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This paper proposes a high gain observer design for a class of nonlinear systems with multiple known time-varying delays intervening in the states and the inputs. In the free delay case, the class of systems under consideration coincides with a canonical form characterizing a class of multi outputs nonlinear systems which are observable for any input. The underlying high gain design has been mainly motivated by its inherent simplicity from both design and implementation points of view. Indeed, the observer gain is determined from an explicit resolution of a time-invariant Lyapunov algebraic equation up to the specification of a single design parameter. An academic observation problem is addressed to illustrate the effectiveness of the proposed observer.

Introduction

Time delay is an inherent property of various engineering systems such as biochemical processes, population dynamics and communication and information systems ( [START_REF] Niculescu | Delay effects on stability[END_REF], [START_REF] Richard | Time-delay systems:an overview of some recent advances and open problems[END_REF]). Time delays are troublesome in that they could cause oscillations or instability of the systems (see [START_REF] Kolmanovskii | Delay effects on stability: a survey[END_REF] for example). As a result, an intensive research activity has been devoted in the last few years to study the stability, control and state estimation for systems with time delays.

A particular attention has been paid to the case of linear systems (See for instance [START_REF] Darouach | Design of reduced-order observers without internal delays[END_REF][START_REF] Mazenc | Lyapunov stability analysis for nonlinear delay systems[END_REF][START_REF] Darouach | Linear Functional Observers for Systems with Delays in State Variables[END_REF][START_REF] Hou | An observer design for linear time-delay systems[END_REF][START_REF] Kharitonov | Lyapunov-Krasovskii approach for robust stability of time delay systems[END_REF][START_REF] Azuma | Output feedback control synthesis for linear time-delay systems via infinite-dimensional LMI approach[END_REF][START_REF] Gu | Stability of time-delay systems[END_REF][START_REF] Kharitonov | Exponential estimates for time delay systems[END_REF][START_REF] Mondie | Exponential estimates for retarded time-delay systems: an LMI approach[END_REF] and references therein ) whereas only few results have been established in the nonlinear case (see for instance [START_REF] Yang | Observer design and fault diagnosis for state-retarded dynamical systems[END_REF][START_REF] Aggoune | Observers design for a class of nonlinear systems with time-varying delay[END_REF][START_REF] Trinh | An observer design for a class of nonlinear time-delay systems[END_REF][START_REF] Zemouche | Observer design for a class of Lipschitz time-delay systems[END_REF]). Moreover, most of the underlying works are based on LMI techniques where the gain of the observer is designed through the resolution of a LMI problem and as a consequence an observer exits only if the considered LMI problem is feasible. As for systems with no delay and as noticed in [START_REF] Arcak | Nonlinear observers: a circle criterion design and robustness analysis[END_REF], the feasibility of the LMI problems considered in observer design is generally not known a priori and is to be determined numerically.

Of fundamental interest, one should notice that the problem of observer design still be open in the multi-outputs case even in the case of free delay systems. This is mainly due to the lack of observable canonical forms. Even in the case of uniformly observable systems (systems which are observable for any inputs), there is not a canonical form which characterizes all uniformly observable systems in the multi-outputs case. Some canonical forms characterizing some classes of MIMO uniformly observable systems have been proposed in [START_REF] Shim | Semi-global observer for multi-output nonlinear systems[END_REF] and [START_REF] Hammouri | Nonlinear observers for locally uniformly observable systems[END_REF]. More recently, the authors in [START_REF] Liu | Observer design for a class of uniformly observable MIMO nonlinear systems with coupled structure[END_REF] have proposed a new canonical form for classes of systems that are larger than those considered in [START_REF] Shim | Semi-global observer for multi-output nonlinear systems[END_REF] and [START_REF] Hammouri | Nonlinear observers for locally uniformly observable systems[END_REF]. Moreover, the authors in [START_REF] Liu | Observer design for a class of uniformly observable MIMO nonlinear systems with coupled structure[END_REF] have used the so proposed canonical form in order to synthesize a high gain observer.

The look for general canonical forms that characterize some classes of time-delay systems is not the aim of this work. Rather, one shall consider a specific canonical form with time-varying delays, which is uniformly observable. This canonical form is the natural extension of that one proposed in [START_REF] Hammouri | Nonlinear observers for locally uniformly observable systems[END_REF]. Indeed, the form proposed in [START_REF] Hammouri | Nonlinear observers for locally uniformly observable systems[END_REF] is modified in such a way the modified version is a delayed system where the delayed states intervene in a triangular manner. This paper is concerned with state observer design for the so obtained form. More specifically, one will show that the general high gain observer design framework established in [START_REF] Bornard | A high gain observer for a class of uniformly observable systems[END_REF], [START_REF] Bornard | A graph approach to uniform observability of nonlinear multi output systems[END_REF], [START_REF] Gauthier | A simple observer for nonlinear systems -application to bioreactors[END_REF] and [START_REF] Hammouri | Nonlinear observers for locally uniformly observable systems[END_REF] for free delay systems can be properly extended to this class of time-delay systems. This makes it possible to derive an observer that shares all the appealing features of the high gain concept, namely an exponential convergence with an easy implementation. The easiness of implementation is mainly due to the fact that the observer gain is issued from the resolution of a time-invariant Lyapunov algebraic equation and it is explicitly given. Moreover, its tuning is performed through the choice a single design parameter whatever is the dimension of the considered system. This paper is organized as follows. Section 2 is devoted to the problem formulation through the introduction of the class of nonlinear systems which will subject to the observer synthesis. In section 3, the observer design is given in the case of a single time-varying delay and a full convergence analysis is provided. An example with simulation results is given in section 4 for illustration purposes. Concluding remarks are given in section 5 together with some perspectives.

Problem formulation

The aim of this paper is to design a high-gain observer to estimate the state of the following class of systems    ẋ(t) = Ax(t) + g (u(t), u τ 1 (t), . . . , u τ m (t), x(t), x τ 1 (t), . . . , x τ m (t))

y(t) = Cx(t) = x 1 (t) x(s) = ϕ(s) ∀s ∈ [-τ , 0] (1) 
with 

A =         0 I p 0 . .
        (2) 
C = I p 0 . . . 0 (3) the state x =      x 1 x 2 . . . x q      ; x k =      x k 1 x k 2 . . . x k p      ; x τ i =      x 1 τ i x 2 τ i . . . x q τ i      ; x k τ i =      x k 1τ i x k 2τ i . . . x k pτ i     
; the τ i (t)'s, i = 1, . . . , m are positive real-valued known functions that denote the time delays affecting both the state variables and the inputs and they are assumed to be bounded by τ > 0; u τ i (t) and x τ i (t) respectively denote the delayed inputs and states, i.e u τ i (t) = u(t -τ i ) and x τ (t) = x(t -τ i ). Notice that for simplicity of presentation and without loss of generality, one assumes that the delays affecting the states and the inputs are the same; the output y ∈ IR p ; the state x ∈ IR n with x k ∈ IR p and x k i ∈ IR, k = 1, . . . , q and i = 1, . . . , p; the input u ∈ IR s . The nonlinearities g k u(t), u τ 1 (t), . . . , u τ q (t), x(t), x τ 1 (t), . . . , x τ q (t) , k = 1, . . . , q, assume a triangular structure with respect to x, x τ 1 , . . . , x τq , i.e.

g k (u(t), u τ 1 (t), . . . , u τ m (t), x(t), x τ 1 (t), . . . , x τ m (t)) = g k u(t), u τ 1 (t), . . . , u τm (t), x 1 (t), . . . , x k (t), x 1 τ 1 (t), . . . , x k τ 1 (t), . . . , x 1 τm (t), . . . , x k τq (t)
System (1) may seem as being very particular since it assumes a non prime dimension and all subblocks x k have the same dimension. In fact, it has been shown in [START_REF] Hammouri | Nonlinear observers for locally uniformly observable systems[END_REF] that in the free delay case, system (1) (with no delay) is a canonical form that characterizes the following class of uniformly observable nonlinear systems (systems which are observable for any input):

ẋ = f (u, x) y = Cx = x 1 (4) with x =      x 1 x 2 . . . x q      , f (u, x) =        f 1 (u, x 1 , x 2 ) f 2 (u, x 1 , x 2 , x 3 ) . . . f q-1 (u, x) f q (u, x)        and C = [I n 1 , 0 n 1 ×n 2 , 0 n 1 ×n 3 , . . . , 0 n 1 ×n q ] where the state x ∈ IR n with x k ∈ IR n k , k = 1, . . . , q and n 1 ≥ n 2 ≥ . . . ≥ n q , q k=1 n k = n; the input u(t)
∈ U the set of bounded absolutely continuous functions with bounded derivatives from IR + into U a compact subset of IR s ; the output y ∈ IR n 1 and f (u, x) ∈ IR n with f k (u, x) ∈ IR n k . The functions f k are assumed to satisfy the following condition:

(C) For k = 1, . . . , q -1, the map x k+1 → f k (u, x 1 , . . . , x k , x k+1 ) is one tone from IR n k into IR n k . Moreover, ∃α f , β f > 0 such that for all k ∈ {1, . . . , q -1}, ∀x ∈ IR n , ∀u ∈ U , α 2 f I n k+1 ≤ ∂f k ∂x k+1 (u, x) T ∂f k ∂x k+1 (u, x) ≤ β 2 f I n k+1
Now, consider the following injective map: Φ :

IR n -→ IR n 1 q , x =      x 1 x 2 . . . x q      → z =      z 1 z 2 . . . z q      with z = Φ(u, x) =            x 1 f 1 (u, x 1 , x 2 ) ∂f 1 ∂x 2 (u, x 1 , x 2 )f 2 (u, x 1 , x 2 , x 3 ) . . . q-2 k=1 ∂f k ∂x k+1 (u, x) f q-1 (u, x)            (5) 
where z k ∈ IR n 1 , k = 1, . . . , q. This transformation puts the original system under the following form (see [START_REF] Hammouri | Nonlinear observers for locally uniformly observable systems[END_REF] for more details):

ż = Ãz + φ(v, z) y = Cz = z 1 (6)
where the state z ∈ IR n 1 q , v = [u T , uT ] T , φ(v, z) has a triangular structure with respect to z and the matrices à and C are: à = 0

I (q-1)n 1 0 0 and C = [I n 1 , 0 n 1 , . . . , 0 n 1 ].
It is clear that in the free delay case, system ( 6) is under form (1) with n 1 = p. Now, it is easy to see that one can derive a canonical form for time delay systems by introducing delayed inputs and states in system (4) in such a way that the delayed states intervene in a triangular manner. Indeed, let us modify system (4) as follows:

ẋ = f (u, u τ 1 , . . . , u τ m , x, x τ 1 , . . . , x τ m ) y = Cx = x 1 (7) 
where the k th component, f k , of the function f has now the following structure:

f k u(t), u τ 1 (t), . . . , u τ m (t), x(t), x τ 1 (t), . . . , x τ m (t) = f k u(t), u τ 1 (t), . . . , u τ q (t), x 1 (t), . . . , x k+1 (t), x 1 τ 1 (t), . . . , x k τ 1 (t), . . . , x 1 τ q (t), . . . , x k τ m (t)
where τ i , i = 1, . . . , m are the time delays and the other variables still have the same meaning as in system (4). The functions f k are always supposed to satisfy the condition (C). It is easy to see that the injective map introduced for system (4) puts system (7) under the form considered in this paper with view to observer design, ie. system (1). As a result, system (1) can be interpreted as a canonical form which characterize a class of uniformly observable delayed state system.

Let us now come back to system [START_REF] Aggoune | Observers design for a class of nonlinear systems with time-varying delay[END_REF]. The design of the observer requires the adoption of the following assumptions :

A1. The state x(t) and the input u(t) are bounded, i.e. there exist compact sets X ⊂ R n and U ⊂ R m such that for all t ∈ R, x(t) ∈ X and u(t) ∈ U .

A2. The function g is Lipschitz with respect to x, x τ 1 , . . . , x τq , uniformly in u, u τ 1 , . . . , u τq .

A3. The delay functions fulfill the following properties:

∃ τ > 0 / sup t≥0 τ i (t) ≤ τ ∀i ∈ {1, . . . , q} (8) 
∃ ε > 0 / sup t≥0 τi (t) ≤ 1 -ε ∀i ∈ {1, . . . , q} (9) 
Please notice that Assumption A2 is classical in the high gain design framework. It is worth mentioning that as the state is supposed to lie in a bounded set X, it is possible to define an extension g of g which coincide with g on X and which is global Lipschitz on IR n (see e.g. [START_REF] Shim | A passivity-based nonlinear observer and a semi-global separation principle[END_REF]).

For the sake of clarity, the observer design will be detailed in the single-delay case. As one shall point it out later, the generalization to the multiple delays case is straightforward.

Observer design

In this section one assumes m = 1 and for writing convenience one shall denote τ 1 by τ . System (1) specializes as follows :

ẋ(t) = Ax(t) + g(u(t), u τ (t), x(t), x τ (t)) y(t) = Cx(t) (10) 
A high gain candidate observer for the above class of systems is given by

ẋ(t) = Ax(t) + g(u(t), u τ (t), x(t), xτ (t)) -θ∆ -1 θ S -1 C T C(x(t) -x(t)) ( 11 
)
where ∆ θ is the diagonal matrix defined by

∆ θ = diag I p , 1 θ I p , . . . , 1 θ q-1 I p ( 12 
)
where θ > 0 is a real parameter and S is the unique solution of the following algebraic Lyapunov equation:

S + A T S + SA -C T C = 0 ( 13 
)
Remark 1. It has been shown that S is symmetric positive definite (see e.g. [START_REF] Gauthier | A simple observer for nonlinear systems -application to bioreactors[END_REF][START_REF] Farza | Observer design for a class of MIMO nonlinear systems[END_REF]) and that one particularly has :

S -1 C T =      C 1 q I p C 2 q I p . . . C q q I p      with C k q = q! k!(q -k)! for k = 1, . .

. , q

The following fundamental result provides the performance of the above candidate observer.

Theorem 2. Under assumptions A1 to A3, system (11) is an exponential observer for system [START_REF] Farza | Observer design for a class of MIMO nonlinear systems[END_REF]. More precisely, one has :

∃α 1 , α 2 > 0; ∃θ 0 > 0; ∀θ > θ 0 ; ∃c(θ) such that x(t) -x(t) ≤ θ q-1 α 1 α 2 e -c(θ)t max s∈[-τ ,0]
x(s) -x(s) [START_REF] Hou | An observer design for linear time-delay systems[END_REF] with lim θ→+∞ c(θ) = +∞ Proof. Let x(t) = x(t) -x(t) be the estimation error. From ( 10) and ( 11), one has:

ẋ = Ax + g(u, u τ , x, xτ ) -g(u, u τ , x, x τ ) -θ∆ -1 θ S -1 C T C x (15) 
Let us now introduce the following change of variable :

x = ∆ θ x ( 16 
)
where ∆ θ is defined by [START_REF] Gu | Stability of time-delay systems[END_REF]. One can easily check the following identities: ∆ θ A∆ -1 θ = θA and C∆ -1 θ = C. Combining ( 15) and ( 16)

yields ẋ = θAx + ∆ θ (g(u, u τ , x, xτ ) -g(u, u τ , x, x τ )) -θS -1 C T C x (17)
Moreover, using the Mean Value Theorem (see Appendix), one gets:

g(u, u τ , x, xτ ) -g(u, u τ , x, x τ ) = g(u, u τ , x, xτ ) -g(u, u τ , x, xτ ) +g(u, u τ , x, xτ ) -g(u, u τ , x, x τ ) = ∂g ∂x (u, u τ , ξ, xτ )x + ∂g ∂x τ (u, u τ , x, ζ τ )x τ ( 18 
)
where ξ, ζ ∈ X ⊂ IR n .

Using [START_REF] Liu | Nonlinear observers for state and unknown inputs estimation[END_REF], equation ( 17) can be rewritten as follows :

ẋ = θAx + ∆ θ ∂g ∂x (u, u τ , ξ, x τ )∆ -1 θ x + ∆ θ ∂g ∂x τ (u, u τ , x, ζ τ )∆ -1 θ xτ -θS -1 C T C x ( 19 
)
Consider the Lyapunov-Krasovskii candidate functional:

V (x) = xT S x + θ -t 2τ t t-τ θ s 2τ xT (s)x(s)ds ( 20 
)
where τ is the upper bound of the delay as given in Assumption (A3).

The derivative of V along the trajectories of ( 17) can be expressed as:

V = 2x T S ẋ - ln θ 2τ V -xT S x + θ -t 2τ θ t 2τ xT x -(1 -τ )θ t-τ 2τ xT τ xτ (21) 
Using ( 19) and ( 21), one obtains:

V + ln θ 2τ V = 2θx T SAx + 2x T S∆ θ ∂g ∂x (u, u τ , ξ, x τ )∆ -1 θ x +2x T S∆ θ ∂g ∂x τ (u, u τ , x, ζ τ )∆ -1 θ xτ -2θx T C T C x + ln θ 2τ xT S x + xT x - 1 - τ √ θ τ /τ xT τ xτ (22) 
On the one hand, since

τ τ ≤ 1, one has 1 √ θ τ /τ ≥ 1 √ θ f or θ ≥ 1 ( 23 
)
Making use of ( 13), ( 9) and ( 23), one obtains for θ ≥ 1 :

V + ln θ 2τ V ≤ -θx T S x -θx T C T C x +2x T S∆ θ ∂g ∂x (u, u τ , ξ, x τ )∆ -1 θ x +2x T S∆ θ ∂g ∂x τ (u, u τ , x, ζ τ )∆ -1 θ xτ + ln θ 2τ xT S x + xT x - ε √ θ xT τ xτ (24) 
On the other hand, since g has a triangular structure with respect to x and x τ , the matrices ∂g ∂x (•) and ∂g ∂x τ (•) are lower triangular. Moreover and according to Assumption (A2), these matrices are uniformly bounded. As a result, each entry of the matrices ∆ θ ∂g ∂x

(•)∆ -1 θ and ∆ θ ∂g ∂x τ (•)∆ -1 θ is poly- nomial in 1 θ
and is uniformly bounded by a constant which does not depend on θ for θ ≥ 1. This means that:

∆ θ ∂g ∂x (u, u τ , ξ, x τ )∆ -1 θ ≤ k 1 ∆ θ ∂g ∂x τ (u, u τ , x, ζ τ )∆ -1 θ ≤ k 1 ( 25 
)
where k 1 is a positive constant which does not depend on θ for θ ≥ 1. Making use of ( 24) and ( 25), one gets :

V + ln θ 2τ V ≤ -(θ -c 1 - ln θ 2τ )x T S x + c 2 x xτ - ε √ θ xT τ xτ (26) 
with

c 1 = 1 λ m (S) (2k 1 S + 1) and c 2 = 2k 1 S
where λ m (S) stands for the minimum eigenvalue of S. Now, let us choose θ high enough such that

k(θ) ∆ = θ -c 1 - ln θ 2τ > 0 ( 27 
)
and set

V 1 = xT S x, V 2 = xT τ xτ , V 1 = k(θ)V 1 , V 2 = ε √ θ V 2 , V = V 1 + V 2 , c 3 = c 2 λ m (S) (28) 
Using the above notations, inequality (26) can be written as follows:

V + ln θ 2τ V ≤ -k(θ)V 1 - ε √ θ V 2 + c 3 V 1 V 2 = -V 1 -V 2 + c 3 θ 1/2 εk(θ) V 1 V 2 ≤ -1 - c 3 2 θ 1/2 εk(θ) V (29) 
Now, it suffices to choose θ such that:

1 - c 3 2 θ 1/2 εk(θ) > 0 (30)
which is equivalent, when replacing k(θ) by its expression [START_REF] Trinh | An observer design for a class of nonlinear time-delay systems[END_REF], to

θ -c 1 - ln θ 2τ - c 2 3 4ε √ θ > 0 (31) 
Combining ( 29) and (30) gives :

V + ln θ 2τ V ≤ 0 (32) Set c(θ) = ln θ 4τ . Then, inequality (32) is equivalent to: V ≤ e -2c(θ)t max s∈[-τ ,0] V (x(s)) (33) 
Hence,

x(t) ≤ α 1 α 2 e -c(θ)t max s∈[-τ ,0] x(s) (34) 
with

α 1 = λ M (S) + 1 and α 2 = λ m (S)
where λ M (S) stand for the maximum eigenvalue of S.

Since θ ≥ 1, one has x(t) ≤ x(t) ≤ θ q-1 x(t) (35) 
and inequality (34) can then be expressed as follows:

x(t) ≤ θ q-1 α 1 α 2 e -c(θ)t max s∈[-τ ,0] x(s) (36) 
This ends the proof.

Remark 3.

1 In the case when an original system ẋ = f (u, u τ , x, x τ ), y = Cx can be put under form [START_REF] Aggoune | Observers design for a class of nonlinear systems with time-varying delay[END_REF] through a diffeomorphiesm z = Φ(u, u τ , x, , x τ ), then the observer [START_REF] Gauthier | A simple observer for nonlinear systems -application to bioreactors[END_REF] can be written in the original coordinates, x as follows:

ẋ(t) = f (u, u τ , x, x τ ) -θ ∂Φ ∂x (u, u τ , x, , x τ ) -1 ∆ -1 θ S -1 C T C(x(t) -x(t)) (37) 2 
The generalization to the case of multiple is straightforward. Indeed, the equation of the observer is identical to that of system [START_REF] Gauthier | A simple observer for nonlinear systems -application to bioreactors[END_REF]. For the proof, an appropriate Lyapunov function is: 

V (x) = xT S x + θ -t 2τ m i=1 t t-τ i

Example

Consider the following time-delay dynamical system:

       ẋ1 = 0.1 x 2 + x 3 2 -0.1x 1 (t -τ ) -u(t -τ )x 1 (t -τ ) ẋ2 = -0.1x 2 (t -τ ) - x 2 1 + x 2 2 (t -τ ) + sin(x 2 (t -τ )) y = x 1 (38) 
One can check that the following transformation puts system (38) under form (10) :

x 1 x 2 → z 1 = x 1 z 2 = 0.1(x 2 + x 3
2 )

The delay value has been set to the constant value τ = 1.5 s. With x(t) = [0; cos(t)] for t ∈ [-τ, 0] and u(t) = cos(0.1t), the solution trajectory of system (38) is bounded. In these settings, Assumptions (A1) to (A3) hold for system (38). An observer of the form [START_REF] Gauthier | A simple observer for nonlinear systems -application to bioreactors[END_REF] can then be synthesized and its equations in the original coordinates can be written as follows (see point 1 of remark 3): Before being used by the observer, the system output x 1 has been corrupted by an additive uniformly distributed random signal produced by MATLAB with zero mean value and a relatively high standard deviation equal to 0.5. The observer simulation was performed under similar operating conditions as the model.

     ẋ1 = 0.1 x2 + x3 2 -0.1x 1 (t -τ ) -u(t -τ )x 1 (t -τ ) -2θ(x 1 -x 1 ) ẋ2 = -0.1x 2 (t -τ ) - x2 1 + x 2 2 (t -τ ) + sin(x 2 (t -τ )) -θ 2 10 1 + 3x 2 2 (x 1 -x 1 ) (39) 
The following initial conditions have been used for the observer:

x1 (t) = -1 for t ∈ [-τ, 0] x2 (t) = 0 for t ∈ [-τ, 0]
The value of the observer design parameter θ has been set to 2.

Notice that the state estimates quickly converge to the true values (provided by the model). Moreover, the obtained results show the good behaviour of the proposed observer in dealing with the the relatively high noise.

Conclusion

A simple nonlinear observer has been proposed for a class of time-delay nonlinear systems. In the absence of delay, the considered class of systems coincides with an observable canonical form that characterizes a class of uniformly observable systems which are observable for any input. The considered time-varying delays are assumed to be known and bounded. Similarly to free delay systems, the gain of the proposed observer does not require the resolution of any dynamical system. It is rather issued from the resolution of a Lyapunov time-invariant algebraic equation and is explicitly given. Its tuning is achieved through the choice of a single design parameter, namely θ. It is established that the estimation error converges exponentially to zero as in the free delay case but with a decay rate proportional to ln θ and not to θ.

The observer design described in the paper deals with a particular canonical form that characterizes a class of uniformly observable systems. Its generalization to a nonlinear multi-output systems with non triangular coupled structure characterized by a canonical form similar to that proposed in [START_REF] Liu | Observer design for a class of uniformly observable MIMO nonlinear systems with coupled structure[END_REF] has just been established and will be presented elsewhere. Moreover, we have extended an adaptive observer synthesis for a class of free delay nonlinear systems with nonlinear parameterization [START_REF] Farza | Adaptive observers for nonlinearly parameterized class of nonlinear systems[END_REF] to a similar class of time delay systems where the delayed states intervene in a triangular manner [START_REF] Sboui | Adaptive observer for a class of nonlinear time delay systems[END_REF]. Current works are concerned with the extension to time delay systems the synthesis of unknown input observers [START_REF] Farza | Generalized observers for a class of nonlinear systems[END_REF][START_REF] Liu | Nonlinear observers for state and unknown inputs estimation[END_REF].

Appendix

The Mean Value Theorem can be stated as follows in the case of a real-valued function of several variables.

Theorem: Let f i : IR n → IR be a C 1 function and let x, x ∈ IR n . Then, there exists t i ∈ [0, 1] such that:

f i (x) = f i (x) + f i (x + t i (x -x))(x -x) = f i (x) + (∇f i (x + t i (x -x))) T (x -x) ∆ = f i (x) + (∇f i (ξ i )) T (x -x) ( 40 
)
where ∇f i (x + t i (x -x)) is the gradient of f i evaluated at ξ i = x + t i (x -x).

This theorem can be extended to the case of functions that take values in IR n as follows. Let where ξ = x + Θ(x -x) and Θ = diag(t 1 , . . . , t n ).

f =    f 1 . . .
Since the function f is Lipschitz and using the adopted notation, one has:

∂f ∂x (ξ 1 , . . . , ξ n ) ∆ = ∂f ∂x (ξ) ≤ L
where L is the Lipschitz constant. From (41) , one obtains:

f (x) -f (x) ≤ L x -x

  s)x(s)ds where m is the number of considered time delays.
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 1 Figure 1: Time evolution of the state variables x 1 and x 2
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 1 n → IR n be a function of class C 1 . Then, there exist ξ 1 , ξ 2 , . . . , ξ n ∈ IR n such that:f (x) = f (x) + f (ξ 1 , . . . , ξ n )(x -x) = f (x) + ∂f ∂x (ξ 1 , . . . , ξ n )(x -x) (x + t 1 (x -x))) T . . . (∇f n (x + t n (x -x))) T   whereξ i = x + t i (x -x) with t i ∈ [0, 1]; i = 1, . . . , n.For writing convenience, one shall use the following notation:∂f ∂x (ξ 1 , . . . , ξ n ) = 1 (x + t 1 (x -x))) T . . . (∇f n (x + t n (x -x)))