
HAL Id: hal-01113340
https://hal.science/hal-01113340

Submitted on 5 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-calibrating smooth pursuit through active efficient
coding

Céline Teulière, S Forestier, L Lonini, Cong Zhang, Y Zhao, B Shi, J Triesch

To cite this version:
Céline Teulière, S Forestier, L Lonini, Cong Zhang, Y Zhao, et al.. Self-calibrating
smooth pursuit through active efficient coding. Robotics and Autonomous Systems, 2014,
http://dx.doi.org/10.1016/j.robot.2014.11.006. �10.1016/j.robot.2014.11.006�. �hal-01113340�

https://hal.science/hal-01113340
https://hal.archives-ouvertes.fr

Self-calibrating smooth pursuit through active efficient

coding

C. Teulièrea,c,∗, S. Forestiera,d, L. Loninia, C. Zhangb, Y. Zhaob, B. Shib, J.
Triescha

aFrankfurt Institute For Advanced Studies, Goethe University, Frankfurt am Main,

Germany
bDepartment of Electronic and Computer Engineering, HK University of Science and

Technology, Hong Kong, China
cClermont Université, Université Blaise Pascal, Institut Pascal, Clermont-Ferrand, France

dÉcole normale supérieure de Rennes, Bruz, France

Abstract

This paper presents a model for the autonomous learning of smooth pursuit

eye movements based on an efficient coding criterion for active perception. This

model accounts for the joint development of visual encoding and eye control.

Sparse coding models encode the incoming data at two different spatial resolu-

tions and capture the statistics of the input in spatio-temporal basis functions.

A reinforcement learner controls eye velocity so as to maximize a reward signal

based on the efficiency of the encoding. We consider the embodiment of the

approach in the iCub simulator and real robot.Motion perception and smooth

pursuit control are not explicitly expressed as tasks for the robot to achieve

but emerge as the result of the system’s active attempt to efficiently encode its

sensory inputs. Experiments demonstrate that the proposed approach is self-

calibrating and robust to strong perturbations of the perception-action link.

Keywords: Autonomous learning, active perception, smooth pursuit, efficient

coding, robotics

2010 MSC: 00-01, 99-00

∗Corresponding author
Email address: celine.teuliere@univ-bpclermont.fr (C. Teulière)

Preprint submitted to RAS - Special Issue on emerging spatial competencesSeptember 5, 2014

1. Introduction

Since the development of information theory, the idea of exploiting redun-

dancy of information in signals to encode them in an efficient manner has been

widely applied to different scientific areas. Concepts such as sparse coding tech-

niques are now well known tools in mathematics, signal processing and computer5

science.

In neuroscience, efficient coding was proposed as a principle for the encoding

of sensory information in the brain [1, 2, 3]. In particular, one popular expression

of the efficient coding hypothesis posits that only a few neurons fire at a given

time, thus representing sensory inputs with a “sparse code”. Several studies10

proposed to use a sparse coding mechanism on natural stimuli by decomposing

them as a linear combination of a small number of basis functions from an

over-complete dictionary. Interestingly, it was shown that the basis functions

that were learned when optimizing the reconstruction of the input using such a

sparse code resemble the receptive fields of sensory neurons in visual, auditory,15

or olfactory systems [4, 5, 6]. In particular, this efficient coding hypothesis

implies that the sensory representation in the brain captures the statistics of

the sensory inputs. Those statistics obviously depend on the environment of

the agent. Importantly, they are also shaped by its behaviour [7, 8], which can

be directed to control the incoming sensory information. However, there is still20

little work that accounts for the role of behaviour in the development of an

efficient sensory coding.

Recently, [9] used the efficient coding of the causal relation between motor

actions and sensory feedback as a drive for the co-development of sensory and

motor maps. [10] applied the efficient coding principle to active vision and25

showed that this principle can lead to the joint learning of an efficient depth

representation and eye vergence movements. This model was embodied into a

robot binocular vision system in [11] and showed strong robustness properties

[12]. Even more recently, [13] suggested that this model can be extended to a

larger range of action-perception loops, by simulating the emergence of smooth30

2

pursuit behaviour as the result of an efficient encoding criterion. Note that

smooth pursuit control in humans appears to improve in the same time period

as motion perception which suggests a co-development [14].

In this paper, we extend the approach of [13] and take it to a next step

through its embodiment in a robotic system. We believe that the autonomous35

learning of active perception loops is of great interest in the robotics context

in order to develop self-calibrating systems that can flexibly adapt to their

environments.

Smooth pursuit abilities and gaze control in general are fundamental not only

to humans but also humanoids as they condition lots of basic behaviours such40

as e.g. reaching objects [15]. Motion perception and tracking have been largely

studied in the computer vision and robotics communities. Most approaches for

motion perception involve either optic flow computation [16, 17], or some form

of object representation along with matching or tracking techniques [18] which

sometimes require calibrated sensors [19]. Visual servoing approaches [20] can45

then be used to close the loop between perception and action. Such methods

provide good performances in terms of accuracy. Some specific controllers have

also been designed in the context of smooth pursuit [21, 22]. However, the above

methods require knowledge of the kinematic link between the camera velocity

and the visual change. This requirement implies both the need for a calibration50

phase and the inability to handle modifications due to, e.g., a mechanical shock

to the system. Some attempts have been made to learn this link [23, 24, 25].

However, such techniques still require prior knowledge on a specific goal for

the robot to reach. In this work, we consider a different paradigm: motion

perception and smooth pursuit control are not explicitly expressed as tasks for55

the robot to achieve but emerge as the result of the system’s active attempt

to efficiently encode its sensory inputs. A sparse coding model (perception

component) encodes sensory information from pairs of successive frames using

basis functions at different spatial resolutions, while a reinforcement learner

(action component) generates the camera movement based on the output of the60

sparse coding model. Importantly, perception and behaviour develop in parallel,

3

by minimizing the same cost function: the error between the original stimulus

and its reconstruction by the sparse coding model. We call this approach active

efficient coding.

We extend the work of [13] in the following ways: first, we increase the65

range of motion that the system can perceive by using a multi-scale approach,

and demonstrate its benefits. Secondly, we demonstrate that our system can

adapt to drastic perturbations in its perception-action link. Finally, we present

experiments both in simulation and on a real robot and show that the model

performs well in realistic conditions with the presence of noise and distortions.70

2. Model Architecture

This section presents the architecture of our model. An overview of the main

components is given in 2.1 and their description is detailed in sections 2.2 and

2.3.

2.1. Overview75

Our embodiment of the efficient coding principle to the autonomous learning

of smooth pursuit relies on the following idea: when one eye is smoothly pursuing

an object of interest, the successive images it senses in its foveal region are very

similar and can therefore be encoded efficiently when exploiting this redundancy

of information. Our model makes use of this basic idea by considering the80

encoding quality of pairs of successive image patches as the criterion that drives

the movements of the eye.

In the following, we will model one eye by a camera, which can rotate in

both pan and tilt degrees of freedom. Note that we only consider one eye

for convenience but [26] shows that the model can be extended to two eyes.85

Rotations of the camera around the line of sight as they occur in the primate

visual system are left for future work.

Our model consists of two main components (see Figure 1):

4

• The sensory encoding component receives image patches of two consecu-

tive frames from the camera, and encodes them as a sparse linear com-90

bination of basis functions. It is composed of two sparse coding modules

dealing with different spatial resolutions.

• The motor control component is based on a reinforcement learning agent

that generates velocity commands for the robot camera according to the

encoding of the images. The agent receives a reward for the selected95

action depending on the efficiency of the encoding of the subsequent image

patches by the sensory coding component.

The following subsections describe the two components in more detail.

2.2. Sensory encoding

To allow our system to deal with a large range of motion, we consider two100

different scales or image resolutions and train one sparse coding model for each

scale. The structure of the two models is identical, the only difference is the

input they receive: fine or coarse scale image patches.

2.2.1. Patch extraction

Input images are acquired from the camera at a resolution of 320×240 pixels.105

The camera parameters are unknown for the system and the fixation point is

simply defined to be at the center of each image. Assuming visual perception is

focused in the image center, we only consider the central region of the image,

of size 96 × 96 for the coarse scale model and 72 × 72 for the fine scale one.

This selection prevents the system from considering too much background when110

performing smooth pursuit. It is somewhat analogous to modelling a foveal

region of the eye. Given the focal length of the system, the coarse scale window

covers here a visual angle of about 21◦ while the fine scale window is about 16◦.

More details can be found in Section 3.1. From this central region, two different

sets of patches are obtained:115

• For the fine scale, 81 patches of 8×8 pixels are extracted from the smaller

central region of 72× 72, without any subsampling or overlap.

5

Time

Coarse scale
Sparse Coding Model

Fine scale
Sparse Coding Model

Subsampling x4

RL Module
Vertical Actions

Fine scale
Sparse Coding Model

Fine scale
Sparse Coding Model

Fine scale
Sparse Coding Model

Fine scale
Sparse Coding Model

RL Module
Horizontal Actions

- -+

Sensory code

eFeC

e

Softmax Softmax

... ...

Eye velocity change Eye velocity change

Patch extraction

Sensory encoding

Reinforcement Learner

 Eye velocity controller

... ...

Pooling Pooling

Figure 1: Overview of the model.

6

• For the coarse scale, the image is subsampled by a factor of 4 using a

Gaussian pyramid, and another 81 patches are extracted among all pos-

sible overlapping patches of 8 × 8 pixels. Those patches correspond to120

patches of size 32× 32 in the original image, but are subsampled here to

reduce the computational cost.

For each scale s, each patch i of time step k is represented as a column vector

ps
k,i. The patches are preprocessed to have zero mean and unit norm. In order

to use the redundancy of information between successive images, each patch of

time step k is concatenated with the corresponding patch of time step k − 1 to

build spatio-temporal patches :

xs
k,i =





ps
k−1,i

ps
k,i



 . (1)

At each time step k, each of the two sparse coding models s will receive as

input a batch xs
k of 81 patches of size 128 (8 × 8 × 2). As mentioned above,

the sparse coding models are identical in structure. In the following we will125

drop the superscript s and index k, and consider one single sparse coding model

receiving a set of patches {xi} at a given time step.

2.2.2. Sparse coding model

To encode the input patches, we use a sparse coding model, which seeks to

best represent the data as a sparse linear combination of basis functionsΦn from130

a fixed-size dictionary D = {Φn}n=1:N . The dictionary is over-complete, which

means that the number of basis functions N > 128. We use a value of N = 288

in the experiments presented here but we observed that this precise value is not

critical to the performances. Formally, each patch xi is approximated by:

x̂i =

N
∑

n=1

α(i)
n Φn. (2)

The sparsity of the encoding is ensured by allowing only 10 coefficients αn135

to be non-zero. Starting from a set of random bases the dictionary is updated

so that it best represents the input statistics. Learning occurs online using

7

a two-step procedure. (1) For each patch xi the set of coefficients {α
(i)
n }n is

obtained using the matching pursuit algorithm [27], which tries to find in the

dictionary the bases which best explain the input using a greedy search method.140

(2) The bases are updated through gradient descent to minimize the squared

reconstruction error [4] defined by:

e =

P
∑

i=1

‖xi − x̂i‖
2, (3)

where P = 81 is the number of patches extracted from one image at a particular

scale.

Since each patch is composed of the concatenation of information from time145

steps k − 1 and k, the learned bases functions capture information about the

visual motion between the successive frames.

2.2.3. Pooling

After each patch xi has been encoded, the basis function activations {α
(i)
n }n

are pooled to generate an N -dimensional code f for the pair of consecutive

images, by averaging the squared weighting coefficients over the patches, i.e.

over different parts of the foveal region:

f =













1
P

∑P

i=1

(

α
(i)
1

)2

...

1
P

∑P

i=1

(

α
(i)
N

)2













. (4)

f is an encoding for the image content and motion.

In biological terms, the pooling step roughly corresponds to the operation150

performed by complex cells, which receive inputs from many simple cells at

different locations, but with similar receptive field shapes.

The two N -dimensional codes fC and fF from the coarse and fine scale

models are concatenated into a 2N -dimensional feature vector which is sent to

the reinforcement learning agent that maps it to a velocity change of the eye,155

as described in the next section.

8

2.3. Motor control (action)

The motor control component of our model learns the mapping between the

visual motion information represented by f and velocity commands of the eye.

Our system is based on a reinforcement learning (RL) framework, where a RL

agent seeks to maximize its cumulative reward defined by:

R(k) =

∞
∑

l=0

−γ−l
[

eC(k + l) + eF (k + l)
]

, (5)

where eC (resp. eF) denotes the reconstruction error for the coarse (resp. fine)

scale, and γ is a discounting factor. It is therefore trying to minimize the

reconstruction error of the two sparse codes. We use a natural actor-critic160

algorithm [28], where the policy (the actor) and the value function (the critic)

are implemented by neural networks (see Figure 2). Since a separate set of

actions controls the pan and tilt rotation of the camera, we use separate policy

networks for each axis.

.

.

.
.
.
.

(Size = 576)

.

.

.

(Size = 576)(Size = 9)

Policy network for one degree of rotation Value network

Figure 2: Representation of the policy and value networks. Note that there is one policy

network for each rotational degree of freedom of the eye.

The weights of the neural networks are initialized randomly. The critic

network receives as input at time k the code f(k) = [fC(k); fF (k)], and outputs

the value V (k):

V (k) = v⊤(k)f(k), (6)

9

where v(k) are the weights of the value network at time k. The policy networks165

map f(k) to actions and their output layers contain as many neurons as possible

actions. Each action is an increment of the eye velocity, with respect to its

current value. We used a finite set Aj of actions for each rotational degree of

freedom j. The actions are spaced on a logarithmic scale to allow coarse and

fine changes.170

The activation za(k) of the output neuron corresponding to the action a at

time k is computed as:

za(k) = θ⊤a (k)f(k), (7)

where θa(k) is the vector of weights from f(k) to the action a.

The probability πa (k) of selecting the action a at time-step k is computed

using a softmax non-linearity:

πa (k) =
exp

(

za(k)
T

)

∑A

l=1 exp
(

zl(k)
T

) , (8)

where A is the number of actions and T is the so-called temperature parameter

and controls the amount of exploration vs. exploitation of the reinforcement

learning agent.

3. Experiments175

3.1. Experimental setup

We use the iCub robot head [29] as the experimental platform for the em-

bodiment of our model. This robotic head has a total of six degrees of freedom:

three in the neck (pan, tilt and roll rotations), and three in the eyes (indepen-

dent pan angle for each eye and joint tilt). In our experiments the neck is fixed180

and only the pan and tilt angle of one eye are controlled.

In order to assess the performance of our method, we used the iCub simulator

[30], which provides a controlled environment suitable for extensive training and

testing. During the training phase, the robot is placed in a scene where an

object is moving at changing velocity. we used a flat textured object moving in185

10

a plane fronto-parallel to the robot, at a distance d = 1m (see Figure 3). The

translational velocity of the object is converted to the corresponding angular

velocity when compared to the eye pan and tilt angular velocities. Accurate

smooth pursuit behaviour means that the eye angular velocity matches the

object velocity such that the object is stabilized in the image. Both the texture190

and the object velocity are changed periodically during training. The in-plane

velocity of the object vobj = [vHobj ; v
V
obj] is randomly selected using a uniform

distribution for the horizontal velocity vHobj ∈ [−25; 25] and for the vertical

velocity vVobj ∈ [−15; 15] (units are degrees per second). The smaller range of

vertical velocities was chosen because of the narrower joint limits for vertical195

eye movements. The velocity vector vobj is changed every 20 iterations, and its

direction is reversed every 10 iterations. One iteration corresponds to 100ms.

The texture of the planar object is changed every 200 iterations i.e. the same

texture is seen with 10 different velocities before being changed. The new texture

is randomly selected out of a set of 20 images from the TESTIMAGES project200

[31]. Examples of such textures are shown in Figure 3. Changing the textures is

required so that the sparse coding models receive enough diversity in the input

stimuli so that the learned bases can generalize well to new objects.

The images are acquired at a resolution of 320 × 240 pixels and converted

to greyscale. With a focal length equivalent to 257 pixels, 1◦ of visual angle205

corresponds to about 4.5 pixels. Therefore, a patch of the coarse (resp. fine)

scale covers a visual angle of 7.1◦ (resp. 1.8◦). Although some background can

appear depending on the relative position between the object and the eye, most

of the time the object covers the entire foveal region.

Our model is implemented in MATLAB and communicates with the robot210

or the simulator through the YARP middleware [32]. The training time-loop is

set to ∆t = 100ms. This time includes the image pre-processing, the sensory

encoding and the action selection as presented in Section 2 (∼ 30ms), but also

a waiting period (∼ 70ms) before actually sending the new velocity command.

Since this time loop is long with respect to transient periods, the eye velocity215

can be considered as quasi constant between two image acquisitions. This is a

11

Figure 3: Top: A screenshot of the iCub simulator environment during training. The texture

and velocity of the planar object are changed periodically. Bottom: Examples of textures

applied on the planar object, extracted from TESTIMAGES dataset [31].

12

simplifying choice that is linked to our choice of using a time history of only two

images to estimate the motion. A longer history window could be considered

for example by adding inputs to the policy and value networks (see Figure 2).

This would allow the system to take into account more complex dynamics at220

the cost of an increase in the model complexity. In this work we deliberately

chose to simplify the model to assess the performances under easily controlled

conditions.

One consequence of the simple dynamics used here is that the action selected

at time k will be responsible for the velocity that the eye will have between image225

k+1 and k+2 (see Figure 4). Therefore, the reward associated with the action

k is received by the agent at time k + 2.

Wait WaitProcess
Images

k-1 and k
Generate

Send velocity

Wait WaitProcess Process Process
Computation of

reward

Figure 4: Illustration of the timeline in our setup. The reconstruction error between image

patches k+1 and k+2 is used as a reward for the encoding of time step k.

To control the eye motion, we use the velocity controller of the (real or

simulated) iCub. The velocity sent to the controller of joint j (pan or tilt) at

time k is:

vj(k + 1) = vj(k − 1) + aj(k), (9)

where aj(k) is the selected action for joint j. The delay of two time steps

is due to the delay between the selection of an action and its effect on the

perception explained above (see Figure 4). We consider the following sets of230

actions, expressed in ◦/s: Apan = {−32,−16,−8,−4, 0, 4, 8, 16, 32} and Atilt =

13

{−24,−16,−8,−4, 0, 4, 8, 16, 24}. The maximal velocity for the pan (resp. tilt)

angle is limited to ±30◦/s (resp. ±20◦/s), and when the eye reaches an absolute

angle position of 25◦ (resp. 15◦) it is positioned back to the center. The learning

rate for the RL agents is set to 0.4 and the temperature parameter is T = 1.235

We also use a discount factor γ = 0.3 as defined in equation (5).

The training is performed online. The sparse coding model as well as the

RL component are updated at each iteration of the algorithm.

3.2. Performance evaluation

In the following we evaluate the performance of our multi-scale model in240

autonomous learning of smooth pursuit. In particular, our experiments address

the following questions:

• Can the system properly learn to perform smooth pursuit, and how well?

• Can the system autonomously recover from a drastic perturbation after

training?245

• What is the benefit (if any) of using two different scales?

• Does the learned controller generalize well to a real robot?

Performance is measured by the mean absolute velocity error (MAE) during

training and testing. The size of the averaging window for the MAE is set to

1000. Since we use a finite set of actions where the largest action is smaller250

than the maximal relative speed that can be perceived, more than one step

can be necessary for the model to reach the target velocity. Therefore, we

measure the error just preceding an object velocity change, to ensure that the

eye is given enough iterations to be able to reach the target velocity. This also

means that we do not focus on the transitory effects of the control. This is255

of course a simplification with respect to real smooth pursuit tasks. In this

work we chose deliberately to study a model with very simple dynamics (the

time history is of two images) to show the feasibility of the approach in terms of

learning and adaptation. Moreover, the discrete set of actions we consider in the

14

current model implies that the desired velocity might not be exactly reachable260

which limits achievable accuracy. One possible way to go from a discrete set

of actions to a continuous action selection is to use a Gaussian policy instead

of the softmax one [13]. Future work will focus on integrating more complex

dynamics and improving accuracy.

3.2.1. Model testing265

After training the model for 1 million iterations, we tested it in the simulation

environment using a new subset of textures from the dataset to assess the smooth

pursuit performance. During testing, the basis functions of the sparse coding

models, as well as the weights of the neural networks are kept fixed, to evaluate

the model at a particular time. We also stop exploration and use the learned270

policy in a greedy mode: at each iteration we select action a such that za =

maxj{zj}, that is the best action according to the current policy. This is in

contrast with the training phase where there is also exploration as required by

the reinforcement learning module. The set of textures is a different subset from

the TESTIMAGES dataset [31].275

We use a similar procedure as during training, where the velocity and texture

of the object are changed every 20 iterations, and the direction of the object

velocity is reversed every 10 iterations. Figure 5 shows the histogram of the

errors obtained over 200 such sequences on the initial model (Figure 5 (a)) and

on the trained model (Figure 5 (b)). The mean absolute error is about 2.6◦/s280

(resp. 2.2◦/s) in horizontal (resp. vertical) directions, with a standard deviation

of 2.4◦/s (resp. 1.7◦/s). The slightly smaller errors on the vertical axis are due

to the smaller range of velocities and actions used in that direction. Otherwise

the system is similar for both axes.

Figure 6 shows two examples extracted from a testing sequence with a con-285

stant object velocity period of 20 iterations. The anaglyph images (better seen

in color) represent the images at time k − 1 and k superimposed. When the

object is given a new velocity, the relative velocity between the eye and the ob-

ject leads to a visual shift between the two frames (first two rows). After a few

15

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Velocity Error (deg/s)
−15 −10 −5 0 5 10 15

0

10

20

30

40

50

60

70

80

90

100

Velocity Error (deg/s)

(a) (b)

Figure 5: Distribution of velocity errors when testing the model (a) at the beginning and (b)

after training.

iterations (4 in the first case, 6 in the second one) the eye motion has adapted290

to the velocity of the object and the k − 1 and k images are aligned (second

row). The velocity is shown in the last row, where the red (resp. blue) dots

represent the object (resp. eye) velocity. Only the pan velocity is represented

here.

We also evaluated the performances of the model as a function of the object’s295

velocity. Figure 7 shows the mean absolute velocity error in testing, for object

velocities from 0 to 40◦/s. We observe that the performances start degrading

for velocity around 20◦/s. With our 100ms time-loop, this velocity corresponds

to a visual shift of 2◦ between two consecutive frames, which is bigger that the

visual angle covered by fine scale patches (1.8◦).300

3.2.2. Benefits of using two scales

To assess what the benefits of using two different scales are, we compare the

evolution of the MAE with training of two-scale and single scale models. The

results are shown in Figure 8, where the blue and green lines represent the MAE

testing performances as a function of the training time for a fine (resp. coarse)305

scale only model. The MAE of our two-scale model is shown in the red curve.

As can be seen from this figure, the use of the multi-scale approach allows

16

(1-a) (1-b)

(2-a) (2-b)

20 1 2 4 6 8 10 12 14 16 18
−30

−20

−10

0

10

20

30

Iterations

V
el

oc
ity

 [d
eg

/s
]

20 1 2 4 6 8 10 12 14 16 18
−30

−20

−10

0

10

20

30

Iterations

V
el

oc
ity

 [d
eg

/s
]

(3-a) (3-b)

Figure 6: Examples of testing results for two different textures (a) and (b). Each column

shows the superposition of the camera view for image k and k − 1 as an anaglyph image

(better seen in color) at the beginning (1) and at the end (2) of one period of constant object

velocity. The corresponding velocity error is illustrated in last row, where the red dots (resp.

blue crosses) represent the object (resp. eye) velocity. In this test the object velocity was

kept constant for 20 iterations. Only the pan velocity is represented. Results for tilt are very

similar.

17

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Object velocity [deg/s]

M
ea

n
ab

so
lu

te
 v

el
oc

ity
 e

rr
or

 [d
eg

/s
]

Figure 7: Testing performances as a function of object velocity. The error bars indicate the

standard deviation over a set of 200 testing sequences of constant object velocity. Only the

pan axis is represented because results for tilt are similar.

smaller final velocity error than either of the two single-scale models. Indeed,

the range of velocities that we use leads to maximum angular shifts of 3◦ per

iteration for vertical motion and 5◦ per iteration for horizontal motion, while310

coarse (resp. fine) patches cover 7.1◦ (resp. 1.8◦) (see Section 3.1). When

confronted with larger shifts than it can encode, the fine scale model is not able

to learn a good policy. On the other hand, the coarse scale model is capable

of detecting large motion but it lacks accuracy. The use of the two-scale model

allows our system to perceive the whole range of motions with higher accuracy.315

Figure 9 represents for each action the norm of the weight vector ‖θa‖2 from

the actor networks for the fine scale and coarse scale bases. The results show

that the fine scale bases are more strongly linked to the smaller actions, while

the coarse bases have a stronger connection with the largest actions. This result

validates our intuition that the multi-scale model is able to exploit the different320

scales, and link them to the corresponding actions.

18

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

2

4

6

8

10

12

14

16

18

20

Iteration

M
ea

n
ab

so
lu

te
 v

el
oc

ity
 e

rr
or

 [
de

g/
s]

Figure 8: Testing results as a function of training iterations for three different models. The

top (resp. middle) curve in blue (resp. green) represents the results for a model using fine

(resp. coarse) scale only. The lower curve in red corresponds to the two-scale model. The

error bars indicate half the standard deviation over a set of 200 testing sequences of constant

object velocity. Only the pan axis is represented because results for tilt are very similar.

19

−24−16−8 −4 0 4 8 16 24
0

10

20

30

40

50

60
Coarse scale weights distribution

Actions [deg/s]
−24−16−8 −4 0 4 8 16 24

0

20

40

60

80

100

120
Fine scale weights distribution

Actions [deg/s]

Figure 9: Weight norm ‖θa‖2 of every action a for coarse (left) and fine (right) scales. Only

the pan axis network is represented because results for tilt are very similar.

3.2.3. Robustness to perturbations

The experiments presented above demonstrate that our system is capable

of autonomously learning a mapping between perception and action without

requiring any calibration parameter. This property is particularly desirable for325

robotic applications.

In this section we address the question of whether the system can adapt to a

change in the perception-action link occurring after the system has converged.

Such a change could be the result of a physical impact to the system, introducing

a perturbation of the geometric link between the camera and the actuators.330

To assess the performance of our system in such conditions we artificially

introduce a perturbation after 1 million iterations of training and keep training

the system. During the full length of these experiments, both the bases and

the RL weights are updated. The perturbation is simulated by rotating the

input images. Figure 10 shows the MAE of the pan velocity for two different335

perturbations (30◦ and 90◦). The velocity errors strongly increase right after

20

the perturbation is introduced, since the link between perception and action has

been modified. Importantly, Figure 10 show that the system is able to largely

recover from the perturbation.

Note that the error bars are computed with only four trials because of the340

long training time required (1 million iterations correspond to about 30h of

training in our current implementation).

0 2 4 6 8 10 12 14 16

x 105

5

10

15

20

Iterations

V
el

oc
ity

 e
rr

or
 [d

eg
/s

]

Adaptation to 30 deg perturbation

0 2 4 6 8 10 12 14 16

x 105

5

10

15

20

Iterations

V
el

oc
ity

 e
rr

or
 [d

eg
/s

]

Adaptation to 90 deg perturbation

(a) (b)

Figure 10: Mean MAE of pan velocity during training, with a 30◦ (a) or 90◦ (b) rotation

introduced after 1 million iterations. The mean and the error bars for one standard deviation

are computed over 4 trials.

To illustrate the re-mapping that is learned we estimated which basis func-

tion orientations contribute more to the behaviour before and after the 90◦

perturbation. We used the dictionaries and RL models learned at 1 million (be-345

fore the perturbation) and 1.5 million (after recovery) iterations. For each basis

function of both coarse and fine scale, we used Gabor fitting to estimate the

orientation it represents the most. We also computed the norm of the weight

vector associated to this basis, i.e. the vector of the A weights that connect

this basis to each action in Apan. Figure 11 represents the scatter plots of the350

weights norm with respect to the orientation. Each circle is a basis function

of either coarse or fine scale. The density of basis functions with respect to

the orientation is also illustrated with grayscale bars where the smallest density

corresponds to the darkest areas. The norms have been scaled to [0, 1].

21

−90 −60 −30 0 30 60 90

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Basis orientation (deg)

B
as

is
 n

or
m

al
iz

ed
 p

ol
ic

y
w

ei
gh

ts

Nominal Case

−90 −60 −30 0 30 60 90

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Basis orientation (deg)

B
as

is
 n

or
m

al
iz

ed
 p

ol
ic

y
w

ei
gh

ts

With 30 deg perturbation

−90 −60 −30 0 30 60 90

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Basis orientation (deg)

B
as

is
 n

or
m

al
iz

ed
 p

ol
ic

y
w

ei
gh

ts

With 90 deg perturbation

(a) (b) (c)

Figure 11: Distribution of the policy weights of the pan axis network, as a function of the main

orientation selectivity (in degree) of each basis function. Each circle represents one basis from

the dictionary. The red curve represents the mean value over bins of 30 degrees. (a) Nominal

case, after training with no perturbation, (b) after training with a 30 deg perturbation, (c)

after training with a 90 deg perturbation. The grayscale bars represent the density of basis

functions where white (resp. black) indicates the maximal number of 107 bases (resp. 0) per

bin of 10 degrees.

Importantly, this figure shows that both the basis functions and the policy355

weights have adapted to the perturbation. Indeed we can observe a shift of 30◦

(resp. 90◦) of both the bases density and the weights repartition in (b) (resp.

(c)) with respect to the nominal case (a). Before the perturbation, the pan

movement is mostly driven by the basis selective to vertical orientation (angle

= 0◦). The orientation of the bases that drive most of the behaviour is shifted360

after the perturbation is introduced. This is the indication of the remapping

between basis functions and actions in the RL policy network.

3.2.4. Robot experiment

In addition to the above evaluation in the simulation environment, we per-

formed experiments on the real iCub robot. For these experiments, we used a365

model trained in simulation during 1 million iterations, with a greedy action se-

lection. Without any ground truth on object velocity we empirically tested the

model by moving objects in front of the robot with different velocities. Figure

12 and 13 show sample views from the camera. Figure 12 shows an example

of testing with a rigid planar object. This setting is quite similar to the sim-370

ulation setting although it can be seen that the images from the iCub camera

22

contain noise and distortions. Moreover, unlike the simulation setting the object

is moved manually and its velocity is not constant. Although trained in simu-

lation with basic dynamics, the system generalizes well to these situations. The

motion of the robot’s eyes can be seen from the background changes in Figure375

12 while the object is smoothly tracked. For a better rendering of the behavior,

a video of these experiments is available at http://youtu.be/OyKKIWxo2aw.

Interestingly, the system also responds to the motion of a waving hand despite

the presence of background in both coarse and fine scale windows (see Figure

13).380

Figure 12: Samples from robot experiment with a flat object extracted every 3s from a short

sequence. Green solid and orange dashed squares represent coarse and fine scale windows

respectively.

4. Discussion

The work presented in this paper extends recent work on autonomous learn-

ing of active perception, and applies it to robot motion tracking. As men-

tioned in the introduction, there is a large literature in the computer vision and

robotics communities on controlling a camera to track a moving object, using385

feature matching, tracking and visual servoing approaches. These techniques

have proved to be efficient in many applications. However, they usually con-

sider perception and action as separate blocks, for which some model is fixed

23

http://youtu.be/OyKKIWxo2aw

Figure 13: Samples from robot experiment with a moving hand extracted every 5s from

a short sequence. Green solid and orange dashed squares represent coarse and fine scale

windows respectively.

beforehand, and use them independently of the statistics of the environment. In

this paper we consider a very different paradigm, where the active perception390

emerges with no explicit target as the result of an efficient encoding criterion.

Our model has no prior knowledge of the geometric link between cameras and

actuators, and the only expression of a task given to the system is the optimiza-

tion of the reconstruction of the input data. Importantly, both sensory encoding

and smooth pursuit behaviour develop in parallel, using this same criterion. We395

call this approach active efficient coding.

The experiments presented in this article show that the system autonomously

learns to actively track object motion. Although the quantitative performance

presented here does not reach the tracking accuracy of existing visual servoing

approaches, we would like to point out four key characteristics of our approach.400

First, the system is fully self-calibrating, which is a desirable property for an

autonomous system. Secondly, the visual encoding is tuned to best represent the

input, and naturally captures the statistics of incoming visual information. This

makes the system flexible in terms of the environment it can operate in. Third,

the system can adapt to strong perturbations of the link between perception405

and action, as demonstrated in our experiments. Finally, the proposed approach

makes use of very simple dynamics by considering a time history of two images

24

only and no modelling of delays. We believe that there is room for improvement

here and future work will aim to integrate more complex dynamics. Also the

finite set of actions we used can be replaced by continuous action selection by410

replacing the softmax policy by a Gaussian policy, as proposed in [13].

In its current form, our model requires textured objects. Note that some

texture or at least object edges are necessary for both biological and artificial

vision systems to perceive motion. When dealing with low textured objects,

with a large plain area for instance, the activation of some central patches (or415

receptive fields in the biological case) will not vary with eye motion. For those

patches our current system cannot determine a “best velocity” in terms of cod-

ing efficiency. Since the model equally considers every part of the image center,

those patches would degrade the tracking performances. On the contrary, bio-

logical systems can make use of edges of uniform objects and successfully track420

them. In future work, a possible way to solve this problem can be to integrate

some measurement of the texture as supplementary input to the reinforcement

learning agent. Then, we believe that the system could learn to rely more on tex-

tured patches to estimate the velocity change that will provide better encoding,

and thus correct smooth pursuit behaviour.425

Finally, we believe that the active efficient coding has a larger scope than

smooth pursuit behaviour learning. In future work, we will focus on the exten-

sion of this framework to account for other active perception behaviour. As a

first step in this direction, we have recently proposed a model to learn vergence

and smooth pursuit at the same time [26]. We have also argued how a reward430

signal for efficient sensory coding as used here may facilitate the emergence of

imitation behaviours [33].

5. Acknowledgements

This work has partly received funding from the European Community’s

FP7/2007-2013, “Challenge 2-Cognitive Systems, Interaction, Robotics” under435

grant agreement No FP7-ICT-IP-231722, project IM-CLeVeR, from the Hong

25

Kong Research Grants Council under grant 619111 and from the BMBF Project

“Bernstein Fokus: Neurotechnologie Frankfurt”, FKZ 01GQ0840.

J. Triesch was supported by the Quandt foundation.

The authors want to thank Pramod Chandrashekhariah for his help during440

experiments.

References

[1] F. Attneave, Some informational aspects of visual perception, Psychological

Review 61 (3) (1954) 183–193.

[2] H. B. Barlow, Possible principles underlying the transformation of sensory445

messages, Sensory communication (1961) 217–234.

[3] D. J. Field, What is the goal of sensory coding?, Neural computation 6 (4)

(1994) 559–601.

[4] B. A. Olshausen, D. J. Field, Emergence of simple-cell receptive field prop-

erties by learning a sparse code for natural images, Nature 381 (6583)450

(1996) 607–609.

[5] J. Perez-Orive, O. Mazor, G. C. Turner, S. Cassenaer, R. I. Wilson, G. Lau-

rent, Oscillations and sparsening of odor representations in the mushroom

body, Science 297 (5580) (2002) 359–365.

[6] E. C. Smith, M. S. Lewicki, Efficient auditory coding, Nature 439 (7079)455

(2006) 978–982.

[7] J. Triesch, The role of a priori biases in unsupervised learning of visual

representations: a robotics experiment, in: Workshop on Developmental

Embodied Cognition (DECO), 2001.

[8] C. A. Rothkopf, T. H. Weisswange, J. Triesch, Learning independent causes460

in natural images explains the spacevariant oblique effect, in: Int. Conf. on

Development and Learning (ICDL), IEEE, 2009, pp. 1–6.

26

[9] J. Ruesch, R. Ferreira, A. Bernardino, A computational approach on the

co-development of artificial visual sensorimotor, Adaptive Behavior 21 (6)

(2013) 452–464.465

[10] Y. Zhao, C. A. Rothkopf, J. Triesch, B. E. Shi, A unified model of the joint

development of disparity selectivity and vergence control, in: Int. Conf. on

Development and Learning and Epigenetic Robotics (ICDL), IEEE, 2012,

pp. 1–6.

[11] L. Lonini, Y. Zhao, C. P., B. Shi, J. Triesch, Autonomous learning of active470

multi-scale binocular vision, in: Int. Conf. on Development and Learning

and Epigenetic Robotics, 2013.

[12] L. Lonini, S. Forestier, C. Teulière, Y. Zhao, B. Shi, J. Triesch, Robust

active binocular vision through intrinsically motivated learning, Frontiers

in Neurorobotics 7 (20) (2013) 1–10.475

[13] C. Zhang, Y. Zhao, J. Triesch, B. Shi, Intrinsically motivated learning of

visual motion perception and smooth pursuit, in: Int. Conf. on Robotics

and Automation, 2014.

[14] C. Hofsten, K. Rosander, Development of smooth pursuit tracking in young

infants., Vision Research 37 (13) (1997) 1799–1810.480

[15] L. Jamone, M. Brandao, L. Natale, K. Hashimoto, G. Sandini, A. Takanishi,

Autonomous online generation of a motor representation of the workspace

for intelligent whole-body reaching, Robotics and Autonomous Systems

62 (4) (2014) 556 – 567.

[16] B. Horn, B. Schunck, Determining optical flow, Artificial Intelligence 17 (1-485

3) (1981) 185–203.

[17] J. L. Barron, D. J. Fleet, S. S. Beauchemin, Performance of optical flow

techniques, Int. Journal of Computer Vision 12 (1994) 43–77.

27

[18] A. S. Jalal, V. Singh, The state-of-the-art in visual object tracking, In-

formatica: an International Journal of Computing and Informatics 36 (3)490

(2012) 227–248.

[19] M. Taiana, J. Santos, J. Gaspar, J. Nascimento, A. Bernardino, P. Lima,

Tracking objects with generic calibrated sensors: An algorithm based on

color and 3d shape features, Robotics and Autonomous Systems 58 (6)

(2010) 784 – 795.495

[20] F. Chaumette, S. Hutchinson, Visual servo control, Part I: Basic ap-

proaches, IEEE Robotics and Automation Magazine 13 (4) (2006) 82–90.

[21] D. Coombs, C. Brown, Real-time smooth pursuit tracking for a moving

binocular robot, in: IEEE Conference on Computer Vision and Pattern

Recognition, 1992, pp. 23–28.500

[22] T. Shibata, S. Schaal, Biomimetic smooth pursuit based on fast learning

of the target dynamics, in: in Proc. of the IEEE Int. Conf. on Intelligent

Robots and Systems, 2001.

[23] K. Hosoda, M. Asada, Versatile visual servoing without knowledge of true

jacobian, in: IEEE/RSJ/GI Int. Conf. on Intelligent Robots and Systems505

(IROS), Vol. 1, 1994, pp. 186–193 vol.1.

[24] M. Lopes, J. Santos-Victor, A developmental roadmap for learning by im-

itation in robots, IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics 37 (2) (2007) 308–321.

[25] L. Jamone, L. Natale, F. Nori, G. Metta, G. Sandini, Autonomous online510

learning of reaching behavior in a humanoid robot, International Journal

of Humanoid Robotics 9 (3) (2012) 1250017.1–1250017.26.

[26] T. N. Vikram, C. Teulière, C. Zhang, B. E. Shi, J. Triesch, Autonomous

learning of smooth pursuit and vergence behaviour through efficient coding,

in: Int. Conf. on Development and Learning and Epigenetic Robotics, 2014.515

28

[27] S. G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries,

IEEE Transactions on Signal Processing 41 (12) (1993) 3397–3415.

[28] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, M. Lee, Natural actor-critic

algorithms, Automatica 45 (11) (2009) 2471–2482.

[29] R. Beira, M. Lopes, M. Praga, J. Santos-Victor, A. Bernardino, G. Metta,520

F. Becchi, R. Saltaren, Design of the robot-cub (icub) head, in: IEEE Int.

Conf. on Robotics and Automation, 2006, pp. 94–100.

[30] V. Tikhanoff, A. Cangelosi, P. Fitzpatrick, G. Metta, L. Natale, F. Nori,

An open-source simulator for cognitive robotics research: The prototype of

the icub humanoid robot simulator, in: Proceedings of IEEE Workshop on525

Performance Metrics for Intelligent Systems Workshop, ACM, 2008.

[31] Testimages.

URL http://www.tecnick.com/public/code/cp_dpage.php?aiocp_dp=

testimages

[32] G. Metta, P. Fitzpatrick, L. Natale, Yarp: Yet another robot platform,530

International Journal on Advanced Robotics Systems (2006) 43–48.

[33] J. Triesch, Imitation learning based on an intrinsic motivation mechanism

for efficient coding, Frontiers in Psychology 4 (800) (2013) 1–8.

29

http://www.tecnick.com/public/code/cp_dpage.php?aiocp_dp=testimages
http://www.tecnick.com/public/code/cp_dpage.php?aiocp_dp=testimages
http://www.tecnick.com/public/code/cp_dpage.php?aiocp_dp=testimages
http://www.tecnick.com/public/code/cp_dpage.php?aiocp_dp=testimages

	Introduction
	Model Architecture
	Overview
	Sensory encoding
	Patch extraction
	Sparse coding model
	Pooling

	Motor control (action)

	Experiments
	Experimental setup
	Performance evaluation
	Model testing
	Benefits of using two scales
	Robustness to perturbations
	Robot experiment

	Discussion
	Acknowledgements

