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In 1979, Vogan introduced a generalised τ -invariant for characterising primitive ideals in enveloping algebras. Via a known dictionary this translates to an invariant of left cells in the sense of Kazhdan and Lusztig. Although it is not a complete invariant, it is extremely useful in describing left cells. Here, we propose a general framework for defining such invariants which also applies to Hecke algebras with unequal parameters.

Introduction

Let W be a finite Weyl group. Using the corresponding generic Iwahori-Hecke algebra and the "new" basis of this algebra introduced by Kazhdan and Lusztig [START_REF] Kazhdan | Representations of Coxeter groups and Hecke algebras[END_REF], we obtain partitions of W into left, right and two-sided cells. Analogous notions originally arose in the theory of primitive ideals in enveloping algebras; see Joseph [START_REF] Joseph | On the classification of primitive ideals in the enveloping algebra of a semisimple Lie algebra, Lie Group Representations[END_REF]. This is one of the sources for the interest in knowing the cell partitions of W ; there are also deep connections [START_REF] Lusztig | Intersection cohomology methods in representation theory[END_REF] with representations of reductive groups, singularities of Schubert cells and the geometry of unipotent classes. Vogan [START_REF] Vogan | A generalized τ -invariant for the primitive spectrum of a semisimple Lie algebra[END_REF], [START_REF] Vogan | Ordering of the primitive spectrum of a semisimple Lie algebra[END_REF] introduced invariants of left cells which are computable in terms of certain combinatorially defined operators T αβ , S αβ where α, β are adjacent simple roots of W . In the case where W is the symmetric group S n , these invariants completely characterise the left cells; see [16, §5], [24, §6]. Although Vogan's invariants are not complete invariants in general, they have turned out to be extremely useful in describing left cells. Now, the Kazhdan-Lusztig cell partitions are not only defined and interesting for finite Weyl groups, but also for affine Weyl groups and Coxeter groups in general; see, e.g., Lusztig [START_REF] Lusztig | Cells in affine Weyl groups[END_REF], [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]. Furthermore, the original theory was extended by Lusztig [START_REF] Lusztig | Left cells in Weyl groups, Lie Group Representations[END_REF] to allow the possibility of attaching weights to the simple reflections. The original setting then corresponds to the case where all weights are equal to 1; we will refer to this case as the "equal parameter case". Our aim here is to propose analogues of Vogan's invariants which work in general, i.e., for arbitrary Coxeter groups and arbitrary (positive) weights.

In Sections 2 and 3 we briefly recall the basic set-up concerning Iwahori-Hecke algebras, cells in the sense of Kazhdan and Lusztig, and the concept of induction of cells. In Section 4 we introduce the notion of left cellular maps; a fundamental example is given by the Kazhdan-Lusztig * -operations. In Section 5, we discuss the equal parameter case and Vogan's original definition of a generalised τ -invariant. As this definition relied on the theory of primitive ideals, it only applies to finite Weyl groups. In Theorem 5.2, we show that this works for arbitrary Coxeter groups satisfying a certain boundedness condition. (A similar result has also been proved by Shi [22,4.2], but he uses a definition slightly different from Vogan's; our argument seems to be more direct.) In Sections 6 and 7, we develop an abstract setting for defining such invariants; this essentially relies on the concept of induction of cells and is inspired by Lusztig's method of strings [18, §10]. As a bi-product of our approach, we obtain that the * -operations also work in the unequal parameter case. We conclude by discussing examples and stating open problems.

Remark. In [4, Cor. 6.2], the first author implicitly assumed that the results on the Kazhdan-Lusztig * -operations [16, §4] also hold in the unequal parameter context -which was a serious mistake at the time. Corollary 6.5 below justifies a posteriori this assumption.

Notation. We fix a Coxeter system (W, S) and we denote by ℓ : W → Z 0 the associated length function. We also fix a totally ordered abelian group A . We use an exponential notation for the group algebra A = Z[A ]:

A = ⊕ a∈A Zv a where v a v a ′ = v a+a ′ for all a, a ′ ∈ A .
We write A 0 := {α ∈ A | α 0} and A 0 := ⊕ a∈A 0 Zv a ; the symbols A 0 , A 0 etc. have analogous meanings. We denote by : A → A the involutive automorphism such that v a = v -a for all a ∈ A .

Weight functions and cells

Let p : W → A , w → p w , be a weight function in the sense of Lusztig [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF], that is, we have p s = p t whenever s, t ∈ S are conjugate in W , and

p w = p s1 +• • •+p s k if w = s 1 • • • s k (with s i ∈ S) is a reduced expression for w ∈ W .
The original setup in [START_REF] Kazhdan | Representations of Coxeter groups and Hecke algebras[END_REF] corresponds to the case where A = Z and p s = 1 for all s ∈ S; this will be called the "equal parameter case". We shall assume throughout that p s > 0 for all s ∈ S. (There are standard techniques for reducing the general case to this case [3, §2].)

Let H = H A (W, S, p) be the corresponding generic Iwahori-Hecke algebra. This algebra is free over A with basis (T w ) w∈W , and the multiplication is given by the rule

T s T w = T sw if sw > w, T sw + (v ps -v -ps )T w if sw < w,
where s ∈ S and w ∈ W ; here, denotes the Bruhat-Chevalley order on W .

Let (C ′ w ) w∈W be the "new" basis of H introduced in [16, (1.1.c)], [17, §2]. (These basis elements are denoted c w in [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF].) For any x, y ∈ W , we write

C ′ x C ′ y = z∈W h x,y,z C ′ z
where h x,y,z ∈ A for all x, y, z ∈ W .

We have the following more explicit formula for s ∈ S, y ∈ W (see [17, §6], [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Chap. 6]):

C ′ s C ′ y =    (v ps + v -ps ) C ′ y if sy < y, C ′ sy + z∈W : sz<z<y M s z,y C ′ z if sy > y,
where C ′ s = T s + v -ps T 1 and M s z,y = M s z,y ∈ A is determined as in [17, §3]. As in [20, §8], we write x ← L y if there exists some s ∈ S such that h s,y,x = 0, that is, C ′

x occurs with a non-zero coefficient in the expression of C ′ s C ′ y in the C ′ -basis. The Kazhdan-Lusztig left pre-order L is the transitive closure of ← L . The equivalence relation associated with L will be denoted by ∼ L and the corresponding equivalence classes are called the left cells of W . Note that H C w ⊆ y AC y where the sum runs over all y ∈ W with y L w.

Similarly, we can define a pre-order R by considering multiplication by C ′ s on the right in the defining relation. The equivalence relation associated with R will be denoted by ∼ R and the corresponding equivalence classes are called the right cells of W . We have

(2.1) x R y ⇐⇒ x -1 L y -1 ;
see [20, 5.6, 8.1]. Finally, we define a pre-order LR by the condition that x LR y if there exists a sequence x = x 0 , x 1 , . . . , x k = y such that, for each i ∈ {1, . . . , k}, we have x i-1 L x i or x i-1 R x i . The equivalence relation associated with LR will be denoted by ∼ LR and the corresponding equivalence classes are called the two-sided cells of W .

Definition 2.2. A (non-empty) subset Γ of W is called left-closed if, for any x, y ∈ Γ , we have {z ∈ W | x L z L y} ⊆ Γ .
Note that any such subset is a union of left cells. A left cell itself is clearly left-closed with respect to L . It immediately follows from these definitions that, given any left-closed subset Γ ⊆ W , the A-submodules

I Γ = C ′ w | w L z for some z ∈ Γ A , ÎΓ = C ′ w | w ∈ Γ, w L z for some z ∈ Γ A .
are left ideals in H . Hence we obtain an H -module [Γ ] A := I Γ / ÎΓ , which is free over A with basis given by (e x ) x∈Γ , where e x denotes the residue class of

C ′ x in [Γ ] A . The action of C ′ w (w ∈ W ) is
given by the formula

C ′ w • e x = y∈Γ h w,x
,y e y .

Cells and parabolic subgroups

A key tool in this work will be the process of induction of cells. Let I ⊆ S and consider the parabolic subgroup W I ⊆ W generated by I. Then This was first proved by Barbasch-Vogan [START_REF] Barbasch | Primitive ideals and orbital integrals in complex exceptional groups[END_REF]Cor. 3.7] for finite Weyl groups in the equal parameter case (using the theory of primitive ideals); see [START_REF] Geck | On the induction of Kazhdan-Lusztig cells[END_REF] for the general case.

Example 3.2. Let Γ be a left-closed subset of W I . Then the subset X I Γ of W is left-closed (see Theorem 3.1). Let H I ⊆ H be the parabolic subalgebra spanned by all T w where w ∈ W I . Then we obtain the H I -module [Γ ] A , with standard basis (e w ) w∈Γ , and the H -module [X I Γ ] A , with standard basis (e xw ) x∈XI ,w∈Γ . By [10, 3.6], we have an isomorphism of H -modules

[X I Γ ] A ∼ → Ind S I ([Γ ] A ), e yv → x∈XI ,w∈Γ p * xu,yv T x ⊗ e u ,
where p * xu,yv ∈ A are the relative Kazhdan-Lusztig polynomials of [9, Prop. 3.3] and, for any H I -module V , we denote by Ind S I (V ) := H ⊗ HI V the induced module, with basis (T x ⊗e w ) x∈XI ,w∈Γ . (In [10, §3], it is not stated explicitly that Γ = X I Γ is left-closed, but this condition is used implicitly in the discussion there.)

A first invariant of left cells is given as follows. For any w ∈ W , we denote by R(w) := {s ∈ S | ws < w} the right descent set of w (or τ -invariant of w in the language of primitive ideals; see [START_REF] Barbasch | Primitive ideals and orbital integrals in complex exceptional groups[END_REF]). The next result has been proved in [16, 2.4] (for the equal parameter case) and in [20, 8.6] (for the unequal parameter case).

Proposition 3.3 (Kazhdan-Lusztig, Lusztig). Let x, y ∈ W . (a) If x L y then R(y) ⊆ R(x). (b) If x ∼ L y, then R(x) = R(y). (c) For any I ⊆ S, the set {w ∈ W | R(w) = I} is a union of left cells of W .
We show how this can be deduced from Theorem 3.1. First, note that (b) and (c) easily follow from (a), so we only need to prove (a). Let x, y ∈ W be such that x L y. Let s ∈ R(y) and set I = {s}. Then pr I (y) = s and so pr I (x) L,I pr I (y) = s ∈ W I = {1, s}. Since p s > 0, the definitions immediately show that s I,L 1 but s ∼ L,I 1. Hence, we must have pr I (x) = s and so s ∈ R(x). Thus, we have R(y) ⊆ R(x). 

Left cellular maps

(A1) δ(Γ ) also is a left cell. (A2) The map δ induces an H -module isomorphism [Γ ] A ∼ = [δ(Γ )] A .
A prototype of such a map is given by the Kazhdan-Lusztig * -operations. We briefly recall how this works. For any s, t ∈ S such that st = ts, we set D R (s, t) := {w ∈ W | R(w) ∩ {s, t} has exactly one element} and, for any w ∈ D R (s, t), we set T s,t (w) := {ws, wt} ∩ D R (s, t). (See [16, §4], [24, §3].) Note that T s,t (w) consists of one or two elements; in order to have a uniform notation, we consider T s,t (w) as a multiset with two identical elements if {ws, wt} ∩ D R (s, t) consists of only one element.

If st has order 3, then the intersection {ws, wt} ∩ D R (s, t) consists of only one element which will be denoted by w * . Thus, we have T s,t (w) = {w * , w * } in this case. With this notation, we can now state: Proposition 4.2 (Kazhdan-Lusztig * -operations [16, §4]). Assume that we are in the equal parameter case and that st has order 3. Then we obtain a left cellular map δ : W → W by setting

δ(w) = w * if w ∈ D R (s, t), w otherwise.
In particular, if

Γ ⊆ D R (s, t) is a left cell, then so is Γ * := {w * | w ∈ Γ }.
(In Corollary 6.5 below, we extend this to the unequal parameter case.) If st has order 4, then the set T s,t (w) may contain two distinct elements. In order to obtain a single-valued operator, Vogan [ Remark 4.3. Let s, t ∈ S be such that st has any finite order m 3. Let W s,t = s, t , a dihedral group of order 2m. For any w ∈ W , the coset wW s,t can be partitioned into four subsets: one consists of the unique element x of minimal length, one consists of the unique element of maximal length, one consists of the (m -1) elements xs, xst, xsts, . . . and one consists of the (m -1) elements xt, xts, xtst, . . .. Following Lusztig [18, 10.2], the last two subsets (ordered as above) are called strings. (Note that Lusztig considers the coset W s,t w but, by taking inverses, the two versions are clearly equivalent.) Thus, if w ∈ D R (s, t), then w belongs to a unique string which we denote by λ w ; we certainly have T s,t (w) ⊆ λ w ⊆ D R (s, t) for all w ∈ D R (s, t).

We define an involution D R (s, t) → D R (s, t), w → w, as follows. Let w ∈ D R (s, t) and i ∈ {1, . . . , m -1} be the index such that w is the ith element of the string λ w . Then w is defined to be the (m -i)th element of λ w . Note that, if m = 3, then w = w * , with w * as in Proposition 4.2.

Let us write T x T y = z∈W f x,y,z T z where f x,y,z ∈ A for all x, y, z ∈ W . Following [20, 13.2], we say that H is bounded if there exists some positive N ∈ A such that v -N f x,y,z ∈ A 0 for all x, y, z ∈ W . We can now state: Proposition 4.4 (Lusztig [18, 10.7]). Assume that we are in the equal parameter case and that

H is bounded. If Γ ⊆ D R (s, t) is a left cell, then so is Γ := { w | w ∈ Γ }.
(It is assumed in [loc. cit.] that W is crystallographic, but this assumption is now superfluous thanks to Elias-Williamson [START_REF] Elias | The Hodge theory of Soergel bimodules[END_REF]. The boundedness assumption is obviously satisfied for all finite Coxeter groups. It also holds, for example, for affine Weyl groups; see the remarks following [20, 13.4].)

In Corollary 6.5 below, we shall show that w → w also gives rise to a left cellular map and that this works without any assumption, as long as p s = p t .

Vogan's invariants

Hypothesis. Throughout this section, and only in this section, we assume that we are in the equal parameter case.

We recall the following definition. Definition 5.1 (Vogan [24, 3.10, 3.12]). For n 0, we define an equivalence relation ≈ n on W inductively as follows. Let x, y ∈ W .

• For n = 0, we write x ≈ 0 y if R(x) = R(y).

• For n 1, we write x ≈ n y if x ≈ n-1 y and if, for any s, t ∈ S such that x, y ∈ D R (s, t) (where st has order 3 or 4), the following holds: if T s,t (x) = {x 1 , x 2 } and T s,t (y) = {y 1 , y 2 }, then either

x 1 ≈ n-1 y 1 , x 2 ≈ n-1 y 2 or x 1 ≈ n-1 y 2 , x 2 ≈ n-1 y 1 .
If x ≈ n y for all n 0, then x, y are said to have the same generalised τ -invariant.

The following result was originally formulated and proved for finite Weyl groups by Vogan [24, §3], in the language of primitive ideals in enveloping algebras. It then follows for cells as defined in Section 2 using a known dictionary (see, e.g., Barbasch-Vogan [1, §2]). The proof in general relies on Proposition 4.2 and results on strings as defined in Remark 4.3.

Theorem 5.2 (Kazhdan-Lusztig [16, §4], Lusztig [18, §10], Vogan [24, §3]). Assume that H is bounded and recall that we are in the equal parameter case. Let Γ be a left cell of W . Then all elements in Γ have the same generalised τ -invariant.

Proof. We prove by induction on n that, if y, w ∈ W are such that y ∼ L w, then y ≈ n w. For n = 0, this holds by Propositon 3.3. Now let n > 0. By induction, we already know that y ≈ n-1 w. Then it remains to consider s, t ∈ S such that st = ts and y, w ∈ D R (s, t). If st has order 3, then T s,t (y) = {y * , y * } and T s,t (w) = {w * , w * }; furthermore, by Proposition 4.2, we have y * ∼ L w * and so y * ≈ n-1 w * , by induction. Now assume that st has order 4. In this case, the argument is more complicated (as it is also in the setting of [24, §3].) Let I = {s, t} and Γ be the left cell containing y, w. Since all elements in Γ have the same right descent set (by Proposition 3.3), we can choose the notation such that xs < x and xt > x for all x ∈ Γ . Then, for x ∈ Γ , we have x = x ′ s, x = x ′ ts or x = x ′ sts where x ′ ∈ X I . This yields that

( †) T s,t (x) =    {x ′ st, x ′ st} if x = x ′ s, {x ′ t, x ′ tst} if x = x ′ ts, {x ′ st, x ′ st} if x = x ′ sts.
We now consider the string λ x and distinguish two cases.

Case 1. Assume that there exists some x ∈ Γ such that x = x ′ s or x = x ′ sts. Then λ x = (x ′ s, x ′ st, x ′ sts) and so the set Γ * := w∈Γ λ w \ Γ contains elements with different right descent sets. On the other hand, by [START_REF] Lusztig | Cells in affine Weyl groups[END_REF]Prop. 10.7], Γ * is the union of at most two left cells. (Again, the assumption in [loc. cit.] that W is crystallographic is now superfluous thanks to [START_REF] Elias | The Hodge theory of Soergel bimodules[END_REF].) We conclude that Γ * = Γ 1 ∪ Γ 2 where Γ 1 , Γ 2 are left cells such that:

• all elements in Γ 1 have s in their right descent set, but not t; • all elements in Γ 2 have t in their right descent set, but not s. Now consider y, w ∈ Γ ; we write T s,t (y) = {y 1 , y 2 } ⊆ Γ * and T s,t (w) = {w 1 , w 2 } ⊆ Γ * . By ( †), all the elements y 1 , y 1 , w 1 , w 2 belong to Γ 2 . In particular, y 1 ∼ L w 1 , y 2 ∼ L w 2 and so, by induction,

y 1 ≈ n-1 w 1 , y 2 ≈ n-1 w 2 .
Case 2. We are not in Case 1, that is, all elements x ∈ Γ have the form x = x ′ ts where x ′ ∈ X I . Then λ x = (x ′ t, x ′ ts, x ′ tst) for each x ∈ Γ . Let us label the elements in such a string as

x 1 , x 2 , x 3 . Then x = x 2 and T s,t (x) = {x ′ t, x ′ tst} = {x 1 , x 3 }. Now consider y, w ∈ Γ .
There is a chain of elements which connect y to w via the elementary relations ← L , and vice versa. Assume first that y, w are directly connected as y ← L w. Using the labelling y = y 2 , w = w 2 and the notation of [18, 10.4], this means that a 22 = 0. Hence, the identities "a 11 = a 33 ", "a 13 = a 31 ", "a 22 = a 11 + a 13 " in [18, 10.4.2] imply that (y 1 ← L w 1 and y 3 ← L w 3 ) or (y 1 ← L w 3 and y 3 ← L w 1 ). Now, in general, there is a sequence of elements y = y (0) , y (1) , . . . , y (k) = w in Γ such that y (i-1) ← L y (i) for 1 i k. At each step, the elements in the strings corresponding to these elements are related as above. Combining these steps, one easily sees that (y 1 L w 1 and y 3 L w 3 ) or (y 1 L w 3 and y 3 L w 1 ).

(See also [START_REF] Shi | Left cells in the affine Weyl groups[END_REF]Prop. 4.6].) Now, all elements in a string belong to the same right cell (see [18, 10.5]); in particular, all the elements y i , w j belong to the same two-sided cell. Hence, [START_REF] Lusztig | Cells in affine Weyl groups[END_REF]Cor. 6.3] implies that either y 1 ∼ L w 1 , y 3 ∼ L w 3 or y 1 ∼ L w 3 , y 3 ∼ L w 1 . (Again, the assumption in [loc. cit.] that W is crystallographic is now superfluous thanks to [START_REF] Elias | The Hodge theory of Soergel bimodules[END_REF].) Consequently, by induction, we have either for all x, y ∈ X I and u, v ∈ Γ ′ , where we set u 1 = δ(u) and v 1 = δ(v) for u, v ∈ Γ ′ . By [10, Prop. 3.9], this implies that δ L maps the partition of X I Γ ′ into left cells of W onto the analogous partition of

y 1 ≈ n-1 w 1 , y 3 ≈ n-1 w 3 or y 1 ≈ n-1 w 3 , y 3 ≈ n-1 w 1 . ⊓ ⊔ [Γ ′ ] A ∼ = [Γ ′ 1 ] A .
X I Γ ′ 1 . In particular, since Γ ⊆ X I Γ ′ , the set δ L (Γ ) ⊆ X I Γ ′
1 is a left cell of W ; furthermore, [10, Prop. 3.9] also shows that

δ L induces an H -module isomorphism [Γ ] A ∼ = [δ L (Γ )] A .
(b) Since condition (A3) in Definition 6.1 is assumed to hold, this is just a restatement of [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Prop. 9.11(b)].

⊓ ⊔

We 

for all x, y ∈ W . Note also the following facts:

• If st has odd order, then δ s,t exchanges the left cells Γ s,t s and Γ s,t t .

• If st has even order, then δ s,t stabilizes the left cells Γ s,t s and Γ s,t t . For example, if st has order 3, then Γ s,t s = {s, ts} and Γ s,t t = {t, st}; furthermore, δ s,t (s) = st and δ s,t (ts) = t. The matrix representation afforded by [Γ s,t s ] A with respect to the basis (e s , e ts ) is given by:

C ′ s → v ps + v -ps 1 0 0 , C ′ t → 0 0 1 v pt + v -pt (p s = p t ).
The fact that δ s,t is left cellular just means that we obtain exactly the same matrices when we consider the matrix representation afforded by [Γ t s,t ] A with respect to the basis (e st , e t ).

Let us explicitly relate the above discussion to the * -operations in Proposition 4.2 and the extension in Proposition 4.4. In particular, this yields new proofs of these two propositions and shows that they also hold in the unequal parameter case, without any further assumptions, as long as p s = p t . (Partial results in this direction are obtained in [START_REF] Shi | The Laurent polynomials M s y,w in the Hecke algebra with unequal parameters[END_REF]Cor. 3.5(4)].) Corollary 6.5. Let s, t ∈ S be such that st has finite order 3 and assume that p s = p t . Then, with the notation in Remark 4.3, we obtain a left cellular map δ : W → W by setting (a) If Γ 1 and Γ 2 are two left cells contained in the same two-sided cell, then there exists a bijection δ :

δ(w) = w if w ∈ D R (s,
Γ 1 ∼ -→ Γ 2 which induces an isomorphism of H -modules [Γ 1 ] A ∼ -→ [Γ 2 ] A . (b)
The bijection δ in (a) is uniquely determined by the condition w, δ(w) lie in the same right cell.

However, one can check that, for r ∈ {3, 4, 5}, the map δ does not always arise from a left extension of a suitable left cellular map of a dihedral subgroup of W . It is probable that this observation holds for any r 3.

Example 6.9. Let W be an affine Weyl group and W 0 be the finite Weyl group associated with W . Then there is a well-defined "lowest" two-sided cell, which consists of precicely |W 0 | left cells; see Guilhot [START_REF] Guilhot | On the lowest two-sided cell in affine Weyl groups[END_REF] and the references there. It is likely that these |W 0 | left cells are all related by suitable left cellular maps.

An extension of the generalised τ -invariant

Notation. We fix in this section a set ∆ of KL-admissible pairs, as well as a surjective map ρ : W → E (where E is a fixed set) such that the fibers of ρ are unions of left cells. We then denote by V ∆ the group of permutations of W generated by the family (δ L ) (I,δ)∈∆ .

Note that giving a surjective map ρ as above is equivalent to giving an equivalence relation on W which is coarser than ∼ L .

Then, each w ∈ W defines a map τ ∆,ρ w : V ∆ -→ E as follows:

τ ∆,ρ w (σ) = ρ(σ(w)) for all σ ∈ V ∆ .

Let ∆ 2 be the set of all pairs (I, δ) such that I = {s, t} with s = t and p s p t ; furthermore, if p s = p t , then δ = δ s,t (as defined in Example 6.3) while, if p s < p t , then δ = δ < s,t (as defined in Example 6.6). Then the pairs in ∆ 2 are all strongly KL-admissible. With the notation in Example 7.4, we propose the following conjecture: Conjecture 7.5. Let x, y ∈ W . Then x ∼ L y if and only if x ∼ LR y and x, y have the same τ ∆2,R p -invariant.

If W is finite and we are in the equal parameter case, then Conjecture 7.5 is known to hold except possibly in type B n , D n ; see the remarks at the end of [12, §6]. We have checked that the conjecture also holds for F 4 , B n (n 7) and all possible weights, using PyCox [START_REF] Geck | PyCox: Computing with (finite) Coxeter groups and Iwahori-Hecke algebras. Dedicated to the Memory of Prof. H. Pahlings[END_REF].

By considering collections ∆ with subsets I ⊆ S of size bigger than 2, one can obtain further refinements of the above invariants. In particular, it is likely that the results of [START_REF] Bonnafé | Two-sided cells in type B (asymptotic case)[END_REF], [START_REF] Bonnafé | Left cells in type Bn with unequal parameters[END_REF] can be interpreted in terms of generalised τ ∆,ρ -invariants for suitable ∆, ρ. This will be discussed elsewhere.

Example 7.6. Let (W, S) be of type H 4 . Then it can be checked by using computer computations in GAP that

|V ∆2 | = 2 40 • 3 20 • 5 8 • 7 4 • 11 2 .
On the other hand, the computation of left Vogan (∆ 2 , R p )-classes using the alternative definition given in Remark 7.3 takes only a few minutes on a standard computer.

X

  I := {w ∈ W | ws > w for all s ∈ I} is the set of distinguished left coset representatives of W I in W . The map X I × W I → W , (x, u) → xu, is a bijection and we have ℓ(xu) = ℓ(x) + ℓ(u) for all x ∈ X I and u ∈ W I ; see [13, §2.1]. Thus, given w ∈ W , we can write uniquely w = xu where x ∈ X I and u ∈ W I . In this case, we denote pr I (w) := u. Let L,I and ∼ L,I be respectively the pre-order and equivalence relations for W I defined similarly as L and ∼ L are defined in W . Theorem 3.1. Let I ⊆ S. If x, y ∈ W are such that x L y (resp.x ∼ L y), then pr I (x) L,I pr I (y) (resp. pr I (x) ∼ L,I pr I (y)). In particular, if Γ is a left cell of W I , then X I Γ is a union of left cells of W .

Definition 4 . 1 .

 41 A map δ : W → W is called left cellular if the following conditions are satisfied for every left cell Γ ⊆ W (with respect to the given weights {p s | s ∈ S}):

  25, §4] (for the case m = 4; see also McGovern [21, §4]) and Lusztig [18, §10] (for any m 4) propose an alternative construction, as follows.

  By Example 3.2, the subsets X I Γ ′ and X I Γ ′ 1 of W are leftclosed and, hence, we have corresponding H -modules [X I Γ ′ ] A and [X I Γ ′ 1 ] A . These two H -modules are isomorphic to the induced modules Ind S I ([Γ ′ ]) and Ind S I ([Γ ′ 1 ]), respectively, where explicit isomorphisms are given by the formula in Example 3.2. Now, by [10, Lemma 3.8], we have

	p * xu,yv = p * xu1,yv1

  will now give examples in which |I| = 2. Let us first fix some notation. If s, t ∈ S are such that s = t and st has finite order, let w s,t denote the longest element of W s,t = s, t and let Let σ s,t be the unique group automorphism of W s,t which exchanges s and t. Now, let δ s,t denote the map W s,t → W s,t

	Γ s,t s = {w ∈ W s,t | ℓ(ws) < ℓ(w) and ℓ(wt) > ℓ(w)},
	Γ s,t	
	defined by	
		δ s,t (w) =	w σ s,t (w)w s,t otherwise. if w ∈ {1, w s,t },
	Then, by [20, Lemma 7.2 and Prop. 7.3], the pair ({s, t}, δ s,t ) is strongly
	KL-admissible. Therefore, by Theorem 6.2,
		δ L s,t : W → W is a left cellular map.
	In particular, this means:
	(6.4)	x ∼ L y if and only if δ L s,t (x) ∼ L δ L s,t

t

= {w ∈ W s,t | ℓ(ws) > ℓ(w) and ℓ(wt) < ℓ(w)}. Example 6.3 (Dihedral groups with equal parameters). Let s, t ∈ S be such that p s = p t and s = t. It follows from

[20, §8.7

] that {1}, {w s,t }, Γ s,t s and Γ s,t t are the left cells of W s,t .

  t), w otherwise.(If st has order 3, then this coincides with the map defined in Proposition 4.2.)Proof. Just note that, if w ∈ D R (s, t), then δ L s,t (w) = w. Thus, the assertion simply is a restatement of the results in Example 6.3. Furthermore, if st has order 3, then w = w * for all w ∈ D R (s, t), as noted in Remark 4.3.⊓ ⊔ Example 6.6 (Dihedral groups with unequal parameters). Let s, t ∈ S be such that st has even order 4 and that p s < p t . Then it follows from [20, §8.7] that {1}, {w s,t }, {s}, {w s,t s}, Γ s,t s \ {s} and Γ s,t t \ {w s,t s} are the left cells of W s,t . Now, let δ s,t denote the map W s,t → W s,t defined by \ {w s,t s} while it stabilizes all other left cells in W s,t .For example, if st has order 4, then Γ 1 := Γ s,t s \ {s} = {ts, sts} and Γ 2 := Γ s,t t \ {w s,t s} = {t, st}; furthermore, δ < s,t (ts) = t and δ < s,t (sts) = st. As before, the fact that δ < s,t is left cellular just means that the matrix representation afforded by [Γ 1 ] A with respect to the basis (e ts , e sts ) is exactly the same as the matrix representation afforded by [Γ 2 ] A with respect to the basis (e t , e st ).The next example shows that left extensions from dihedral subgroups are, in general, not enough to describe all left cellular maps. Example 6.8. Let W be a Coxeter group of type B r (r 2), with diagram and weight function as follows: This is the asymptotic case studied by Iancu and the first-named author[START_REF] Bonnafé | Two-sided cells in type B (asymptotic case)[END_REF],[START_REF] Bonnafé | Left cells in type Bn with unequal parameters[END_REF]. In this case, the left, right and two-sided cells are described in terms of a Robinson-Schensted correspondence for bi-tableaux. Using results from [loc. cit.], it is shown in[START_REF] Geck | Relative Kazhdan-Lusztig cells[END_REF] Theorem 6.3] that the following hold:

	δ < s,t (w) = Then, again by [20, Lemma 7.5 and Prop. 7.6] (or [13, Exc. 11.4]), the w if w ∈ {1, w s,t , s, w s,t s}, ws otherwise. pair ({s, t}, δ < s,t ) is strongly KL-admissible. Therefore, again by Theorem 6.2, δ <,L s,t : W → W is a left cellular map. In particular, this means: (6.7) x ∼ L y if and only if δ <,L s,t (x) ∼ L δ <,L s,t (y) for all x, y ∈ W . Note also that δ < s,t exchanges the left cells Γ s,t s \ {s} and Γ s,t t B r t b 4 t a t a p p p t a b > (r -1)a > 0
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One of the most striking results about this invariant has been obtained by Garfinkle [8,Theorem 3.5.9]: two elements of a Weyl group of type B n belong to the same left cell (equal parameter case) if and only if the elements have the same generalised τ -invariant. This fails in general; a counter-example is given by W of type D n for n 6 (as mentioned in the introduction of [START_REF] Garfinkle | On the classification of primitive ideals for complex classical Lie algebras I[END_REF]).

Remark 5.3. Vogan [25, §4] also proposed the following modification of the above invariant. Let s, t ∈ S be such that st has finite order m 3. Let us set Ts,t (w) := { w} for any w ∈ D R (s, t), with w as in Remark 4.3. Then we obtain a new invariant by exactly the same procedure as in Definition 5.1, but using Ts,t instead of T s,t and allowing any s, t ∈ S such that st has finite order 3. (Note that Vogan only considered the case where m = 4, but then Lusztig's method of strings shows how to deal with the general case.) In any case, this is the model for our more general construction of invariants below.

Induction of left cellular maps

We return to the general setting of Section 2, where {p s | s ∈ S} are any positive weights for W . Definition 6.1. A pair (I, δ) consisting of a subset I ⊆ S and a left cellular map δ : W I → W I is called KL-admissible. We recall that this means that the following conditions are satisfied for every left cell Γ ⊆ W I (with respect to the weights {p s | s ∈ I}):

We say that (I, δ) is strongly KL-admissible if, in addition to (A1) and (A2), the following condition is satisfied:

for all x ∈ X I and w ∈ W I .

The map δ L will be called the left extension of δ to W . Theorem 6.2. Let (I, δ) be a KL-admissible pair. Then the following hold. An immediate consequence of Theorem 6.2 is the following: Theorem 7.2. Let x, y ∈ W be such that x ∼ L y. Then x and y have the same τ ∆,ρ -invariant.

Remark 7.3.

There is an equivalent formulation of Definition 7.1 which is more in the spirit of Vogan's Definition 5.1. We define by induction on n a family of equivalence relations ≈ ∆,ρ n on W as follows. Let x, y ∈ W .

• For n = 0, we write x ≈ ∆,ρ

Note that the relation ≈ ∆,ρ n is finer than ≈ ∆,ρ n-1 . It follows from the definition that x, y have the same τ ∆,ρ -invariant if and only if x ≈ ∆,ρ n y for all n 0. This inductive definition is less easy to write than Definition 7.1, but it is more efficient for computational purpose. Indeed, if one finds an n 0 such that the relations ≈ ∆,ρ n0 and ≈ ∆,ρ n0+1 coincide, then x and y have the same τ ∆,ρinvariant precisely when x ≈ ∆,ρ n0 y. Note that such an n 0 always exists if W is finite. Also, even in small Coxeter groups, the group V ∆ can become enormous (see Example 7.6 below) while n 0 is reasonably small and the relation ≈ ∆,ρ n0 can be computed quickly. Then it follows from the description of left cells of W s,t in Example 6.6 and from Theorem 3.1 (by using the same argument as for the proof of Proposition 3.3 given in §3) that if x L y, then R p (y) ⊆ R p (x).

In particular, if x ∼ L y, then R p (x) = R p (y).

So one could take for ρ the map R p : W → P(S p ).