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LOGARITHMIC LITTLEWOOD-PALEY DECOMPOSITION AND

APPLICATIONS TO ORLICZ SPACES

HAJER BAHOURI

Abstract. This paper is devoted to the construction of a logarithmic Littlewood-Paley decompo-
sition. The approach we adopted to carry out this construction is based on the notion introduced
in [9] of being log-oscillating with respect to a scale. The relevance of this theory is illustrated on
several examples related to Orlicz spaces.
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1. Introduction and statement of the results

1.1. Setting of the problem. The aim of this paper is to construct a logarithmic Littlewood-Paley
decomposition taking advantage of the notion introduced in [9] of being log-oscillating with respect to
a scale. Our main motivation to carry out this decomposition is that it provides a new point of view
in the understanding of the Orlicz spaces L(R2N ). Recall that generally the Orlicz spaces are defined
as follows (for a complete presentation and more details, we refer the reader to [24]):

Definition 1.1. Let φ : R+ → R
+ be a convex increasing function such that

φ(0) = 0 = lim
s→0+

φ(s) and lim
s→∞

φ(s) = ∞ .

We say that a measurable function u : Rd → C belongs to Lφ if there exists λ > 0 such that
∫

Rd

φ

( |u(x)|
λ

)
dx <∞ .

We denote then

(1.1) ‖u‖Lφ = inf

{
λ > 0,

∫

Rd

φ

( |u(x)|
λ

)
dx ≤ 1

}
.

The space L(R2N ) it will be question in this paper is the Orlicz space associated to the function

φ(s) = es
2 − 1. This space intervenes via the following sharp Moser-Trudinger type inequalities (see

[1, 2, 25, 27] for further details):
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Proposition 1.2.

(1.2) sup
‖u‖

HN (R2N )≤1

∫

R2N

(
eβN |u(x)|2 − 1

)
dx <∞ ,

where βN =
2Nπ2N22N

ω2N−1

, with ω2N−1 =
2 πN

(N − 1)!
the measure of the unit sphere S2N−1.

Indeed, Estimate (1.2) leads obviously to the Sobolev embedding

(1.3) HN (R2N ) →֒ L(R2N ) ,

whose lack of compactness has been investigated by several authors (for further details, we refer to
[7, 8, 12, 21, 22, 26]). Since the works of P. -L. Lions ([21, 22]), it is well understood that the defect of
compactness of the Sobolev embedding (1.3) in 2D is due to two reasons. The first reason is the lack
of compactness at infinity that can be illustrated by the sequence un(x) = ϕ(x+xn), where 0 6= ϕ ∈ D
and |xn| → ∞, and the second reason is of concentration-type and can be highlighted by the example
by Moser (see [21, 22, 23]) defined by:

fαn
(x) =





√
αn

2π if |x| ≤ e−αn ,

− log |x|√
2αnπ

if e−αn ≤ |x| ≤ 1,

0 if |x| ≥ 1,

where α := (αn) is a sequence of positive real numbers going to infinity. Recall that by straightforward
computations (detailed for instance in [7]):

(1.4) fαn
⇀ 0 in H1(R2) and ‖fαn

‖L(R2) →
1√
4π

, as n→ ∞·

Contrary to the case of the elementary concentrations involved in the framework studied by P. Gérard
in [18] (see also [3, 15, 19]) concerning the critical Sobolev embedding

(1.5) Ḣs(Rd) →֒ Lp(Rd) ,

with 0 ≤ s < d/2 and p = 2d/(d − 2s), the frequencies of the sequence (fαn
)n≥0 are spread. More

precisely with the vocabulary of [18] (see also Definition 1.5 in this paper), the sequence (∇fαn
)n≥0 is

“unrelated” to any scale. As it has been emphasized in [18] that the characteristic of being unrelated

to any scale is measured using the Besov norm Ḃ0
2,∞ (see for example [6] for a detailed exposition on

Besov spaces), this gives rise to

(1.6) ‖∇fαn
‖Ḃ0

2,∞(R2) −→ 0, as n→ ∞ .

Actually in [10], we have generalized this phenomenon to the 2ND case, which implies that the

classical Besov space BN2,∞(R2N ) does not embed into the Orlicz space L(R2N ). We will rather see
in Paragraph 3.1 that a more suitable Besov space built up from the logarithmic Littlewood-Paley
decomposition embeds in the Orlicz space.

Let us end this paragraph by noting that in general it can be inferred from Moser-Trudinger inequal-
ities (1.2) that

(1.7) HN (R2N ) →֒ Lφp(R2N ), ∀p ≥ 1 ,

where Lφp(R2N ) denotes the Orlicz space associated to the function

φp(s) = es
2 −

p−1∑

k=0

s2k

k!
·
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1.2. Background material. The notion of log-oscillating sequences have proved to be very efficient
in the characterization of the lack of compactness of the critical Sobolev embedding (1.3) in the 2ND
general case (see [10] for further details). Let us then start by recalling this notion and some basic
related facts:

Definition 1.3. Let v := (vn)n≥0 be a bounded sequence in L2(Rd) and α := (αn)n≥0 be a sequence

of positive real numbers going to infinity.

• The sequence v is said α log-oscillating if 1

(1.8) lim sup
n→∞

(∫

|ξ|≤e
αn
R

|v̂n(ξ)|2 dξ +
∫

|ξ|≥eRαn

|v̂n(ξ)|2 dξ
)

R→∞−→ 0 .

• The sequence v is said log-unrelated to the scale α if for any real numbers b > a > 0

(1.9)

∫

eaαn≤|ξ|≤ebαn

|v̂n(ξ)|2 dξ n→∞−→ 0 .

Remarks 1.4.

• Clearly the notion of log-oscillating is only relevant for scales (αn)n≥0 converging towards

infinity.

• Inspired by the counter-example of P. Gérard in [18], one can prove the existence of sequences

log-unrelated to any scale which nevertheless do not converge strongly to 0 in L2(Rd). To be

convinced, let us consider in L2(Rd) the sequence (vn)n≥3 defined by:

(1.10) v̂n(ξ) :=
1√

log(logn)

ψ̂( ξn )√
(1 + |ξ|d| log |ξ||)

,

where ψ is a function in S(Rd) satisfying
∫

Rd

ψ(x)dx 6= 0.

On the one hand by straightforward computations, we get for any sequence (αn) tending to

infinity and any real numbers b > a > 0
∫

eaαn≤|ξ|≤ebαn

|v̂n(ξ)|2 dξ ≤ Cψ
log(logn)

∫ eb αn

eaαn

dρ

ρ log(ρ)
·

Performing the change of variables ρ = eu, we easily deduce that
∫

eaαn≤|ξ|≤ebαn

|v̂n(ξ)|2 dξ ≤
Cψ log( b

a
)

log(logn)

n→∞−→ 0 ,

which ensures that the sequence (vn) is log-unrelated to any scale tending to infinity.

In other respects for any fixed M , we have

∫

|ξ|≤M
|v̂n(ξ)|2 dξ .

‖ψ̂‖2
L∞(Rd)

Md

log(logn)

n→∞−→ 0 ,

which implies that the sequence (vn) is log-unrelated to any bounded scale.

On the other hand by Fourier-Plancherel formula, we have

‖vn‖2L2(Rd) =
(2π)−d

log(logn)

∫

Rd

|ψ̂( ξ
n
)|2 dξ

(1 + |ξ|d| log |ξ||) = I1
n + I2

n
,

with

I1
n :=

(2π)−d

log(logn)

∫

|ξ|≤n

|ψ̂( ξ
n
)|2 dξ

(1 + |ξ|d| log |ξ||) ·

1where û denotes the Fourier transform of u defined by: û(ξ) =

∫

R2N
e−i x·ξ u(x) dx .
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Performing the change of variables ξ = nη, we get by applying Lebesgue theorem

(1.11) I2
n =

(2π)−d

log(logn)

∫

|η|≥1

|ψ̂(η)|2 dη
( 1
nd + |η|d| log |n η||)

n→∞−→ 0 ·

Since ψ̂(0) =

∫

Rd

ψ(x)dx 6= 0, we obtain making use again of the change of variables ξ = nη

I1
n =

(2π)−d

log(logn)

∫

|η|≤1

|ψ̂(η)|2 dη
( 1
nd + |η|d| log |n η||) =

(2π)−d

log(log n)

∫

|η|≤1

(|ψ̂(0)|2 +O(|η|)) dη
( 1
nd + |η|d| log |n η||)

,

which, by straightforward computations, implies that

I1
n =

(2π)−d |ψ̂(0)|2
log(logn)

∫

e
n
≤|η|≤1

dη

( 1
nd + |η|d| log |n η||) + ◦(1) ·

We deduce that

(1.12) I1
n
n→∞−→ (2π)−dωd−1

∣∣∣
∫

Rd

ψ(x)dx
∣∣∣
2
,

where ωd−1 denotes the measure of the unit sphere Sd−1.

Invoking (1.11) and (1.12), we infer that

‖vn‖2L2(Rd)

n→∞−→ (2π)−dωd−1

∣∣∣
∫

Rd

ψ(x)dx
∣∣∣
2
,

which ends the proof of the claim.

These notions of being log-oscillating with respect to a scale and of being log-unrelated to any scale
are a natural adaptation to Orlicz spaces setting of the vocabulary of P. Gérard introduced in [18] as
follows:

Definition 1.5. Let v := (vn)n≥0 be a bounded sequence in L2(Rd) and h := (hn)n≥0 be a sequence

of positive real numbers.

• The sequence v is said h-oscillating if

(1.13) lim sup
n→∞

(∫

hn|ξ|≤ 1
R

|v̂n(ξ)|2 dξ +
∫

hn|ξ|≥R
|v̂n(ξ)|2 dξ

)
R→∞−→ 0 .

• The sequence v is said unrelated to the scale h if for any reals b > a > 0

(1.14)

∫

a≤hn|ξ|≤b
|v̂n(ξ)|2 dξ n→∞−→ 0 .

Since our first aim in this paper is to construct a logarithmic Littlewood-Paley decomposition,
let us recall the definition of the classical dyadic partition of unity on R

d (we refer for instance
to [6, 13, 14, 28] and the references therein for more details).

Definition 1.6. Let C be the annulus {ξ ∈ R
d / 3/4 ≤ |ξ| ≤ 8/3}. There exist two radial functions χ

and ϕ valued in the interval [0, 1], belonging respectively to D(B(0, 4/3)) and to D(C), and such that

(1.15) ∀ξ ∈ R
d , χ(ξ) +

∑

j≥0

ϕ(2−jξ) = 1 and

(1.16) ∀ξ ∈ R
d \{0} ,

∑

j∈Z

ϕ(2−jξ) = 1 .

Remarks 1.7.
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• For all u in S ′(Rd), we have 2

(1.17) u =
∑

j

∆ju ,

where the nonhomogeneous dyadic blocks ∆j are defined by

∆ju = 0 if j ≤ −2, ∆−1u = χ(D)u and ∆ju = ϕ(2−jD)u if j ≥ 0 .

Note that Identity (1.17) also assumes the form

u = lim
j→∞

∑

j′≤j−1

∆j′u = lim
j→∞

Sju in S ′(Rd) ,

where the nonhomogeneous low frequency cut-off operator Sj writes

Sju =
∑

−1≤j′≤j−1

∆j′u = χ(2−jD)u for j ≥ 0 .

• Equality (1.17) is not valid for all u in S ′(Rd) for homogeneous dyadic blocks ∆̇j defined by

∆̇ju = ϕ(2−jD)u for j ∈ Z .

It clearly fails for nonzero polynomials. However, it holds true in S ′
h(R

d) the subspace of

tempered distributions u satisfying ‖Ṡju‖L∞(Rd)
j→−∞−→ 0, where Ṡj designates the homogeneous

low frequency cut-off operator defined by

Ṡju =
∑

j′≤j−1

∆̇j′u for j ∈ Z .

• Decomposition (1.17), which supplies an elementary device for splitting a possibly rough func-

tion into a sequence of spectrally localized smooth functions, allows among other to define a

wide class of function spaces like Besov spaces and to provide elementary and elegant proofs

of various inequalities such as refined Sobolev and Hardy inequalities. We can consult Chapter

2 in [6] for an overview of this theory in the classical case.

• Recall that for s ∈ R and 1 ≤ p, r ≤ ∞, the nonhomogeneous Besov space Bsp,r(R
d) is the set

of all tempered distributions u so that

‖u‖Bs
p,r(R

d) :=
∥∥∥(2js‖∆ju‖Lp)j∈Z

∥∥∥
ℓr(Z)

<∞ ,

and the homogeneous Besov space Ḃsp,r(R
d) is the set of tempered distributions belonging to

S ′
h(R

d) such that

‖u‖Ḃs
p,r(R

d) :=
∥∥∥(2js‖∆̇ju‖Lp)j∈Z

∥∥∥
ℓr(Z)

<∞ .

Thus Estimate (1.6) also reads

(1.18) sup
j∈Z

‖∆̇j∇fαn
‖L2(R2) −→ 0, as n→ ∞ .

• Property (1.18) highlights the fact that the example by Moser is spread in frequency. Note that

it was proved in [9] that the sequence (fαn
) can be written under the form:

fαn
(x) = f̃αn

(x) + rn(x) ,

with ‖rn‖H1(R2)
n→∞−→ 0 and

f̃αn
(x) =

1

(2π)2

√
2π

αn

∫

R2

ei x·ξ
1

|ξ|2 ϕ
( log |ξ|

αn

)
dξ ,

where ϕ(η) = 1[0,1](η).

2we recall that F(Θ(D)u)(ξ) = Θ(ξ)F(u)(ξ), with F the Fourier transform.
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• Obviously, we have

(1.19) F(f̃αn
)(ξ) =

√
2π

αn

1[1,eαn ](|ξ|)
|ξ|2

,

which shows that the spectrum of fαn
is spread over the disk of radius eαn centered at the

origin.

• More generally, it has been emphasized in [10] that the lack of compactness of the Sobolev

embedding (1.3) is displayed by sequences under the form:

gαn
(x) =

CN√
αn

∫

|ξ|≥1

ei x·ξ

|ξ|2N ϕ
( log |ξ|

αn

)
dξ ,

with CN =
1

(2π)N
√
ω2N−1

, (αn)n≥0 a sequence of positive real numbers going to infinity and

ϕ 6≡ 0 in L2(R+). It was also proved that (|D|N gαn
)n≥0 is α log-oscillating and that

(1.20) lim
n→∞

‖gαn
‖L(R2N ) =

1√
βN

max
s>0

|ψ(s)|√
s

,

where ψ(s) :=

∫ s

0

ϕ(t) dt.

The basic idea of Littlewood-Paley theory is contained in two fundamental inequalities known as
Bernstein inequalities. The first one says that, for a function whose Fourier transform is supported
in an annulus of size λ, differentiate and then take the Lp norm amounts to do a dilation of ratio λ
on the Lp norm. The second one specifies that, for such functions, the passage from the Lp norm to

the Lq norm, for q ≥ p ≥ 1, costs λd(
1
p
− 1

q ), which should be understood as a Sobolev embedding.
More precisely, we have the following lemma the proof of which can be for instance found in [6]:

Lemma 1.8. Let C be an annulus and B a ball of Rd centered at the origin. A constant C exists so

that, for any nonnegative integer k, any couple (p, q) in [1,∞]2 with q ≥ p ≥ 1 and any function u

of Lp(Rd), we have

Supp û ⊂ λB =⇒ ‖Dku‖Lq(Rd) := sup
|α|=k

‖∂αu‖Lq(Rd) ≤ Ck+1λk+d(
1
p
− 1

q
)‖u‖Lp(Rd) and

Supp û ⊂ λC =⇒ C−k−1λk‖u‖Lp(Rd) ≤ ‖Dku‖Lp(Rd) ≤ Ck+1λk‖u‖Lp(Rd) .

1.3. Main results. The development of microlocal tools adapted to the framework of problems at
hand is an important issue: we refer for instance to the articles [4, 5, 11, 16, 17] where was constructed
respectively Littlewood-Paley decompositions on the Heisenberg group, on graded Lie groups and on
Lie groups of polynomial growth satisfying properties as Bony’s decomposition ([13]) in the euclidean
case, which enabled to transpose many classical results to these general settings. One can also mention
the work [20] where the construction of an adapted Littlewood-Paley theory to the geometric situation
of the Einstein equations allows to reach optimal regularity indexes for the initial data.

Our main goal in this paper is to develop a logarithmic Littlewood-Paley theory taking advantage
of the notion introduced in [9] of being log-oscillating with respect to a scale which has already proved
to be efficacious in [10] in the framework of Orlicz spaces. For that purpose, let us start by introducing
the following definition:

Definition 1.9. Under the notations of Definition 1.6, we define for all u in S ′(Rd) the logarithmic

dyadic blocks ∆log
j by

∆log
j u = ϕ(2−j log |D|)(1 − χ̃(D))u for j ∈ Z ,

where χ̃ is a radial function belonging to D(B(0, 2)) and satisfying χ̃(ξ) = 1 for |ξ| ≤ 3
2
, and the low

logarithmic frequency cut-off operator Slog
j by

Slog
j u = χ̃(D)u +

∑

j′≤j−1

∆log
j′ u = χ̃(D)u+ χ(2−j log |D|)(1 − χ̃(D))u for j ∈ Z .
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Formally, we have

(1.21) Id = χ̃(D) +
∑

j′∈Z

∆log
j′ u .

Actually as in the usual case, we have the following result which ensures that the logarithmic
Littlewood-Paley decomposition (1.21) makes sense in S ′(Rd):

Proposition 1.10. Let u be in S ′(Rd). Then

(1.22) u = lim
j→∞

Slog
j u in S ′(Rd) .

Proof. By classical arguments, one can reduce to the proof of (1.22) in S(Rd). Because the Fourier

transform is an automorphism of S(Rd), we can alternatively prove that for any multi-index α of
length n, we have

Nn,α

((
1− χ(2−j log | · |)

)
(1 − χ̃) û

)
j→∞−→ 0 ,

where Nn,α(f) = sup
Rd

(1 + |ξ|)n
∣∣∂αf(ξ)

∣∣.

By virtue of Leibnitz formula, we get
(
making use of the fact that the function (1− χ̃) û is supported

on the set
{
ξ ∈ R

d / |ξ| ≥ 1
})

Nn,α

((
1− χ(2−j log | · |)

)
(1− χ̃)û

)
≤ sup

Rd

(1 + |ξ|)n
{(

1− χ(2−j log |ξ|)
)∣∣∂αv̂(ξ)

∣∣

+
∑

β<α

Cβα
∣∣∂α−β

(
χ(2−j log |ξ|)

)
∂β v̂(ξ)

∣∣
}
,

with v̂(ξ) := (1− χ̃(ξ))û(ξ).

Since χ̃(ξ) ≡ 1 in the ball centered at the origin and of radius 3
2
, we deduce that

Nn,α

((
1− χ(2−j log | · |)

)
(1− χ̃)û

)
. 2−j sup

|β|≤|α|
Nn+1,β

(
(1− χ̃)û

)
,

which ends the proof of the result. �

Remarks 1.11.

• As emphasized in Remarks 1.4, the notion of log-oscillating with respect to a scale is only rel-

evant for scales tending to infinity. This justifies the fact that the definition of the logarithmic

dyadic blocks ∆log
j does not take into account the low frequencies.

• Clearly there is j0 ∈ Z such that for any function u in S ′(Rd), we have ∆log
j u ≡ 0 for j ≤ j0.

Furthermore for j ≥ j0, the function ∆log
j u is spectrally localized in e2

j C, where C is the

annulus introduced in Definition 1.6. This obviously ensures that the sequence (∆log
j u)j≥j0 is

(2j)j≥j0 log-oscillating.

• Since for applications to the Orlicz space, the logarithmic Littlewood-Paley theory is mostly

relevant in 2ND case, we shall limit ourselves in what follows to this case.

• Finally, let us point out that

(1.23) lim sup
j→+∞

‖∆log
j u‖L(R2N ) = KN lim sup

j→+∞
max
s>0

∣∣∣
∫

1≤|ξ|≤e2
js

∆̂log
j u(ξ) dξ

∣∣∣
√
2js

,

with KN =
1√

2N (2π)2N
· Indeed, by definition 3

∆log
j u(x) =

1

(2π)2N

∫

|ξ|≥1

ei x·ξ

|ξ|2N ∆̃log
j u

(
log |ξ|, ω

)
dξ ,

3where obviously ξ = |ξ| · ω, with ω ∈ S2N−1.
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with ∆̃log
j u

(
log |ξ|, ω

)
:= |ξ|2N ∆̂log

j u(ξ)· Setting

∆̃log
j u

(
log |ξ|, ω

)
=

1√
2j

∆log,♭
j u

( log |ξ|
2j

, ω
)
,

we deduce that

∆log
j u(x) =

1

(2π)2N
√
2j

∫

|ξ|≥1

ei x·ξ

|ξ|2N ∆log,♭
j u

( log |ξ|
2j

, ω
)
dξ .

This ensures in view of Lemma 3.4 in [10] that

∆log
j u(x) =

1

(2π)2N
√
2j

∫

|ξ|≥1

ei x·ξ

|ξ|2N ∆log,♯
j u

( log |ξ|
2j

)
dξ + rj(x) ,

with ‖rj‖L(R2N )
j→∞−→ 0 and

∆log,♯
j (t) =

1

ω2N−1

∫

S2N−1

∆log,♭
j u(t, ω) dω .

In light of (1.20), this gives rise to

‖∆log
j u‖L(R2N ) =

1√
2N

max
s>0

∣∣∣
∫ s

0

∆log,♯
j u(t) dt

∣∣∣
√
s

+ ◦(1) ,

which by straightforward computations leads to

‖∆log
j u‖L(R2N ) =

1√
2N (2π)2N

max
s>0

∣∣∣
∫

1≤|ξ|≤e2js
∆̂log
j u(ξ) dξ

∣∣∣
√
2js

+ ◦(1) ·

This ends the proof of Claim (1.23).

In order to state the logarithmic Bernstein inequalities in a clear way, let us define the notion of

annulus of exponential size. Given C =
{
ξ ∈ R

2N / r ≤ |ξ| ≤ R
}
an annulus of R2N , we shall denote

by eC the annulus defined as follows:

(1.24) eC :=
{
η ∈ R

2N / er ≤ |η| ≤ eR
}
.

As in the euclidean case, the first interest of this logarithmic localization procedure in frequency
space is that the ”logarithmic derivatives” act almost as homothety on distributions the Fourier
transform of which is supported in an annulus of exponential size. More precisely, we have the following
inequalities which are the counterpart of the second Bernstein inequality stated in Lemma 1.8:

Lemma 1.12. Let C be an annulus of R
2N included in the set

{
ξ ∈ R

2N / |ξ| > 1
}
. For any

nonnegative integer k, there exist positive constants Ck and C̃k so that, for any real number p ≥ 1
and any function u belonging to Lp(R2N ) satisfying Supp û ⊂ eλ C, with λ ≥ 1, we have

(1.25) C̃kλ
k‖u‖Lp(R2N ) ≤ ‖(log |D|)ku‖Lp(R2N ) ≤ Ckλ

k‖u‖Lp(R2N ) .

The generalization of the first part of classical Bernstein inequalities stated in Lemma 1.8 is more
challenging. The result we obtain in the logarithmic frame reads differently from that of the classical

case, but expresses the same phenomenon, namely that we lose 2N
(

1
p
− 1

q

)
derivatives in the passage

from the Lp norm to the Lq norm, for q ≥ p ≥ 1. More precisely, our result formulates as follows:

Lemma 1.13. Let C be an annulus of R
2N included in the set

{
ξ ∈ R

2N / |ξ| > 1
}
. There is

a positive real number b so that the following holds. For any nonnegative integer k, there exists a

positive constant Ck such that, for any real number λ ≥ 1, any couple (p, q) in [1,∞]2 with q ≥ p ≥ 1

and any function u belonging to Lp(R2N ) whose spectrum is included in eλ C, we have

‖(log |D|)ku‖Lq(R2N ) ≤ Ck λ
k e2N λ b ( 1

p
− 1

q
) ‖u‖Lp(R2N ) .
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Remark 1.14. Contrary to the classical case, the cost of the passage from the Lp norm to the Lq

norm is exponential. This is justified by the fact that the spectrum of the functions considered is of

exponential size.

As mentioned above, among the objectives of the Littlewood-Paley theory is to construct functional
spaces like Besov spaces and to study their properties. As in the euclidean case, let us define the
logarithmic Besov spaces.

Definition 1.15. Let s be a real number, and (p, r) be in [1,∞]2. The logarithmic Besov space

Bs,logp,r (R2N ) is the subset of tempered distributions u of S ′(R2N ) such that

‖u‖Bs,log
p,r (R2N ) := ‖χ̃(D)u‖Lp(R2N ) +

∥∥∥(2js‖∆log
j u‖Lp(R2N ))j∈Z

∥∥∥
ℓr(Z)

<∞ .

Remarks 1.16.

• Clearly L2(R2N ) coincides with B0,log
2,2 (R2N ) which implies that

(1.26) L2(R2N ) →֒ B0,log
2,∞ (R2N ) .

• Note also that in view of logarithmic Bernstein inequalities, (log |D|)k operate on logarithmic

Besov spaces Bs,logp,r (R2N ), namely that for any real number s and any (p, q) in [1,∞]2, the
map

(log |D|)k : Bs,logp,r (R2N ) −→ Bs−k,logp,r (R2N )

defines a continuous linear functional.

• As in the classical case, the logarithmic cut-off operators ∆log
j and Slog

j are convolution oper-

ators on R
2N defined for j ∈ Z by:

∆log
j u = hj ⋆ (1 − χ̃(D))u ,

and

Slog
j u = h̃j ⋆ (1− χ̃(D))u .

Contrary to the classical case, the functions hj and h̃j are not dilated of integrable functions.

However, they belong to L1(R2N ) with norms independent of j. This property is more chal-

lenging than the classical case. Its proof will be given in Paragraph 2.1. In view of Hölder

inequalities, it implies that the operators ∆log
j and Slog

j map Lp(R2N ) into Lp(R2N ) with norms

independent of j and p.

• Let us finally note that as in the classical case the definition of the Besov space Bs,logp,r is

independent of the functions χ̃ and ϕ used for defining the logarithmic dyadic bloks, and

changing these functions yields an equivalent norm.

1.4. Layout of the paper. The paper is organized as follows. In Section 2, we prove Bernstein
inequalities in the framework of the logarithmic Littlewood-Paley decomposition which are the sub-
ject of Lemmas 1.12 and 1.13. Then in Section 3, we state and establish some logarithmic Sobolev
embeddings that occur in Orlicz spaces.

We mention that the letter C will be used to denote an absolute constant which may vary from line
to line. We also use A . B to denote an estimate of the form A ≤ CB for some absolute constant C.

2. Proof of Bernstein inequalities

This section is devoted to the proof of Bernstein inequalities in the framework of the logarithmic
Littlewood-Paley decomposition. Adapting these fundamental inequalities provides various functional
inequalities such as Sobolev embeddings and their refined versions. We will dedicate Section 3 to
some functional inequalities which does not arise immediately from an adaptation of the classical
framework.
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2.1. Proof of Lemma 1.12. Assuming that C =
{
ξ ∈ R

2N / 1 < r ≤ |ξ| ≤ R < b
}
, let φ be a

function in D(R) such that supp(φ) ⊂]1, b[ and φ ≡ 1 near ]r, R[. Since the spectrum of u is included
in eλC with λ ≥ 1, we have û(ξ) = φ(λ−1 log |ξ|) û(ξ). Thus

(log |D|)k u = (log |D|)k gλ ⋆ u ,
where ĝλ(ξ) = φ(λ−1 log |ξ|). Applying Young’s inequality, we get

‖(log |D|)ku‖Lp ≤ ‖(log |D|)k gλ‖L1‖u‖Lp .

But

F((log |D|)k gλ)(ξ) = λk(λ−1 log |ξ|)kφ(λ−1 log |ξ|) .
We are then reduced to estimate the L1-norm of the function

gk,λ(x) := (2π)−2N

∫

R2N

ei x·ξ (λ−1 log |ξ|)kφ(λ−1 log |ξ|) dξ .

On the one hand ∣∣gk,λ(x)
∣∣ .

∫

R2N

∣∣φk(λ−1 log |ξ|)
∣∣ dξ ,

with φk(ρ) := ρk φ(ρ). According to the fact that φk ∈ D(]1, b[), this gives rise to
∣∣gk,λ(x)

∣∣ . e2N λ b .

We deduce that for any positive real number δ, we have

(2.1)

∫

|x|≤δ

∣∣gk,λ(x)
∣∣ dx . (δ eλ b)2N ·

On the other hand by straightforward integrations by parts, we get for any x 6= 0

|x|2 gk,λ(x) = −(2π)−2N

∫

R2N

ei x·ξ ∆ξ(φk(λ
−1 log |ξ|)) dξ ,

where ∆ξ :=

2N∑

j=1

∂2ξj . Observing that

(2.2) ∆ξ(φk(λ
−1 log |ξ|)) = λ−2φ′′k(λ

−1 log |ξ|) 1

|ξ|2 + λ−1φ′k(λ
−1 log |ξ|) 2N − 2

|ξ|2
,

we infer that in the 2D case
∣∣|x|2 gk,λ(x)

∣∣ . λ−2

∫ ∞

1

∣∣φ′′k(λ−1 log ρ)
∣∣ dρ
ρ

. λ−1‖φ′′k‖L1 .

Through a second integration by parts, we easily find that for any λ ≥ 1

∣∣|x|3 gk,λ(x)
∣∣ . λ−2

∫ ∞

1

∣∣H(λ−1 log ρ)
∣∣ dρ
ρ2

. λ−2 ,

where the function H (depending on k) is a function of D(R).

Taking advantage of Formula (2.2) and the fact that ∆
(N−1)
ξ

(
|ξ|−2

)
= cN δ0 in R

2N when N > 1, we
get by repeated integrations by parts for any λ ≥ 1

(2.3)
∣∣|x|2N gk,λ(x)

∣∣ . λ−2

∫

|ξ|≥1

H2N (λ−1 log |ξ|) dξ

|ξ|2N . λ−1 ,

and

(2.4)
∣∣|x|2N+1 gk,λ(x)

∣∣ . λ−2

∫

|ξ|≥1

H2N+1(λ
−1 log |ξ|) dξ

|ξ|2N+1
. λ−2 . 1 ,

where the functions H2N and H2N+1 (also depending on k) are functions belonging to D(R). This
implies that

(2.5)

∫

|x|≥1

∣∣gk,λ(x)
∣∣ dx . 1 ,
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and for any 0 < δ ≤ 1

(2.6)

∫

δ≤|x|≤1

∣∣gk,λ(x)
∣∣ dx . λ−1

∫ 1

δ

dρ

ρ
. −λ−1 log(δ) .

Choosing δ = e−λ b and invoking (2.1), (2.5) and (2.6), we infer that

‖gk,λ‖L1(R2N ) . 1 ,

which ends the proof of the right hand side of the assertion.

Once observed that the function u can be recast under the form

u = (log |D|)−k gλ ⋆ (log |D|)k u ,
we end the proof of the result.

2.2. Proof of Lemma 1.13. The proof of this lemma goes the same lines as the proof of Lemma 1.12.
Taking advantage of the fact that the spectrum of the function u is included in eλ C with λ ≥ 1, we
find that û(ξ) = φ(λ−1 log |ξ|) û(ξ), where φ is a function of D(R) chosen as above.

Therefore

(log |D|)k u = (log |D|)k gλ ⋆ u ,
where ĝλ(ξ) = φ(λ−1 log |ξ|). Thanks to Young inequalities, we obtain

‖(log |D|)k gλ ⋆ u‖Lq(R2N ) ≤ ‖(log |D|)k gλ‖Lr(R2N )‖u‖Lp(R2N ) ,

with
1

r
=

1

q
− 1

p
+ 1 · We are then reduced to prove that

(2.7) ‖(log |D|)k gλ‖Lr(R2N ) . λk e2N λ b ( 1
p
− 1

q
) ·

Obviously

F((log |D|)k gλ)(ξ) = λk(λ−1 log |ξ|)kφ(λ−1 log |ξ|) ,

thus in view of the relation
1

r
=

1

q
− 1

p
+ 1 , our purpose is to establish that the function

gk,λ(x) := (2π)−2N

∫

R2N

ei x·ξ φk(λ
−1 log |ξ|) dξ

with φk(ρ) = ρk φ(ρ), satisfies ‖gk,λ‖Lr(R2N ) . e2N λb (1− 1
r
).

To this end, we shall follow the strategy adopted in the proof of Lemma 1.12. Firstly since the
function φk belongs to D(]1, b[), we infer that

(2.8)
∣∣gk,λ(x)

∣∣ .
∫ eλ b

1

|φk(λ−1 log ρ)| ρ2N−1 dρ ,

which gives rise to

(2.9) ‖gk,λ‖L∞(R2N ) . e2N λ b ·
This ends the proof of the result in the case when r = ∞.

Recall that the case when r = 1 corresponds to the case studied in Lemma 1.12. Thus to achieve our
goal, it suffices to consider the case when 1 < r <∞. Taking advantage of (2.9), we deduce that, for
any positive real number δ, the following estimate holds

(2.10)

∫

|x|≤δ

∣∣gk,λ(x)
∣∣r dx . (δ eλ b r)2N ·

Moreover according to (2.3) and (2.4), we have
∣∣|x|2N gk,λ(x)

∣∣ . λ−1 and
∣∣|x|2N+1 gk,λ(x)

∣∣ . λ−2 .
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We deduce that ∫

|x|≥1

∣∣gk,λ(x)
∣∣r dx =

∫

|x|≥1

∣∣|x|2N+1 gk,λ(x)
∣∣ ∣∣gk,λ(x)

∣∣r−1 dx

|x|2N+1

. λ−2 e2N λ b(r−1),

and for any 0 < δ ≤ 1
∫

δ≤|x|≤1

∣∣gk,λ(x)
∣∣r dx =

∫

δ≤|x|≤1

∣∣|x|2N gk,λ(x)
∣∣ ∣∣gk,λ(x)

∣∣r−1 dx

|x|2N

. λ−1 e2N λ b(r−1)

∫ 1

δ

dρ

ρ
. −λ−1 e2N λ b(r−1) log(δ) ·

Selecting δ = e−λ b r achieves the proof of the lemma.

3. Logarithmic Sobolev embeddings

3.1. Sobolev embedding of logarithmic Besov spaces into the Orlicz spaces. The following
result, which is an immediate consequence of Proposition 4.1 in [10], improves the Sobolev embed-
ding (1.3). We sketch its proof here for the reader’s convenience.

Proposition 3.1. There is a positive constant C such that

‖w‖L(R2N ) ≤ C ‖|D|Nw‖B0,log
2,∞ (R2N ) .

Remark 3.2. As shown by estimates (1.4) and (1.6), the classical Besov space BN2,∞(R2N ) does not

embed in L(R2N ).

Proof. To go to the proof of Proposition 3.1, let us split the function w into two parts as follows:

w = w1 + w2

where w1 := Θ(D)w, with Θ a function of D(R2N ) identically equal to 1 near the unit ball. Since

for functions in L2(R2N ) ∩ L∞(R2N ), L(R2N ) behaves like L2(R2N ) (see for instance [7] for further
details), we infer that

(3.1) ‖w1‖L(R2N ) ≤ C‖w1‖L2(R2N ) .

To handle w2, let us for fixed λ > 0 estimate the integral:
∫

R2N

(
e|

w2(x)
λ

|2 − 1
)
dx .

Obviously ∫

R2N

(
e|

w2(x)
λ

|2 − 1
)
dx =

∑

p≥1

‖w2‖2pL2p

λ2pp!
·

Firstly let us investigate ‖w2‖2pL2p . Knowing that for any p ≥ 1

‖w2‖2pL2p ≤ C2p‖ŵ2‖2p
L

2p
2p−1

,

we are led to estimate ‖ŵ2‖
L

2p
2p−1

. For that purpose, let us write

ŵ2(ξ) =
1

|ξ|2N w̃(log |ξ|, ω) .

Observing that

(3.2) ‖|D|Nw2‖B0,log
2,∞ (R2N ) ∼ sup

j∈Z

∫ 2j+1

2j−1

∫

S2N−1

∣∣w̃(t, ω)
∣∣2 dt dω ,

and

(3.3) ‖|D|Nw2‖L2(R2N ) ∼
∫ ∞

0

∫

S2N−1

∣∣w̃(t, ω)
∣∣2 dt dω ,
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we deduce from Hölder inequality that for any p ≥ 2

‖ŵ2‖
2p

2p−1

L
2p

2p−1

. ‖|D|Nw2‖
2p

2p−1

B0,log
2,∞ (R2N )

∑

j∈Z

( ∫ 2j+1

2j−1

e−
2Nt
p−1 dt

) p−1
2p−1

.

By straightforward computations, we find that

(∫ 2j+1

2j−1

e−
2Nt
p−1 dt

) p−1
2p−1

=
(p− 1

2N

) p−1
2p−1

(
e

−2N2j−1

p−1 − e
−2N2j+1

p−1

) p−1
2p−1

.

Taking advantage of the fact that the ratio
p− 1

2p− 1
is uniformly bounded with respect to p ≥ 2, we

deduce that

(∫ 2j+1

2j−1

e−
2Nt
p−1 dt

) p−1
2p−1

.
(
2p− 1

) p−1
2p−1 e

−2N2j−1

2p−1 .

Choosing j0 so that
1

2
≤ 2j0

2p− 1
≤ 1, we infer that

∑

j≥j0

( ∫ 2j+1

2j−1

e−
2Nt
p−1 dt

) p−1
2p−1

.
(
2p− 1

) p−1
2p−1

∑

j≥j0
e−

2N2j

2p−1

.
(
2p− 1

) p−1
2p−1

∑

j≥j0
2−j(2p− 1)

.
(
2p− 1

) p−1
2p−1 2−j0(2p− 1) .

(
2p− 1

) p−1
2p−1 .

Making use again of the fact that the ratio
p− 1

2p− 1
is uniformly bounded with respect to p ≥ 2, we

obtain for j ≤ j0

(∫ 2j+1

2j−1

e−
2Nt
p−1 dt

) p−1
2p−1

=
(p− 1

2N

) p−1
2p−1

e−
2N2j+1

2p−1

(
e

3N2j

p−1 − 1
) p−1

2p−1

.
(
2p− 1

) p−1
2p−1

( 2j

2p− 1

) p−1
2p−1

.
(
2j
) p−1

2p−1 ,

which gives rise to

∑

j≤j0

(∫ 2j+1

2j−1

e−
2Nt
p−1 dt

) p−1
2p−1

.
∑

j≤j0

(
2

p−1
2p−1

)j
. 2(j0+1) p−1

2p−1 .
(
2p− 1

) p−1
2p−1 .

We deduce that for any p ≥ 2

‖w2‖2pL2p . C2p ‖|D|Nw2‖2p
B0,log

2,∞ (R2N )

(
2p− 1

)p−1
.

Along the same lines, we obtain

‖w2‖2L2 . ‖|D|Nw2‖2B0,log
2,∞ (R2N )

,

which leads to

∫

R2N

(
e|

w2(x)
λ

|2 − 1
)
dx .

∑

p≥1

C2p ‖|D|Nw2‖2p
B0,log

2,∞ (R2N )

(
2p− 1

)p−1

λ2pp!
·

In view of Stirling formula, we infer that

(3.4) ‖w2‖L(R2N ) ≤ C ‖|D|Nw2‖B0,log
2,∞ (R2N ) ,

which in view of (3.1) achieves the proof of the result. �
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3.2. A refined radial estimate. The following result is the counterpart of the well-known radial
estimate away from the origin available for any radial function in H1(R2N ):

(3.5) |u(x)| ≤ C2√
|x|2N−1

‖u‖
1
2

L2(R2N )
‖∇u‖

1
2

L2(R2N )
.

Proposition 3.3. There is a positive constant C such that for any radial function w, we have

(3.6) sup
0<|x|≤e−1

|w(x)|√
− log |x|

≤ C‖w‖
1
2

ḢN (R2N )
‖|D|Nw‖

1
2

B0,log
2,∞ (R2N )

·

Proof. To go to the proof of the radial estimate (3.6), let us as in the proof of Proposition 3.1, split
the function w into two parts as follows:

w = w1 + w2

where w1 = Θ(D)w. Obviously

(3.7) ‖w1‖L∞(R2N ) . ‖w1‖L2(R2N ) .

Now arguing as in the proof of Proposition 3.1, write

ŵ2(ξ) =
1

|ξ|2N w̃(log |ξ|) .

Observing that for any 0 < |x| ≤ e−1, there exists p ∈ N such e−2p+1 ≤ |x| ≤ e−2p , let us decompose
w2(x) as follows

w2(x) =W (1)(x) +W (2)(x),

with W (1)(x) :=
1

(2π)2N

∫

1≤|ξ|≤e2p+1

ei x·ξ

|ξ|2N w̃(log |ξ|) dξ.

To estimate the part W (1), we shall perform the change of variable t = log |ξ| and make use of
Cauchy-Schwarz inequality which give rise to

|W (1)(x)| ≤ 1

(2π)2N

∫

1≤|ξ|≤e2
p+1

∣∣w̃(log |ξ|)
∣∣

|ξ|2N dξ

.

j=p∑

j=−∞

∫ 2j+1

2j

∣∣w̃
(
t
)∣∣ dt

.

j=p∑

j=−∞
2

j

2

( ∫ 2j+1

2j

∣∣w̃
(
t
)∣∣2 dt

) 1
2

. 2
p

2 sup
j∈Z

(∫ 2j+1

2j

∣∣w̃
(
t
)∣∣2 dt

) 1
2

.

This implies in view of (3.2) that

|W (1)(x)| ≤ 2
p

2 ‖|D|Nw2‖B0,log
2,∞ (R2N ) .

Consequently, we deduce that for e−2p+1 ≤ |x| ≤ e−2p

|W (1)(x)|√
− log |x|

.
2

p
2√

− log |x|
‖|D|Nw2‖B0,log

2,∞ (R2N ) . ‖|D|Nw2‖B0,log
2,∞ (R2N ) ,

which achieves the proof of the result for the part W (1) according to the Sobolev embedding

L2(R2N ) →֒ B0,log
2,∞ (R2N ) .

To address the part W (2), we shall make advantage of the radial estimate (3.5) which ensures that

|W (2)(x)| ≤ C√
|x|2N−1

‖W (2)‖
1
2

L2(R2N )
‖∇W (2)‖

1
2

L2(R2N )
.
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Obviously, we have

‖W (2)‖2L2(R2N ) =
1

(2π)2N

∫

|ξ|≥e2p+1

∣∣w̃(log |ξ|)
∣∣2

|ξ|4N dξ

.
∑

q≥p+1

e−2N2q
∫

e2
q≤|ξ|≤e2

q+1

∣∣w̃(log |ξ|)
∣∣2

|ξ|2N dξ

.
∑

q≥p+1

e−2N2q sup
q∈Z

∫ 2q+1

2q

∣∣w̃
(
t
)∣∣2 dt . e−2N2p+1 ‖|D|Nw2‖2B0,log

2,∞ (R2N )
.

Along the same lines

‖∇W (2)‖2L2(R2N ) =
1

(2π)2N

∫

|ξ|≥e2
p+1

∣∣w̃(log |ξ|)
∣∣2

|ξ|4N−2
dξ

. e−2(N−1)2p+1

∫

|ξ|≥e2p+1

∣∣w̃(log |ξ|)
∣∣2

|ξ|2N dξ

. e−2(N−1)2p+1 ‖w̃‖2L2 .

Taking advantage of (3.3), we infer that

‖∇W (2)‖L2(R2N ) . e−(N−1)2p+1 ‖|D|Nw2‖L2(R2N ) .

This leads to the following estimate for e−2p+1 ≤ |x| ≤ e−2p

|W (2)(x)| .
e−

(2N−1) 2p+1

2√
|x|2N−1

‖|D|Nw2‖
1
2

L2(R2N )
‖|D|Nw2‖

1
2

B0,log
2,∞ (R2N )

. ‖|D|Nw2‖
1
2

L2(R2N )
‖|D|Nw2‖

1
2

B0,log
2,∞ (R2N )

,

which ends the proof of the proposition. �
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linéaires, Annales de l’École Normale Supérieure de Paris, 14 (1981), pages 209-246.



16 H. BAHOURI
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