research documents, whether they are published or not. The documents may come    

Supplementary Material for: Homogeneity and identity tests for unidimensional Poisson processes for neurophysiological peri-stimulus time histograms. 1 The analysis with R

Loading the required libraries and data

The analysis requires a package available on the Comprehensive R Archive Network (CRAN): STAR. The reader should therefore start by installing it if the package is not already installed. The library is then loaded in the session:

library(STAR)
The three analyzed data sets (e060817terpi, e060817citron and e060817mix) are loaded next: data(e060817terpi) data(e060817citron) data(e060817mix)

Raster plots

There is a built-in function creating raster plots in STAR [START_REF] Pouzat | Automatic Spike Train Analysis and Report Generation. An Implementation with R, R2HTML and STAR[END_REF], the plot method for objects of which the data just loaded are instances), but we need a finer control of the graphical output for our figures and define a mkRaster function:

mkRaster <-function (x, stimTimeCourse = NULL, colStim = "grey80", xlim, pch, xlab, ylab, main, ...) { if (!is.repeatedTrain(x))

x <-as.repeatedTrain(x) nbTrains <-length(x) if (missing(xlim))

xlim <-c(0, ceiling(max(sapply(x, max)))) if (missing(xlab))

xlab <-"Time (s)" if (missing(ylab)) ylab <-"trial" if (missing(main)) main <-paste(deparse(substitute(x)), "raster") if (missing(pch))

pch <-ifelse(nbTrains <= 20, "|", ".") acquisitionDuration <-max(xlim) plot(c(0, acquisitionDuration), c(0, nbTrains + 1), type = "n", xlab = xlab, ylab = ylab, xlim = xlim, ylim = c(1, nbTrains + 1), bty = "n", main = main, axes = FALSE,...) if (!is.null(stimTimeCourse)) { rect(stimTimeCourse[1], 0.1, stimTimeCourse [START_REF]for x in LD87tableIIaa[END_REF], nbTrains + 0.9, col = colStim, lty = 0) } invisible(sapply(1:nbTrains, function(idx) points(x [[idx]], numeric (length(x[[idx]])) + idx, pch = pch))) axis(1) }

We can now make Fig. 6: layout(matrix(1:3,nc=3)) par (cex.axis=3,cex.lab=4,cex.main=4,mar=c(5,5,5,1)) mkRaster(e060817citron [[1]], stimTimeCourse=attr(e060817citron[["neuron 1"]],"stimTimeCourse"), xlab="Time (s)",ylab="",main="Neuron 1",xlim=c(5,10)) mkRaster(e060817citron[ [START_REF]for x in LD87tableIIaa[END_REF]], stimTimeCourse=attr(e060817citron[["neuron 2"]],"stimTimeCourse"), xlab="Time (s)",main="Neuron 2",ylab="",xlim=c(5,10)) mkRaster(e060817citron [[3]], stimTimeCourse=attr(e060817citron[["neuron 3"]],"stimTimeCourse"), xlab="Time (s)",main="Neuron 3",ylab="",xlim=c(5,10))

Fig. 7 is built with:

layout(matrix(1:3,nc=3)) par(cex.axis=3,cex.lab=4,cex.main=4,mar=c(5,5,5,1)) mkRaster(e060817citron[[1]], stimTimeCourse=attr(e060817citron[["neuron 1"]],"stimTimeCourse"), xlab="Time (s)",ylab="",main="Citronellal",xlim=c(5,10)) mkRaster(e060817terpi[[1]], stimTimeCourse=attr(e060817terpi[["neuron 1"]],"stimTimeCourse"), xlab="Time (s)",main="Terpineol",ylab="",xlim=c(5,10)) mkRaster(e060817mix[[1]],
stimTimeCourse=attr(e060817mix[["neuron 1"]],"stimTimeCourse"), xlab="Time (s)",main="Mixture",ylab="",xlim=c(5,10))

1.3 Building the PSTH and stabilizing its variance

We then build a histogram of the data with a 25 ms bin width, keeping only observations in interval [1,14]; we then stabilize the variance (Eq. 3) with:

n1citron <-sort (as.vector(unlist(unclass(e060817citron[[1]

])))) n1citron <-n1citron[1 <= n1citron & n1citron <= 14] n1citron_bin <-seq(1,14.025,0.025) n1citron_hist <-hist(n1citron,n1citron_bin,plot=FALSE) n1citron_count <-n1citron_hist$counts n1citron_y = 2*sqrt((n1citron_count+0.25)/20) n1citron_x = n1citron_bin[-length(n1citron_bin)]+0.0125

PSTH and variance-stabilized-PSTH figure

The R commands producing the equivalent of Fig. 1 are:

layout(matrix(1:2,nc=2)) par(mar=c(5,5,4,1)) plot(n1citron_bin[-1],n1citron_count,type='s',col='black', xlab="Time (s)",ylab=expression("Number of events"~(Y[i])), main="Original") plot(n1citron_x,n1citron_y,type='s',col='black',
xlab="Time (s)",ylab=expression (2*sqrt((Y[i] + 1/4)/20)), main="Variance stabilized",ylim=c(0,3))

1.4 Kernel smoothing

The tricube function

We start by defining a tricube_kernel function:

tricube_kernel <-function(x,bw=1.0) { ax <-abs(x/bw) result <-numeric(length(x)) result[ax <= 1] <-70*(1-ax[ax <= 1]^3)^3/81 result }

The Nadaraya-Watson estimator

We define next a function returning the Nadaraya-Watson estimator at a given point:

Nadaraya_Watson_Estimator <-function(x,X,Y, kernel = function(y) tricube_kernel(y,1.0)) { ## Returns the Nadaray-Watson estimator at x, given data X and Y ## using kernel. ## ## Parameters ## ----------## x: point at which the estimator is looked for. ## X: abscissa of the observations. ## Y: ordinates of the observations. ## kernel: a univariate 'weight' function. ## ## Returns ## -------## The estimated ordinate at x. w <-kernel(X-x) sum(w*Y)/sum(w) }

Mallow's Cp score computation

We now need a function returning Mallow's C p score and define a function, Cp_score, doing the job:

Cp_score <-function(X,Y,bw = 1.0, kernel = tricube_kernel, sigma2=1/20) { ## Computes Mallow's Cp score given data X and Y, a bandwidth bw, ## a bivariate function kernel and a variance sigma2. ## ## Parameters ## ----------## X: abscissa of the observations. ## Y: ordinates of the observations. ## bw: the bandwidth. ## kernel: a bivariate function taking an ordinate as first parameter ## and a bandwidth as second parameter. ## sigma2: the variance of the ordinates. ## ## Returns ## -------## A tuple with the trace of the smoother and the Cp score.

L <-matrix(0,nrow=length(X),ncol=length(X)) ligne <-numeric(length(X)) for (i in 1:length(X)) { ligne <-kernel(X-X[i], bw) L[i,] <-ligne/sum(ligne) } n <-length(X) trace <-sum(diag(L)) if (trace == n) { return(NULL) } else { Cp = (sum((Y-Y%*%L)^2) + 2*sigma2*trace)/n c(trace, Cp) }}
We can get the score over a range of bandwidths (from 50 ms to 1 s) with:

bw_vector <-seq(0.05,1,0.025) n1citron_Cp_score <-sapply(bw_vector, function(bw) Cp_score(n1citron_x,n1citron_y,bw))

We then extract the bandwidth giving the best (lowest) score and get the corresponding Nadaraya-Watson estimator: We define next a function, tube_target returning the "target", that is:

2 (1 -Φ(c)) + κ 0 π exp - c 2 2 -α , tube_target <-function(x,alpha,kappa=86.58938919551133) (2*(1-pnorm(x)) + kappa*exp(-x^2/2)/pi -alpha)^2
We then get the c values for two α, 0.95 and 0.9 with:

c_p95 <-optimize(tube_target,c(3,4),alpha=0.05)$minimum c_p90 <-optimize(tube_target,c(2,4),alpha=0.1)$minimum

Smoothing matrix

We define a function returning the smoothing matrix L-a matrix whose (L) i,j element is given by l i (t j ), where the l i () are defined in the text and the t j are the centers of our PSTH bins-, evaluate the matrix for the data at hand and get the value of l(t) at each abscissa value:

make_L <-function(X,kernel = function(y) tricube_kernel(y,1.0)) { result <-matrix(0,nr=length(X),nc=length(X)) ligne <-numeric(length(X)) for (i in 1:length(X)) { ligne <-kernel(X-X[i]) result[i,] = ligne/sum(ligne) } result } n1citron_NW_L_best <-make_L(n1citron_x, kernel = function(y) tricube_kernel(y,bw_best_Cp)) n1citron_NW_L_best_norm <-sqrt(apply(n1citron_NW_L_best^2,1,sum))

Figure of the smooth estimate with the 0.95 confidence set

The equivalent of Fig. 3 in R is simply obtained with:

par(mar=c(5,5,4,1)) plot(n1citron_x,n1citron_y,type="l",col='black', xlab="Time (s)", ylab=expression(2*sqrt((Y[i] + 1/4)/20)), main="Nadaraya-Watson est. with 0.95 conf. bands", ylim=c(0,3)) lines(n1citron_x,n1citron_y_NW_best,lwd=2,col='blue') lines(n1citron_x, n1citron_y_NW_best+c_p95*n1citron_NW_L_best_norm/sqrt(20), lwd=2,col='red') lines(n1citron_x, n1citron_y_NW_best-c_p95*n1citron_NW_L_best_norm/sqrt(20), lwd=2,col='red')
1.6 Confidence set for the citronellal response of Neuron 2

We build the PSTH (using a 10 ms bin width since neuron 2 exhibits a higher basal firing rate than neuron 1) and stabilize its variance:

n2citron <-sort(as.vector(unlist(unclass(e060817citron

[[2]])))) n2citron <-n2citron[1 <= n2citron & n2citron <= 14] n2citron_bin <-seq(1,14.01,0.01) n2citron_hist <-hist(n2citron,n2citron_bin,plot=FALSE) n2citron_count <-n2citron_hist$counts n2citron_y = 2*sqrt((n2citron_count+0.25)/20) n2citron_x = n2citron_bin[-length(n2citron_bin)]+0.005
We set the bandwidth at 1 s, and get the new κ 0 value (since the bandwidth changed):

print(float(13*(sqrt(integrate(diff(70*(1-x^3)^3/81,x)^2,x,0,1)*2))/1));

19.48261256899005

We then compute the Nadaraya-Watson estimator, the smoothing matrix, the norm of its rows and get and the new c value: A systematic estimation of the parameters a and b of the square root boundary for coverage probabilities going from 0.9 to 0.99 is carried out as follows (rounding to the third digit): Back to the analysis of the data set We build the terpineol PSTH of neuron 1 (we compensate for different onset times, 6.03 s for terpineol and 5.99 for citronellal) and stabilize its variance:

n2_citron_bw <-1 n2citron_y_NW <-
p_vector <-seq(0.1,0.01,-0.01) get_a_b <-function(p) { h_size <-0.001 target <-mkTightBMtargetFct(ci=1-p,h=h_size) fit <-optim(log(c(0.3,2.35)), target,method="BFGS") dom <-crossTight(a=exp(fit$par[1]), b=exp(fit$par[2]), withBound=TRUE, logScale=FALSE) within <-dom$Gl[length(dom$Gl)] <= p/2 & p/2 <= dom$Gu[length(dom$Gu)] while (fit$convergence != 0 || !within) { if (fit$convergence != 0) { fit <-optim(fit$par, target, method="BFGS") } else { h_size <-h_size/10 target <-mkTightBMtargetFct(ci=1-p,h=h_size) fit <-optim(fit$par, target,method="BFGS") } dom <-crossTight(a=exp(fit$par[1]), b=exp(fit$par[2]), withBound=TRUE, logScale=FALSE) within <-dom$Gl[length(dom$Gl)] <= p/2 & p/2 <= dom$Gu[length(dom$Gu)] } res <-exp(fit$par) c(a=res[1],b=res[2])} sqrt_coef <-t(
n1terpi <-sort(as.vector(unlist(unclass(e060817terpi

[[1]]))))-0.04 n1terpi <-n1terpi[1 <= n1terpi & n1terpi <= 14] n1terpi_bin <-seq(1,14.025,0.025) n1terpi_hist <-hist(n1terpi,n1terpi_bin,plot=FALSE) n1terpi_count <-n1terpi_hist$counts n1terpi_y = 2*sqrt((n1terpi_count+0.25)/20) n1terpi_x = n1terpi_bin[-length(n1terpi_bin)]+0.0125
We do the same for the responses to even and odd numbers stimuli and we build the boundary functions: The equivalent of Fig. 5 is then obtained in R with:

xx <-seq(0,1,len=201) plot(xx,c95(xx),type="l",col='red',lwd=2,lty='dashed', ylim=c(-4,6),xlab="Normalized time", ylab=expression(S[k](t))) lines(xx,-c95(xx),col='red',lwd=2,lty='dashed') lines (xx,c99(xx),col='red',lwd=2) lines(xx,-c99(xx),col='red',lwd=2) lines((n1citron_x-1)/(max(n1citron_x)-1), cumsum(sqrt(5)*(n1terpiOdd_y-n1terpiEven_y))/sqrt(length(n1terpi_y)), col='blue',lwd=2) lines((n1citron_x-1)/(max(n1citron_x)-1), cumsum(sqrt(10)*(n1terpi_y-n1citron_y))/sqrt(length(n1terpi_y)), col='black',lwd=2)

Simulation study

We want to estimate the coverage probability of our "Brownian domains" as a function of the sample size. We are going to use a Monte Carlo simulation to do that for each of our nine sets of square root boundary coefficients. To that end we define first a function carrying out the simulations for a given sample size: We then use this function to get the empirical coverage probabilities in a range of sample sizes: set.seed(20110928) samp_size_v <-c(25,50,75,100,250,500,750,1000,2500,5000,7500,10000) empirical_CP <-sapply(samp_size_v, function(n) t(inside_domain(n)))

The results obtained with R can be compared with the ones reported in 2 The analysis with Python

Setting up Python

The analysis presented in the manuscript and detailed next is carried out with Python 3 (the following code runs and gives identical results with Python 2). We are going to use the 3 classical modules of Python's scientific ecosystem: numpy, scipy and matplotlib. We are also going to use a fourth module of this ecosystem: sympy as well as the h5py module. We start by importing these modules:

import numpy as np import matplotlib.pyplot as plt import scipy import sympy as sy import h5py

Getting the data

Our data (Pouzat and Chaffiol 2015) are stored in HDF5 format on the zenodo server (DOI:10.5281/zenodo.1428145). They are all contained in a file named CockroachDataJNM_2009_181_119.h5. The data within this file have an hierarchical organization similar to the one of a file system (one of the main ideas of the HDF5 format). The first organization level is the exper-iment; there are 4 experiments in the file: e060517, e060817, e060824 and e070528. Each experiment is organized by neurons, Neuron1, Neuron2, etc, (with a number of recorded neurons depending on the experiment). Each neuron contains a dataset (in the HDF5 terminology) named spont containing the spike train of that neuron recorded during a period of spontaneous activity. Each neuron also contains one or several further sub-levels named after the odor used for stimulation citronellal, terpineol, mixture, etc. Each a these sub-levels contains as many datasets: stim1, stim2, etc, as stimulations were applied; and each of these data sets contains the spike train of that neuron for the corresponding stimulation. Another dataset, named stimOnset containing the onset time of the stimulus (for each of the stimulations). All these times are measured in seconds.

Loading neuron 1 citronellal responses

We get the responses to the 20 stimulations with citronellal of neuron 1 in experiment e060817 with (assuming that the data file CockroachDataJNM_2009_181_119.h5 has been downloaded into the current working directory of the Python session):

f = h5py.File("CockroachDataJNM_2009_181_119.h5","r") citron_onset = f["e060817/Neuron1/citronellal/stimOnset"][...][0] train_list = [f[y][...]
for y in ["e060817/Neuron1/citronellal/stim"+str(x) for x in range(1,21)]] n1citron = np.sort(np.concatenate(train_list)) f.close()

Building the PSTH and stabilizing its variance

We then build a histogram of the data with a 25 ms bin width, keeping only observations in interval [1,14], with: 

The Nadaraya-Watson estimator

We define next a function returning the Nadaraya-Watson estimator at a given point:

def Nadaraya_Watson_Estimator(x,X,Y, kernel = lambda y: tricube_kernel(y,1.0)): """Returns the Nadaray-Watson estimator at x, given data X and Y using kernel. ----------x: point at which the estimator is looked for. X: abscissa of the observations. Y: ordinates of the observations. kernel: a univariate 'weight' function. -------The estimated ordinate at x. """ w = kernel(X-x) return np.sum(w*Y)/np.sum(w) 2.6 Confidence set for the smoother We define next a function, tube_target returning the "target", that is: We then get the c values for two α, 0.95 and 0.9 with: from scipy.optimize import brentq c_p95 = brentq(tube_target,a=3,b=4,args=(0.05,)) c_p90 = brentq(tube_target,a=2,b=4,args=(0.1,))

Parameters

Returns

2 (1 -Φ(c)) + κ 0 π exp - c 2 2 -α , def tube_target(x,

Smoothing matrix

We define a function returning the smoothing matrix L-a matrix whose (L) i,j element is given by l i (t j ), where the l i () are defined in the text and smoothing matrix, the norm of its rows. We get the new κ 0 value (since the bandwidth changed) and the new c value: Background We are going to need the probability for a canonical Brownian motion to cross a boundary whose equation is a+b √ t between time 0 and time 1. To this end we use the results of Loader and Deely 1987 that can be summarized as follows, writing G(t) the CDF of the first passage time, g(t) the corresponding density and c(t) a continuous boundary. We can choose a function b(t), then G is solution of the following Volterra integral equation:

n2_citron_bw = 1 n2citron_y_NW = np
F (t) = t 0 K(t, u)dG(u) , where 
F (t) = Φ - c(t) √ t + exp (-2b(t) (c(t) -tb(t))) Φ -c(t) + 2tb(t) √ t and K(t, u) = Φ -c(u)-c(t) √ t-u + exp (-2b(t) (c(t) -c(u) -(t -u)b(t))) Φ c(u)-c(t)+2(t-u)b(t) √ t-u
.

We now take 0 = t 0 < t 1 < • • • < t n = t with t j = jh for some h > 0 and we set t j-1/2 = (t j + t j-1 )/2 a discretized version of our Volterra equation is then given by the mid-point method :

F (t j ) = j i=1 K(t j , t i-1/2 )∆ i j = 1, . . . , n ,
where ∆ i = G(t i ) -G(t i-1 ) and since this linear system is lower triangular we get:

∆ j = F (t j ) - j-1 i=1 K(t j , t i-1/2 )∆ i /K(t j , t j-1/2 ) j = 1, . . . , n .
Assuming that c (t) exists for all t > 0 and setting

L(t, u) = ∂K(t, u)/∂u, G L (t 1 ) = F (t 1 ) G L (t n ) = F (t n ) + n-1 j=1 G L (t j ) [K(t n , t j+1 -K(t n , t j )] n = 2, . . . and G U (t 1 ) = F (t 1 )/K(t 1 , t 0 ) G U (t n ) = F (t n ) + n-1 j=1 G U (t j ) [K(t n , t j -K(t n , t j-1 )] /K(t n , t n-1 ) n = 2, . . .

Loader and Deely

1987 show that if L(t, u) ≥ 0 for u < t then G L (t n ) ≤ G(t n ) ≤ G U (t n ) n = 1, 2, . . .

Python code

We present next a direct implementation of this algorithm in Python. Since the function G_at_1_with_bounds is a bit long, we defining it using the literate programming paradigm. We start with the docstring (user documentation of the function):

"""Probabilty for a canonical Brownian motion to cross a boundary defined by the continous function c_fct beween 0 and 1. In the actual G_at_1_with_bounds definition below, «F-definition» is meant to be replaced by the above code. We define next a bivariate function K corresponding to K above and requiring the same functions c_fct and b_fct as F. This function implicitely assumes that c(u) -c(t) falls to 0 faster than √ t -u when t > 0 and u → t: We now define the user function G_at_1_with_bounds:

1. 5

 5 Confidence set for the smoother 1.5.1 κ 0 We get the approximate value κ 0 ≈ (b -a)/h b a K (t) 2 dt 1/2 by computing analytically the integral with the open source computer algebra system (CAS) maxima (http://maxima.sourceforge.net/): print(float(13*(sqrt(integrate(diff(70*(1-x^3)^3/81,x)^2,x,0,1)*2))/0.225)); 86.58938919551133 1.5.2 Getting the constant c of our tube formula

  n1terpiOdd <-sort(as.vector(unlist(unclass(e060817terpi[[1]][(1:10)*2-1]))))-0.04 n1terpiOdd <-n1terpiOdd[1 <= n1terpiOdd & n1terpiOdd <= 14] n1terpiOdd_bin <-seq(1,14.025,0.025) n1terpiOdd_hist <-hist(n1terpiOdd,n1terpiOdd_bin,plot=FALSE) n1terpiOdd_count <-n1terpiOdd_hist$counts n1terpiOdd_y = 2*sqrt((n1terpiOdd_count+0.25)/10) n1terpiOdd_x = n1terpiOdd_bin[-length(n1terpiOdd_bin)]+0.0125 n1terpiEven <-sort(as.vector(unlist(unclass(e060817terpi[[1]][(1:10)*2]))))-0.04 n1terpiEven <-n1terpiEven[1 <= n1terpiEven & n1terpiEven <= 14] n1terpiEven_bin <-seq(1,14.025,0.025) n1terpiEven_hist <-hist(n1terpiEven,n1terpiEven_bin,plot=FALSE) n1terpiEven_count <-n1terpiEven_hist$counts n1terpiEven_y = 2*sqrt((n1terpiEven_count+0.25)/10) n1terpiEven_x = n1terpiEven_bin[-length(n1terpiEven_bin)]+0.0125 c95 <-function(x) sqrt_coef[6,2]+sqrt_coef[6,3]*sqrt(x) c99 <-function(x) sqrt_coef[10,2]+sqrt_coef[10,3]*sqrt(x)

  a 95% confidence interval for the 'coverage ## probability' of each square-root boundary defined in the list ## coeff_list for a given sample size using n_rep Monte Carlo #: an integer, the sample size. ## n_rep: an integer, the number of MC replicates. ## coeff_list: a matrix. Each row should contain the ## coefficient a and b in its second and third elements, ## the boundary being defined by: a + b*sqrt(t). ## ## Returns ## -------## A matrix, each row contains the extremes of an ## Agresti-Coull 95% CI as defined by Brown et al (2001) Statistical ## Science 16:101-117. There is one row for each row of ## coeff_list. st_v <-sqrt(seq(1,(sample_size))/sample_size) b_matrix <-apply(coeff_list,1, function(coeff) coeff[START_REF]for x in LD87tableIIaa[END_REF]+coeff[3]*st_v) total_v <-numeric(dim(coeff_list)[1]) for (i in 1:n_rep) { sim <-cumsum(rnorm(sample_size))/sqrt(sample_size) within <-apply(b_matrix,2, function(B) all(-B <= sim & sim <= B)) total_v <-total_v + within } proba <-sapply(total_v, function(T) (T+2)/(n_rep+4)) t(sapply(proba, function(p) c(p -2*sqrt(p*(1-p)/(n_rep+4)), p + 2*sqrt(p*(1-p)/(n_rep+4))))) }

  Fig. 1 is produced by the following commands:

  We get the approximate value κ 0 ≈ (b -a)/h with sympy: sx = sy.symbols('sx') K = 70*(1-sx**3)**3/81 ## symbolic version of the tricube kernel ## Integration is carried out next, remember that the data cover ## a 13 s range, explaining the pre factor. kappa0 = 13*(sy.sqrt(sy.integrate(sy.diff(K,sx)**2, (sx,0,1))*2)).evalf()/bw_best_Cp 2.6.2 Getting the constant c of our tube formula

Fig

  Fig. 4 is then built with:

  .cdf((c_u-c_t)/np.sqrt(t-u)) factorA = np.exp(-2*b_t*(c_t-c_u-(t-u)*b_t)) factorB = norm.cdf((c_u-c_t+2*(t-u)*b_t)/np.sqrt(t-u)) return term1 + factorA*factorB

  Pierre and Marie Curie University, CNRS UMR 7210 and INSERM UMR U968

	Christophe Pouzat 1 ,
	Antoine Chaffiol 2 ,
	Avner Bar-Hen 1
	1 MAP5, Paris-Descartes University and CNRS UMR 8145
	2 February 4, 2015

  The required functions are included in our STAR package, they are named: crossGeneral and crossTight. They return the distribution of the first passage time of a canonical Brownian motion through a "general boundary" (crossGeneral) and through a "square root boundary" as considered in this manuscript (crossTight). They are fully documented in the package. Tests against the results of Loader and Deely 1987 are included in the example section of the functions' documentation.

	1.7 Testing identity
	1.7.1 Boundary crossing probability
	target95 <-mkTightBMtargetFct(ci=0.95)
	p95 <-optim(log(c(0.3,2.35)),target95,method="BFGS")
	p95$convergence	
	exp(p95$par)	
	d95 <-crossTight(a=exp(p95$par[1]),b=exp(p95$par[2]),withBound=TRUE,logScale=FALSE)
	summary(d95)	
	sapply(n2citron_x,
		function(x)
	[1] 0	Nadaraya_Watson_Estimator(x,
	[1] 0.2999446 2.3479702		n2citron_x,
	n2citron_y, Prob. of first passage before 1: 0.025 (bounds: [0.02497,0.02503])
	Integration time step used: 0.001.	kernel = function(y)
			tricube_kernel(y,
			n2_citron_bw)))
	n2citron_NW_L <-make_L(n2citron_x,
		kernel = function(y)
		tricube_kernel(y,n2_citron_bw))
	n2citron_NW_L_norm <-sqrt(apply(n2citron_NW_L^2,1,sum))
	c_p95b <-optimize(tube_target,c(3,4),alpha=0.05,kappa=19.48261256899005)$minimum
	Fig. 4 is built in R with:
	par(mar=c(5,5,4,1))	
	plot(n2citron_x,n2citron_y,type="l",col='black',
	xlab="Time (s)",	
	ylab=expression(2*sqrt((Y[i] + 1/4)/20)),
	main="1.0 s bandwidth")
	lines(n2citron_x,	
	n2citron_y_NW+c_p95b*n2citron_NW_L_norm/sqrt(20),
	lwd=2,col='red')	
	lines(n2citron_x,	
	n2citron_y_NW-c_p95b*n2citron_NW_L_norm/sqrt(20),
	lwd=2,col='red')	

Parameters of the "square root boundary" Following the example of crossTight documentation we get the parameters a and b of a "square root boundary" a + b √ t giving a 95% coverage probability with:

Table 2

 2 

	obtained with Python:

  should be replaced by the code above. We then define a univariate function F corresponding the function F above. This function needs to have access to the norm class of scipy.stats and to have access to two functions c_fct and b_fct corresponding respectively to c and b:

	Parameters				
	----------				
	c_fct: a continuous function of a single variable defining the	
		boundary.				
	b_fct: an accessory function helping the convergence, the		
		derivative of c_fct is a good default choice.		
	bounds: a Boolean variable, if True (default) lower and upper	
		bounds for the probability are returned.		
	Returns					
	-------					
	The probability if bounds is False or a tuple with the lower bound	
	the probability and the upper bound.		
	Details					
	-------					
	Bounds calculation uses Eq. 3.6 and 3.7 p 102 of Loader and Deely	
	(1987) J Statist Comput Simul 27: 95-105, and some conditions on	
	the partial derivative of the Kernel appearing in the Volterra	
	integral equation are supposed to be met."""		
	In	the	actual	G_at_1_with_bounds	definition	below,
	«G_at_1_with_bounds-docstring» def F(t):		
	c_t = c_fct(t)			
	b_t = b_fct(t)			
	term1 = norm.cdf(-c_t/np.sqrt(t))		
	factorA = np.exp(-2*b_t*(c_t-t*b_t))		
	factorB = norm.cdf((-c_t+2*t*b_t)/np.sqrt(t))		
	return term1 + factorA*factorB		

We now need a function returning Mallow's C p score and define a function, Cp_score, doing the job:

def Cp_score(X,Y,bw = 1.0, kernel = tricube_kernel,sigma2=1/20.):

"""Computes Mallow's Cp score given data X and Y, a bandwidth bw, a bivariate function kernel and a variance sigma2.

Parameters ----------X: abscissa of the observations. Y: ordinates of the observations. bw: the bandwidth. kernel: a bivariate function taking an ordinate as first parameter and a bandwidth as second parameter. sigma2: the variance of the ordinates. -------A tuple with the trace of the smoother and the Cp score. """ from numpy.matlib import identity L = np.zeros((len(X),len(X))) ligne = np.zeros(len(X)) for i in range(len(X)): ligne = kernel(X-X[i], bw) L[i,:] = ligne/np.sum(ligne) n = len(X) trace = np.trace(L) if trace == n: return None Cp = np.dot(np.dot(Y,(identity(n)-L)), np.dot((identity(n)-L),Y).T)[0,0]/n + 2*sigma2*trace/n return [trace, Cp] We can get the score over a range of bandwidths (from 50 ms to 1 s) with: bw_vector = np.arange(0.05,1,0.025) n1citron_Cp_score = np.array ([Cp_score(n1citron_x,n1citron_y,bw) for bw in bw_vector])

Returns

We then extract the bandwidth giving the best (lowest) score and get the corresponding Nadaraya-Watson estimator: We load the data with:

We build the PSTH (using a 10 ms bin width since neuron 2 exhibits a higher basal firing rate than neuron 1) and stabilize its variance: We set the bandwidth at 1 s, compute the Nadaraya-Watson estimator, the def G_at_1_with_bounds(c_fct,b_fct,n,bounds=True): <<G_at_1_with_bounds-docstring>> from scipy.stats import norm <<F-definition>> <<K-definition>> t_v = np.linspace(0,1,n+1

Test against Loader and Deely reported results We can check our code against the results reported in The first coefficient is:

a_95,b_95 = (np.exp(x) for x in b95.x) a_95 0.29995665705124541

The second coefficient is: We check the bounds:

G_at_1_with_bounds(lambda x: a_95+b_95*np.sqrt(x), lambda x: 0.5*b_95/np.sqrt(x),512) (0.02491617879464314, 0.024970600466047332, 0.025025989749594357)

We made a systematic estimation of the parameters a and b of the square root boundary for coverage probabilities going from 0.9 to 0.99. To that end we defined a "square root boundary tailored version" of G_at_1_with_bounds that makes a much better use of the vectorization allowed (en encouraged) by Python. We do not give the code in this document but it is fully disclosed in its source file.

We end up with the following coefficient table where the first row contains the probability of exit, the second the coefficient a and the third the coeeficient b: Back to the analysis of the data set We load the data as usual and we are careful in aligning the stimuli onset times: We get the responses to odd and even stimulations (don't forget that Python starts indexing arrays at 0) separately: n1terpiOdd = np.sort(np.concatenate ([train_list[i] for i in range(0,20,2)])) n1terpiEven = np.sort(np.concatenate ([train_list[i] for i in range(1,20,2)]))

We build the PSTH, stabilize the variances and define the boundary functions: We can now make Fig. 5 with:

Simulation study

We want to estimate the coverage probability of our "Brownian domains" as a function of the sample size. We are going to use a Monte Carlo simulation to do that for each of our nine sets of square root boundary coefficients. To that end we define first a function carrying out the simulations at a given sample size:

def inside_domain(sample_size, n_rep=100000, coeff_list=sqrt_coef): """Computes a 95% confidence interval for the 'coverage probability' of each square-root boundary defined in the list coeff_list for a given sample size using n_rep Monte Carlo replicates.

Parameters ----------sample_size: an integer, the sample size. n_rep: an integer, the number of MC replicates. coeff_list: a list of lists. Each sub list should contain the coefficient a and b in its second and third elements, the boundary being defined by: a + b*sqrt(t). We then use this function to get the empirical coverage probabilities in a range of sample sizes: np.random.seed(20110928) samp_size_list = [25,50,75,100,250,500,750,1000[25,50,75,100,250,500,750, ,2500,5000,7500,10000] empirical_CP = [inside_domain(samp_size) ,5000,7500,10000] empirical_CP = [inside_domain(samp_size) for samp_size in samp_size_list]

Returns -------

We get the results shown on Table 2 (rounding upward the third decimal for the upper bound and downward for the lower bound).