. The output y is the release time of the incubator. The cycles represent places and the bars represent the transitions x i . The tokens in the places represent that the transitions are ready to be fired, i.e. the activity is ready to start. For the TEG model of a HTS system shown in Fig. 3, the system over the max-plus algebra Z max [[γ]] is described as the following: The example has been computed by using toolbox MinMaxGD, a C++ library allowing to handle periodic series as introduced in ([5]), and it can be noted that this library is also interfaced with Scilab and MATLAB. We obtain The transfer function between the output Y (γ) and disturbance U (γ) and the input Q(γ), respectively, as i,e, equations ( 10) and ( 11) are both satisfied. On the other hand, when When we apply the integrated control law U (γ) = F opt+X (γ) ⊕ Popt+Q(γ) to the system instead, we can only solve the MDDP, but not for the DDP because 

B. Formulas of Left Residuations

a(a • \x) ≼ x (f.6) a • \(ax) ≽ x (f.7) a(a • \(ax)) = ax (f.8) 

a • \(x ∧ y) = a • \x ∧ a • \y (f.9) (a ⊕ b) • \x = a • \x ∧ b • \x (f.10) (ab) • \x = b • \(a • \x) (f.11) b(a • \x) ≼ (a• /b) • \x (f.12) (a • \x)b ≼ a • \(xb) (f.13)

C. Formulas of Right Residuations

  which solves for the MDDP. On the other hand, if Y 1 = Y 2 , then the DDP is solved. The question is that, if Y 1 ̸ = Y 2 , then how much is the distance between the two output trajectories. Proposition 5: Let Y1(γ) = CA * BPoptQ(γ) and Y2(γ) = CA * SQ(γ) two γ-series describing the output behaviors of the max-plus linear systems in Eq. (3), where Popt =

Fig. 3 :

 3 Fig. 3: The TEG model for the HTS system.

XB

  (γ) = AX(γ) ⊕ BU (γ) ⊕ SQ(γ) Y (γ) = CX(γ), where T = [ e ε ε ε ε ε ] , S T = [ ε ε ε ε e ε ] , and C = [ ε ε ε ε ε e ] .

Fig. 4 :

 4 Fig. 4: The TEG model of the HTS system with controllers.

  VIII. APPENDIX A. Formulas of Star Operationsa * (ba * ) * = (a ⊕ b) * = (a * b) * a * (f.1) (a * ) * = a * (f.2) (ab) * a = a(ba) * (f.3) a * a * = a *(f.4) aa * = a * a (f.5)

(

  x• /a)a ≼ x (f.14) (xa)• /a ≽ x (f.15) ((xa)• /a)a = xa (f.16) (x ∧ y)• /a = x• /a ∧ y• /a (f.17) x• /(a ⊕ b) = x• /a ∧ x• /b (f.18) x• /(ba) = (x• /a)• /b (f.19) (x• /a)b ≼ x • \(b• /a) (f.20) b(x• /a) ≼ (bx)• /a (f.21)
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Therefore, such an integrated control U (γ) solves the MDDP. . Theorem 1 ( [START_REF] Shang | Open-loop controllers to solve the disturbance decoupling problem for maxplus linear systems[END_REF]): The optimal pre-filter V (γ) = PoptQ(γ), which solves the MDDP, also solves the DDP for the max-plus linear systems described in Eq. ( 3) if and only if Im CA * S ⊂ Im CA * B.

Proposition 3: The integrated control law U (γ) = F optX (γ) ⊕ PoptQ(γ) solves the DDP of the max-plus linear system in Eq. ( 3) if and only if

and the feedback control matrix is

. Proof: "=⇒ Sufficiency:" Based on Theorem 1, if in which each component of these matrices is a periodic series. Essentially, the γ-periodic series represent the output sequence when an infinity of inputs is put in the system at time 0 (impulse input). For instance, CA * B represents the impulse response of the incubator as y(0) = 78, y(1) = 156, y(2) = 234, etc.

The non-causal filter P opt is

In this example, we have

hence, this non-causal prefilter solves the MDDP and the DDP at the same time due to CA * BPopt = CA * S. This prefilter P opt is not causal because there are negative coefficients in the matrix. The canonical injection from the causal elements of

is also residuated (see [START_REF] Cottenceau | Model reference control for timed-event graphs in dioid[END_REF] for details). Its residual is given by Pr

If we take the canonical injection from the causal elements of Z max [[γ]], then the greatest causal prefilter is

The causal filter P opt+ for the MDDP does not solve DDP because

Using Proposition 5, we can evaluate the difference between the output trajectories produced by the pre-filter P opt+ and by the disturbances only. The distance is

This distance indicates that there is one event delay between output trajectories produced by the pre-filter P opt+ and by the disturbances only.

According to Proposition 1 and Eq. ( 14), the greatest feedback controller preserving the open-loop behaviors is obtained as follows:

The greatest causal feedback is

The TEG model of the HTS system with open-loop and state feedback controllers are shown in Fig. 4.

In Fig. 4, the causal pre-filter P opt+ = 62γ(78γ) * is represented by a cyclic transition due to (78γ) * , where γ indicates one token inside of the place and 78 units are the holding time of the token, and 62γ is represented by an additional transition with one token and 62 units holding time. Same analogy works for the feedback F opt+ : X → U .

When we apply the integrated control law U (γ) = F opt+X (γ) ⊕ PoptQ(γ) to the system, we can solve the MDDP and the DDP because