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Abstract-This paper presents the new investigations on the disturbance decoupling problem (DDP) in the geometric control of max-plus linear systems. Due to the monotone nondecreasing property of max-plus linear systems, a modified disturbance decoupling problem (MDDP) is defined and an optimal controller to solve the MDDP is obtained using a prefilter mapping by taking the disturbances into account. Moreover, this paper presents a necessary and sufficient condition such that the same optimal controller for the MDDP can be used to solve the DDP for max-plus linear systems. When the necessary and sufficient condition is not satisfied, a new disturbance mapping is developed in order to guarantee the solvability of the DDP by the same optimal controller for the MDDP. The main results of this paper are illustrated by using a timed event graph model of a manufacturing network.

I. INTRODUCTION

Max-plus linear systems ( [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF], [START_REF] Golan | Semirings and Their Applications[END_REF], [START_REF] De | Modeling and simulation of genetic regulatory systems: a literature review[END_REF], [START_REF] Boudec | Network Calculus[END_REF]) have been studied in the past three decades, and many fundamental problems have been investigated by researchers, such as controllability [START_REF] Prou | Controllability in the max-algebra[END_REF], observability [START_REF] Hardouin | Observer Design for (max,plus)-Linear Systems[END_REF], and the model reference control problem [START_REF] Maia | On the Model reference control for max-plus linear systems[END_REF]. A new research area for max-plus linear systems is to establish the geometric control theory [START_REF] Wonham | Linear Multivariable Control: A Geometric Approach[END_REF] as predicted in [START_REF] Cohen | Max-plus algebra and system theory: where we are and where to go now[END_REF]. There are some existing research results on generalizing fundamental concepts and problems in geometric control to max-plus linear systems, such as computations of different controlled invariant sets ( [START_REF] Di Loreto | Duality between invariant spaces for max-plus linear discrete event systems[END_REF], [START_REF] Katz | Max-plus (A,B)-invariant spaces and control of timed discrete-event systems[END_REF], [START_REF] Maia | On the control of max-plus linear system subject to state restriction[END_REF]) and the disturbance decoupling problem [START_REF] Lhommeau | Disturbance decoupling of timed event graphs by output feedback controller[END_REF].

This paper reports upon new investigations on the disturbance decoupling problem (DDP) for max-plus linear systems. For classical linear systems, the DDP means that the output signals remain unchanged in the presence of the disturbances. Due to the monotone nondecreasing property of max-plus linear systems, the controller can only increase the inputs, in other words, it is only possible to delay the input tokens in the corresponding timed event graph. From a practical point of view, it would be interesting to ask the question as whether there exists a controller such that the system is not disturbed more than the disturbances have. For example, when a system break down occurs, we can put the input parts of the manufacturing line as late as possible to reduce the unnecessary waiting time in the network. Therefore, a so called modified disturbance decoupling problem (MDDP) is defined in this paper and an optimal controller for the MDDP is obtained using a prefilter mapping. Moreover, this paper presents a necessary and sufficient condition such that the same optimal controller for the MDDP can be used to solve the DDP for max-plus linear systems. This condition requires the output image of the reachable space of the disturbances has to be a subset of the output image of the reachable space of the controls. When the necessary and sufficient condition is not satisfied, a new disturbance mapping is developed in order to guarantee the solvability of the DDP using the same optimal controller for the MDDP. The main results are illustrated using a timed event graph model of a manufacturing network.

The remainder of this paper is organized as follows. Section II presents the mathematical preliminaries in the max-plus algebra literature. Section III presents the maxplus linear system models. Section IV defines the concepts of the DDP and MDDP, and establishes the optimal controller to solve the MDDP. Section V establishes the relationships between the optimal controller for the MDDP and the solution to the DDP for max-plus linear systems. Section VI is the illustration using a timed event graph model for a manufacturing system. Section VII concludes this paper.

II. MATHEMATICAL PRELIMINARIES

A semiring is a set S, equipped with two operations ⊕, ⊗, such that (S, ⊕) is a commutative monoid (the zero element will be denoted ε), (S, ⊗) is a monoid (the unit element will be denoted e), operation ⊗ is right and left distributive over ⊕, and ε is absorbing for the product (i.e. ε ⊗ a = a ⊗ ε = ε, ∀a). A semiring S is idempotent if a⊕a = a for all a ∈ S. A non empty subset B of a semiring S is a subsemiring of S if for all a, b ∈ B we have a ⊕ b ∈ B and a ⊗ b ∈ B. In this paper, we denote Z max = (Z ∪ {-∞, +∞}, max, +) as the integer max-plus semiring.

In an idempotent semiring S, operation ⊕ induces a partial order relation

a ≽ b ⇐⇒ a = a ⊕ b, ∀a, b ∈ S.
(

Then, a ∨ b = a ⊕ b. We say that an idempotent semiring S is complete if it is complete as an ordered set, and if for all a ∈ S, the left and right multiplications 

L ♯ a (b) = a• \b = ⊕ {x|ax ≼ b} and R ♯ a (b) = b• /a = ⊕ {x|xa ≼ b} , ∀a, b ∈ S.
where L ♯ a is called the residual mapping, and is the unique mapping such that L a • L ♯ a ≼ Id and L ♯ a • L a ≽ Id where Id is the identity mapping (the same holds for R a ). The implicit equation x = ax ⊕ b admits x = a * b = ( ⊕ k≥0 a k )b as smallest solution. All these results admit a natural extension to the matrix case, where the sum and product of matrices are defined with the same rules as in classical theory (see [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF]).

Definition 1 ([4], [START_REF] Cohen | Linear projectors in the max-plus algebra[END_REF], [START_REF] Cohen | Projection and Aggregation in Maxplus Algebra[END_REF]): Let S be a complete idempotent semiring and let C be a n × p matrix with entries in S. We call null kernel of C as the set of elements x ∈ S p such that Cx = ϵ, denoted as ker C. We call equivalence kernel of L C (denoted by ker eq C), the subset of all pairs of elements of S p whose components are both mapped by L C to the same element in S n , i.e., the following definition

ker eq C := { (s, s ′ ) ∈ (S p ) 2 | Cs = Cs ′ } . ( 2 
)
Clearly ker eq C, is an equivalence relation on X , i.e., Cs = Cs ′ ⇐⇒ s ′ ≡ s (mod ker eq C) and furthermore it is a congruence and then we can define the quotient S/ ker eq C. The subset of elements s ′ ∈ S p that are equivalent to s modulo ker eq C is denoted [s] C , i.e.,

[s] C = {s ′ ∈ S p | s ′ ≡ s(mod ker eq C)} ⊂ S p .

III. MAX-PLUS LINEAR SYSTEMS

A general max-plus linear model with disturbances is defined as

x(k) = a ⊕ i=0 Aix(k -i) ⊕ b ⊕ j=0 Bju(k -j) ⊕ c ⊕ l=0 S l q(k -l), y(k) = d ⊕ r=0 Crx(k -r), (3) 
where

x(k) ∈ X ∼ = Z n max , u(k) ∈ U ∼ = Z p max , q(k) ∈ Q ∼ = Z r max , y(k) ∈ Y ∼ = Z q max and k ∈ Z.
After some modifications [START_REF] Cohen | Théorie algébrique des systèmes à événements discrets, Polycopié de cours donné àl[END_REF], it is possible to obtain the following explicit form:

x(k) = A 0 x(k) ⊕ A 1 x(k -1) ⊕ B 0 u(k) ⊕ S 0 q(k), y(k) = Cx(k). ( 4 
)
Furthermore, by solving the implicit equation, the equation above can be written as where

x(k) = A * 0 A1x(k -1) ⊕ A * 0 B0u(k) ⊕ A * 0 S0q(k), x(k) = Ax(k -1) ⊕ Bu(k) ⊕ Sq(k), y(k) = Cx(k), (5) 
A * 0 = ⊕ i∈N A i
0 is with finite entries if the corresponding graph of this matrix is without circuit.

For the timed event graph of a manufacturing line shown in Fig. 1, the max-plus linear system equations are described as the following:

x1(k) = 2x7(k -1) ⊕ 3u1(k) x2(k) = 6x1(k) ⊕ 0q1(k) x3(k) = 1x8(k -1) ⊕ 5u2(k) x4(k) = 1x3(k) ⊕ 0q2(k) x5(k) = 2x2(k) ⊕ 1x4(k) ⊕ 2x9(k -1) x6(k) = 5x5(k) ⊕ 0q3(k) x7(k) = 0x2(k -1) x8(k) = 0x4(k -1) x9(k) = 0x6(k -1).
The corresponding max-plus linear system matrices A 0 , A 1 , B 0 , S 0 and C in Eq. ( 4) have null entries except for the following ones

A0(2, 1) = 6, A0(4, 3) = 1, A0(5, 2) = 2, A0(5, 4) = 1, A0(6, 5) = 5, A1(1, 7) = 2, A1(3, 8) = 1, A1(5, 9) = 2, A1(7, 2) = 0, A1(8, 4) = 0, A1(9, 6) = 0, B0(1, 1) = 3, B0(3, 2) = 5, S0(2, 1) = e, S0(4, 2) = e, S0(6, 3) = e C(1, 6) = 1.
After computation of A * 0 , matrices A, B, S are obtained with the following non null entries:

A(1, 7) = 2, A(2, 7) = 8, A(3, 8) = 0, A(4, 8) = 2, A(5, 7) = 10, A(5, 8) = 3, A(5, 9) = 2, A(6, 7) = 15, A(6, 8) = 8, A(6, 9) = 7, A(7, 2) = e, A(8, 4) = e, A(9, 6) = e, B(1, 1) = 3, B(2, 1) = 9, B(3, 2) = 5, B(4, 2) = 6, B(5, 1) = 11, B(5, 2) = 7, B(6, 1) = 16, B(6, 2) = 12, S(2, 1) = e, S(4, 2) = e, S(5, 1) = 2, S(5, 2) = 1, S(6, 1) = 7, S(6, 2) = 6, S(6, 3) = e.
This kind of system makes it possible to describe the behaviors of timed event graphs, which is a subclass of timed Petri net such that each place has one and only one input and output transition (see Fig. 1). By associating to each transition x i a firing date sequence x i (k) ∈ Z, it is possible to predict the system evolution thanks to equation (4). For each increasing sequence {x(k)}, it is possible to define the transformation X(γ) = ⊕ k∈Z x(k)γ k where γ is a backward shift operator in event domain (i.e., Y (γ) = γX(γ) ⇐⇒ {y(k)} = {x(k -1)}, (see [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF], p. 228). This transformation is analogous to the Z-transform used in discrete-time classical control theory and the formal series X(γ) is a synthetic representation of the trajectory x(k). The set of the formal power series in γ is denoted by Z max [[γ]] and constitutes an idempotent semiring. Therefore, the state equation in Eq. ( 4) becomes a polynomial equation or a frequency domain representation,

X(γ) = (A0 ⊕ γA1)X(γ) ⊕ x0 ⊕ B0U (γ) ⊕ S0Q(γ) = AX(γ) ⊕ x0 ⊕ B0U (γ) ⊕ S0Q(γ), Y (γ) = CX(γ), (6) 
for any initial state x 0 , assuming u(0

) = q(0) = ϵ, the state X(γ) ∈ X = ( Zmax[[γ]] ) n×1 , the output Y (γ) ∈ Y = ( Zmax[[γ]] ) q×1 , the input U (γ) ∈ U = ( Zmax[[γ]]
) p×1 , and

the disturbance Q(γ) ∈ Q = ( Zmax[[γ]]
) r×1 , and matrices

A A0 ⊕ γA1 ∈ ( Zmax[[γ]] ) n×n , B0 ∈ ( Zmax[[γ]] ) n×p , C ∈ ( Zmax[[γ]] ) q×n and S0 ∈ ( Zmax[[γ]]
) n×r represent the link between transitions. The trajectories U (γ) and Y (γ) can be related ( [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF], p. 243) by the equation

Y (γ) = H(γ)U (γ),
where

H(γ) = CA * B0 ∈ ( Zmax[[γ]]
) q×p is called the transfer matrix of the TEG. Entries of matrix H are periodic series ([1], p. 260) in the idempotent semiring, usually represented by p(γ) ⊕ q(γ)(τ γ ν ) * , where p(γ) is a polynomial representing the transient behavior, q(γ) is a polynomial corresponding to a pattern which is repeated periodically, the period being given by the monomial (τ γ ν ). The disturbances are uncontrollable inputs acting on the system's internal state 2 , through matrix S 0 , and

CA * S 0 ∈ ( Z max [[γ]]
) q×r is the transfer function between the disturbances and outputs.

IV. DISTURBANCE DECOUPLING OF MAX-PLUS LINEAR SYSTEMS

A. Disturbance Decoupling Problem

For max-plus linear systems in Eq. ( 5), we introduce the definition of the disturbance decoupling problem (DDP):

Definition 2: The system (5) is called disturbance decoupled by an open-loop controller u(k) if and only if any disturbance signal will not affect the system output y(k) for all k ∈ Z and for any initial condition x 0 .

Proposition 1: ([13]) Given a max-plus linear system of the form (5), the DDP is solvable by an open-loop controller u(k) if and only if there exists an open-loop control sequence

-→ u = [ u(n) u(n -1) • • • u(1)
] T such that the equivalence relation holds

⟨A|B⟩n -→ u ⊕ ⟨A|S⟩n -→ q ≡ kereq C ⟨A|B⟩n -→ u ( 7 
)
where

⟨A|S⟩n = [ S AS • • • A (n-1) S ] and ⟨A|B⟩n = [ B AB • • • A (n-1) B ] ,
for all n and any disturbance signal

-→ q = [ q(n) q(n -1) • • • q(1) ] T .
Proposition 1 indicates that, in order to check the solvability condition for the DDP of max-plus linear systems, we need an infinite number of checking for the equation [START_REF] Cohen | Projection and Aggregation in Maxplus Algebra[END_REF]. The computational complexity of this result can be resolved by the γ-domain analysis approach instead of the event domain analysis approach, which will be discussed in details later.

B. Modified Disturbance Decoupling Problem (MDDP)

Model ( 5) describes the fastest behavior of the system, hence the control u only makes possible to increase the inputs, in other words, it is only possible to delay the input of tokens in the corresponding timed event graph. In the same way, the uncontrollable disturbance input q acts by delaying the firing of the transitions. Hence, it could be interesting to delay the input u as much as possible in order to match this disturbance. From a practical point of view, this means that the token will be put in the system as late as possible in order not to disturb the system more than the disturbances have, hence the strategy will reduce the useless waiting time as much as possible. In summary, this strategy is described in the following definition:

Definition 3: The max-plus linear system described in Eq. ( 5) is called modified disturbance decoupled by an openloop controller u(k) if and only if the system output signals will not be disturbed more than the disturbances have.

C. MDDP with an Open-Loop Controller

The objective of the MDDP using an open-loop controller is to find an open-loop controller U (γ) such that, for any initial condition x 0 in the state space, the system output will not be disturbed more than the disturbance signal has. Instead of using the event domain analysis for Eq. ( 4) and Eq. ( 5), we obtain the system trajectories for Eq. ( 6) in the γ-domain for any initial condition x 0 :

X(γ) = A * B0U (γ) ⊕ A * S0Q(γ) ⊕ A * x0 = A * [B0 | S0] ( U (γ) Q(γ) ) ⊕ A * x0 = A * B ( U (γ) Q(γ) ) ⊕ A * x0 (8) Y (γ) = CA * B0U (γ) ⊕ CA * S0Q(γ) ⊕ CA * x0 = CA * B ( U (γ) Q(γ) ) ⊕ CA * x0. ( 9 
)
In order to solve for the MDDP using an open-loop controller, then according to Definition 3, the following equality has to hold for any initial condition:

CA * B ( U (γ) Q(γ) ) ⊕ CA * x0 = CA * S0Q(γ) ⊕ CA * x0, ∀x0, ⇐⇒ CA * B ( U (γ) Q(γ) ) = CA * S0Q(γ) ( 10 
)
In other words, the objective of the MDDP by an openloop controller is to characterize the greatest state X(γ) ∈

ImA * B = { A * B ( U (γ) Q(γ) ) | (U (γ), Q(γ)) ∈ U × Q } such that CX(γ) = CA * S0Q(γ), ∀Q(γ) ∈ Q ⇐⇒ ( X(γ), A * S0Q(γ) ) ∈ kereq C, ∀Q(γ) ∈ Q (11)
where the right hand term of the inequality is the output without controller. This problem is equivalent to find a controller P such that :

CA * B 0 P ≼ CA * S 0 .
As previously a trivial lower bound to the solutions set is obtained by considering V (γ) = ε and an optimal upper bound is given by

P ≼ CA * B 0 • \CA * S 0 P opt . ( 12 
)
The optimal control mapping P opt is independent of any choice of Q(γ), furthermore, the resulted optimal controller P opt Q(γ) can solve the MDDP for any given disturbance Q(γ). 

V. RELATIONSHIP BETWEEN MDDP AND DDP BY OPEN-LOOP CONTROLLERS

The MDDP is always solvable because the control signals can be chosen to be zero to achieve the solvability. Our interest is whether a link can be established between the solutions to the MDDP and the solutions to the DDP of max-plus linear systems.

A. Relationship between P opt and DDP

The question is whether such an optimal solution P opt Q(γ) will be able to solve the DDP of max-plus linear systems. We can have the following necessary and sufficient condition for such a connection.

Theorem 1: The optimal mapping P opt to the MDDP also solves the DDP for the max-plus linear systems described in Eq. ( 6) if and only if Im CA

B. Relationship with DDP of Traditional Linear Systems

We are interested in how Theorem 1's condition Im CA * S 0 ⊂ Im CA * B 0 is related to the solvability conditions of DDP for traditional linear systems over a field, described by the following equations:

x(k) = Ax(k -1) + Bu(k) + Sq(k) y(k) = Cx(k), ( 15 
)
where

x(k) ∈ X ∼ = R n , u(k) ∈ U ∼ = R p , q(k) ∈ Q ∼ = R r , y(k) ∈ Y ∼ = R q
, and k ∈ Z, R is the set of real numbers. Proposition 2: For a traditional linear systems over a field in Eq. ( 15), the DDP is solvable by an open-loop controller if and only if C⟨A|S⟩ = 0 or ⟨A|S⟩ ⊂ ker C, where ⟨A|S⟩ =

Im S + AIm S • • • + A (n-1) Im S).
Proposition 3: For a traditional linear systems over a field in Eq. ( 15), the DDP is solvable by an open-loop controller implies C⟨A|S⟩ ⊂ C⟨A|B⟩, where

⟨A|S⟩ = Im S + AIm S + • • • + A (n-1) Im S), and ⟨A|B⟩ = Im B + AIm B + • • • + A (n-1) Im B).

This means that the analogical condition C⟨A|S⟩

⊂ C⟨A|B⟩ of Theorem 1's condition Im CA * S0 ⊂ Im CA * B0
is only a necessary condition for the solvability of the DDP in the traditional case. Notice that the DDP for traditional linear systems require the control signals on both sides of the equation to be the same. In other words, for the same control, the outputs with or without the disturbances need to be the same in order to solve the DDP.

Here we introduce a so called output matching problem (OMP) in this paper as the following, if we can find a controller for a system with disturbances such that the output trajectory produced by a control and any disturbance remains the same from one original output without disturbances, but produced by a possibly different control, then any disturbance signals will still have no effect on the system outputs, similarly as the DDP. In another words, the set of the output trajectories remains invariant with or without the disturbances.

Proposition 4: For a traditional linear systems over a field in Eq. ( 15), the output matching problem is solvable by an open-loop controller if and only if C⟨A|S⟩ ⊂ C⟨A|B⟩, where

⟨A|S⟩ = Im (S + AS • • • + A (n-1) S), and ⟨A|B⟩ = Im (B + AB • • • + A (n-1) B).
Therefore, Proposition 4 links the similar necessary and sufficient condition for the solvability of the output matching problem in the traditional linear systems as Theorem 1 for max-plus linear systems.

C. Searching for Appropriate Disturbances to Solve DDP

If the condition Im CA * S0 ⊂ Im CA * B0 in Theorem 1 is not satisfied, then the optimal solution Popt = CA * B0 • \CA * S0 to the MDDP will not be able to solve the DDP. The next reasonable question is to ask what type of disturbances will allow us to solve the DDP using the same optimal controller Popt of the MDDP. In other words, for any disturbance Q(γ), we need to achieve the equality [START_REF] De | Modeling and simulation of genetic regulatory systems: a literature review[END_REF]. Our proposed approach is that, instead of keeping the original matrix S0 which will not solve the DDP by Popt, we can try to find a matrix S0 such that the DDP be solved. Lemma 1: Matrix

S opt 0 CA * • \(CA * B0Popt). ( 16 
)
achieves equality CA * B0Popt = CA * S opt 0 .

Proof: First, according to the residuation definition, the matrix S opt 0 is the greatest matrix such that CA * S opt 0 ≼ CA * B0Popt. On the other hand, due to the property of

L ♯ a • La ≽ Id, we have S opt 0 = CA * • \(CA * B0Popt) ≽ B0Popt.
Proposition 5: Any matrix S0 ≼ S opt 0 can guarantee that matrix P opt solves the DDP. Proof: From Lemma 1, it is clear that equality [START_REF] De | Modeling and simulation of genetic regulatory systems: a literature review[END_REF] 

VI. A MANUFACTURING SYSTEM APPLICATION

The manufacturing system depicted in Fig. 1 is considered. Its frequency domain representation is given in Eq. [START_REF] Cohen | Max-plus algebra and system theory: where we are and where to go now[END_REF]. The transfer function between the output Y (γ) and disturbance Q(γ) and the input U (γ), respectively, are

CA * S0 = [ 8(8γ 2 ) * 7(7γ 2 ) * 1(7γ 2 ) * ] CA * B0 = [ 17(8γ 2 ) * 13(7γ 2 ) * ]
in which each component of these matrices is a periodic series. In this example, we have Im CA * S 0 ⊂ Im CA * B 0 , hence the DDP and MDDP are both solved by the controller filter P opt . The example has been computed by using toolbox MinMaxGD, a C++ library allowing to handle periodic series as introduced in [START_REF] Cottenceau | Data processing tool for calculation in dioid[END_REF], and it can be noted that this library is also interfaced with Scilab and MATLAB. The non-causal filter P opt is by computing

CA * B0 • \CA * S0: ( -9(8γ 2 ) * ϵ ϵ -5(8γ 2 ) * -6(7γ 2 ) * -12(7γ 2 ) * ) .
This prefilter P opt is not causal because there are negative coefficients in the matrix. This non-causal prefilter, however, solves the MDDP and the DDP at the same time because [START_REF] Cottenceau | Model reference control for timed event graphs in dioid[END_REF] for details). Its residual is given by Pr

CA * B 0 P opt = CA * S 0 . If we take the canonical injection from the causal elements of Z max [[γ]] (denoted Z max [[γ]] + ) in Z max [[γ]] (see
(⊕ k∈Z s(k)γ k ) = ⊕ k∈Z s + (k)γ k where s + (k) = { s(k) if (k, s(k)) ≥ (0, 0), ε otherwise.
Therefore, the greatest causal prefilter is

P opt+ = Pr(P opt ) = ( 7γ 4 (8γ 2 ) * ϵ ϵ 3γ 2 (8γ 2 ) * 1γ 2 (7γ 2 ) * 2γ 4 (7γ 2 ) *
) .

The causal filter P opt+ for the MDDP does not solve the DDP because

CA * B0Popt+ = [ 16γ 2 (8γ 2 ) * 14γ 2 (7γ 2 ) * 15γ 4 (7γ 2 ) * ] ̸ = CA * S0
We will find the new disturbance mapping S opt 0 = CA * • \(CA * B0Popt+) as follows:

S opt 0 =              2γ 2 (8γ 2 ) * ϵ ϵ 8γ 2 (8γ 2 ) * ϵ ϵ 8γ 2 (8γ 2 ) * 6γ 2 (7γ 2 ) * 7γ 4 (7γ 2 ) * 9γ 2 (8γ 2 ) * 7γ 2 (7γ 2 ) * 8γ 4 (7γ 2 ) * 10γ 2 (8γ 2 ) * 8γ 2 (7γ 2 ) * 9γ 4 (7γ 2 ) * 15γ 2 (8γ 2 ) * 13γ 2 (7γ 2 ) * 14γ 4 (7γ 2 ) * γ(8γ 2 ) * ϵ ϵ 7γ(8γ 2 ) * 5γ(7γ 2 ) * 6γ 3 (7γ 2 ) * 8γ(8γ 2 ) * 6γ(7γ 2 ) * 7γ 3 (7γ 2 ) *             
According to Proposition 5, for any matrix S0 ≼ S opt 0 , both the DDP and the MDDP are solved by considering the same causal filter Popt+. For example, let S0 be a matrix with all its entries equal to ε except for the non null ones of matrix S0, i.e., the following one S0(2, 1) = S opt 0 (2, 1), S0(4, 2) = S opt 0 (4, 2), S0(6, 3) = S opt 0 [START_REF] Cohen | Max-plus algebra and system theory: where we are and where to go now[END_REF][START_REF] Cohen | Théorie algébrique des systèmes à événements discrets, Polycopié de cours donné àl[END_REF]. This matrix will be such that the DDP is solvable with Popt+. Practically, this means that transition x2 , which was initially directly disturbed by the uncontrollable input q1 in the original model, has to be disturbed by 8γ 2 (8γ 2 ) * q1 , i.e. the state equation in the event domain is x2(k) = 6x1(k)⊕8γ 2 (8γ 2 ) * q1(k). This equation can be realized as follows in the time domain x2(t) = min(x1(t-6), w1(t))with w1(t) = min(2 + q1(t -8), 2 + w1(t -8)) . The term 2 + q1(t -8) means that disturbance has to be measured and that two tokens have to be initially present between q1 and x2. If you consider q1 as an uncontrollable component supply input, these two tokens depict the minimal stock you need to be able to solve the DDP. More generally, S opt 0 represents the optimal way you need to modify for the system in order to be able to reject disturbances. In a manufacturing system, it can represent the minimal initial stock of raw parts you need to be robust according to machine breakdown or any malfunctions in exogenous component supply.

VII. CONCLUSION

This paper defines a new concept of the MDDP and establishes the optimal controller to solve the MDDP. Moreover, a necessary and sufficient condition is established such that the optimal controller for the MDDP can solve the DDP for max-plus linear systems. When the necessary and sufficient condition is not satisfied, a new disturbance mapping is developed in order to guarantee the solvability of the DDP using the same optimal controller for the MDDP. This paper only deals with open-loop controllers for the MDDP, the next research problem is to establish the optimal state feedback controllers and the output feedback controllers for the MDDP, and study the relationships between these solutions to the DDP and the MDDP.
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 1 Fig. 1. The timed event graph model of a manufacturing system.
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 2 Fig. 2. The controller structure for MDDP.

  1 by a, L a : S → S, x → ax and R a : S → S, x → xa are lower semicontinuous. A map L a : S → S is lower semi-continuous if L a (⊕ x∈S x) = ⊕ x∈S L a (x). These maps are residuated, i.e. L a (x) ≼ b (resp. R a (x) ≼ b) admits a greatest solution , then the following notations are considered :

  is achieved, i.e., the DDP is solved with S opt B0Popt, hence, equality (14) is achieved, i.e., the DDP is solvable by the optimal control P opt with any matrix S0 ≼ S opt 0 .

		furthermore the following implication holds S0 ≼ S opt 0 CA * S0 ≼ CA * S opt 0 = CA *	⇒
	0	and P opt ,

The symbol ⊗ is often omitted.

They model event blocking the system, e.g. machine breakdown, uncontrollable component supply...
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