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Abstract

A robust and reliable attitude estimator is a key technology enabler for the development of autonomous
aerial vehicles. This paper is an introduction to attitude estimation for aerial robotic systems. First, attitude
definition and parameterizations are recalled and discussed. Then, several attitude estimation techniques ranging
from algebraic vector observation-based attitude determination algorithms to dynamic attitude filtering and
estimation methodologies are presented and commented upon in relation to practical implementation issues.
Particular attention is devoted to the applications of a well-known nonlinear attitude observer (called explicit
complementary filter in the literature) to aerial robotics, using a low-cost and light-weight inertial measurement
unit, which can be complemented with a GPS or airspeed sensors.

1 Introduction

The growing interest of the robotics research community in aerial robotic vehicles is partly related to numerous
applications, such as surveillance, inspection, and mapping. The development of a small-scale low-cost autonomous
aerial vehicle requires effective solutions to a number of key technological problems. The avionics system of such a
vehicle is arguably the technology that is most closely coupled to the autonomy of the vehicle. Within an avionics
system, the attitude estimator provides the primary measurement that ensures robust stability of the vehicle flight.
The development of a robust and reliable attitude estimator that can run on low-cost computational hardware and
that requires only measurements from low-cost and light-weight sensing systems, is a key technology enabler for
the development of such systems.

This paper is an introduction to attitude estimation for aerial robotic systems, with a focus on nonlinear
attitude observers. In fact, recent advances in observer theory have led to the development of a significant body of
nonlinear attitude observers [13], [25], [26], [32], [40], [47], [51]. These observers are algorithmically simple and can be
implemented on low-processing power microprocessors in unit quaternion form. They need only vector measurement
inputs from low-cost and light-weight microelectromechanical system (MEMS) strap-down inertial measurement
units (IMUs), which can be further complemented with a GPS or airspeed sensors. Typically, the algorithms
make use of a measurement of angular velocity, measured by a 3-axis gyroscope, a vector direction estimate of the
gravitational direction derived from a 3-axis accelerometer (based on the small acceleration assumption) and where
possible, vector measurement of the magnetic field, measured by a 3-axis magnetometer [13], [25], [32]. All low-cost
MEMS devices are subject to significant noise effects. Gyroscopes and accelerometers suffer from time-varying
bias and noise due to temperature change, vibration and impacts; magntometer readings are corrupted by onboard
magnetic fields generated by motors and currents, as well as external magnetic fields experienced by vehicles that
maneuver in built environments. Earlier work in the development of attitude observers tackled the question of
bias in the gyrometer MEMS devices [13], [25], [32], [47], [49] by introducing an adaptive bias estimate in the
algorithm. Decoupling of input signals to ensure that the roll and pitch estimates are not affected by deviations
in the magnetometer measurements was considered in [17], [32], [16] and represents an important modification
of the basic algorithm to improve the overall quality of the attitude estimate. On the other hand, when the
vehicle is subject to important linear accelerations, the attitude estimate provided by conventional solutions can
be significantly erroneous, since the vector direction estimate of the gravitational direction is no longer close to



Figure 1: Attitude represents the orientation of body frame B = {G; ı⃗, ȷ⃗, k⃗} w.r.t. inertial frame I = {0; ı⃗o, ȷ⃗o, k⃗o}.

that obtained from the accelerometer measurements. To cope with strong accelerations, a complementary GPS
measurement of the vehicles linear velocity can be used to estimate its linear acceleration and, subsequently, to
improve the precision of the attitude estimate [31], [15], [38]. In addition, in the case of an aircraft performing a
level turn, air pressure sensors, such as pitot tubes that measure the magnitude of the airspeed, can be combined
with accelerometer readings in order to derive a more precise estimate of the gravitational direction and, thus,
significantly improve the quality of the attitude estimate [23].

The paper is organized as follows. In Section 2, attitude definition and parameterizations are recalled and
discussed. In Section 3, existing attitude estimation methods based on vector observations, including both static
and dynamics attitude estimation methodologies, are reviewed with a particular discussion on a nonlinear explicit
complementary filter/observer [25] that was proposed by the last two authors of this paper and has become a
common solution for most aerial robotic applications. Then, Section 4 presents some relevant nonlinear attitude
observers for aerial robotic systems, that were developed on the basis of the explicit complementary filter. Finally,
conclusions are given in Section 5.

2 Attitude parameterizations

The attitude represents the orientation of a frame, attached to the moving rigid body (i.e., body frame B), with
respect to (w.r.t.) an inertial reference frame I (see Fig. 1). It can be described by a rotation matrix, an element
of the special orthogonal group SO(3), where

SO(3) , {R ∈ R3×3 | det(R) = 1, RTR = RRT = I3}.

By denoting such a rotation matrix as R ∈ SO(3), it satisfies the following differential equation

Ṙ = RS(ω), (1)

where ω = [ω1, ω2, ω3]
T ∈ R3 is the angular velocity vector of the body frame relative to the inertial frame, expressed

in the body frame; and the notation S(·) denotes the skew-symmetric matrix associated with the cross product ×,
i.e., ∀a, b ∈ R3, S(a)b = a× b.

Studies about the rotation group SO(3) started in the eighteenth century, and the problem of parameterization
of the group of rotation of the Euclidean 3D-space has received great interest since 1776, when Euler showed that
this group is a three-dimensional manifold. A rotation matrix has nine scalars components, but an element of
the group of rotation can be represented by a set of less than nine parameters. Three is the minimum number of
parameters required for this. However, it was shown that no three-dimensional parameterization can be 1-1 (i.e., its
transformation to SO(3) is a global diffeomorphism) [45]. Previously, Hopf showed in 1940 that no four-dimensional
parameterization can be 1-1, and that a five-dimensional parameterization can be used to represent the rotation
group in a 1-1 global manner. However, the greatest inconvenience of Hopf’s five-dimensional parameterization
concerns the nonlinearity of the associated differential equations [45]. On the other hand, four-dimensional param-
eterizations [45], [39], like the quaternions parameterization, only represent the rotation group in a 2-1 manner.
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Nevertheless, although the quaternion parameterization is not 1-1, no difficulty arises for practical purposes, be-
cause the transformation of a unit quaternion to SO(3) is a local diffeomorphism everywhere. Hereafter, the Euler
angles and the quaternion parameterizations are recalled and discussed.

2.1 Euler angles parametrization

Among many three-dimensional parameterizations [45], the Euler angles are most widely-used. Their definition
depends on the problem to be solved and on the chosen systems of coordinates. A definition commonly used in the
aerospace field is the Euler angles parameterization with three angles ϕ, θ and ψ corresponding to roll, pitch and
yaw respectively [45], [34]. These Euler angles allow a rotation matrix R to be factorized into a product of three
matrices of rotation about three axes of the body frame as follows:

R =

Cψ −Sψ 0
Sψ Cψ 0
0 0 1

 Cθ 0 Sθ
0 1 0

−Sθ 0 Cθ

1 0 0
0 Cϕ −Sϕ
0 Sϕ Cϕ

 ,
where S and C denote the sin(·) and cos(·) operators. They can be computed from the rotation matrix R as

ϕ = atan2(r3,2, r3,3)

θ = −asin(r3,1)

ψ = atan2(r2,1, r1,1)

where ri,j is the component of row i and column j of R. The Euler angles kinematics satisfy [45], [34]
ϕ̇ = ω1 + SϕTθ ω2 + CϕTθ ω3

θ̇ = Cϕω2 − Sϕω3

ψ̇ =
Sϕ

Cθ
ω2 +

Cϕ

Cθ
ω3

where T denotes the tan(·) operator. If r3,1 = ±1, then θ = ∓π/2, but ϕ and ψ are no longer well-defined.
Therefore, the Euler angles constitute a parameterization of the rotation group, except at points corresponding to
θ = ±π/2. Furthermore, when θ = ±π/2, ϕ̇ and ψ̇ are not well-defined either. The problem of singularities is a
weakness of the Euler angles parameterization and, as a matter of fact, of all three-dimensional parameterization
techniques.

2.2 Unit quaternion parametrization

CCompared to three-dimensional parameterizations, four-dimensional parameterizations allow singularities to be
avoided. The earliest formulation of the four-dimensional parameterization, as pointed out in [39], was given by
Euler in 1776. Earlier in 1775, he stated that in three dimensions, every rotation has an axis. This statement can
be reformulated as follows (see e.g. [39], [37] for the proof)

Euler’s theorem: For any R ∈ SO(3), there is a non-zero vector v ∈ R3 satisfying Rv = v.

This theorem implies that the attitude of a body can be specified in terms of a rotation by some angle about some
fixed axis. It also indicates that any rotation matrix has an eigenvalue equal to one. A number of four-dimensional
parameterizations can be found in the literature (see e.g. [39], [7]) such as the Euler parameters, the quaternion
parameters, the Rodrigues parameters, and the Cayley-Klein parameters. Here, only the quaternion parameters are
presented.

The quaternions were first proposed by Hamilton in 1843 [14] and further studied by Cayley and Klein. A unit
quaternion has the form

q = s+ iv1 + jv2 + kv3,

where s, v1, v2, v3 are real numbers satisfying s2 + v21 + v22 + v23 = 1, called constituents of the quaternion q, and
i, j, k are imaginary units that satisfy

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.
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In the literature, the unit quaternion q can be represented in a more concise way as q = (s, v) ∈ R×R3, where s ∈ R
is the real part of the quaternion q and v = [v1, v2, v3]

T ∈ R3 is its pure part or imaginary part. The quaternions are
not commutative, but associative, and they form a group known as the quaternion group where the unit element is
1, (1, 0) and the quaternion product ⋆ associated with this group is defined by[

s
v

]
⋆

[
s̄
v̄

]
=

[
ss̄− vT v̄

sv̄ + s̄v + v × v̄

]
.

The transformed rotation matrix R is uniquely defined from the unit quaternion q, using Rodrigues’ rotation formula

R = I3 + 2s S(v) + 2S(v)2.

On the other hand, converting a rotation matrix to a quaternion is less direct. In fact, there always exists at least
one component of the unit quaternion q different from zero. Once this component is identified, the quaternion can
be deduced. Note that only two values of the unit quaternion q correspond to the rotation matrix R and that they
have opposed signs. For example, if tr(R) ̸= −1, then

s = ±1

2

√
1 + tr(R), S(v) =

R−RT

4s
.

Finally, the quaternion kinematics are given by

q̇ =
1

2
q ⋆

[
0
ω

]
.

The quaternion parameterization involves four parameters (i.e., only one redundant parameter) and is free of
singularities. The associated differential equation is linear in q. Furthermore, the structure of the quaternion group
is, by itself, of great interest.

3 Overview on attitude estimation based on vector observations

3.1 Algebraic attitude determination

The attitude is often reconstructed from the observation of at least two non-collinear vectors. The first solution is
the TRIAD algorithm, proposed by Black in 1964 [44], which algebraically computes the attitude matrix from the
information in both the body frame and the inertial frame of two non-collinear unit vectors. More precisely, by
denoting vI1 , v

B
1 , v

I
2 , v

B
2 as the vectors of coordinates, expressed in the inertial frame and the body frame respectively,

of two unitary Euclidean vectors v⃗1 and v⃗2, one has vI1 = RvB1 , v
I
2 = RvB2 , and the TRIAD algorithm provides the

attitude matrix R as

R =

3∑
i=1

sir
T
i =

[
s1 s2 s3

] [
r1 r2 r3

]T
,

with two orthonormal triads 
s1 = vI1 , s2 =

vI1 × vI2
|vI1 × vI2 |

, s3 = s1 × s2,

r1 = vB1 , r2 =
vB1 × vB2
|vB1 × vB2 |

, r3 = r1 × r2.

Although this algorithm is simple to implement, the resulting estimated attitude matrix, in the presence of mea-
surement noises, is not guaranteed to remain in the rotation group SO(3), and, thus, additional projection of the
computed attitude into the group SO(3) is often required (using, for example, the Gram-Schmidt orthonormaliza-
tion). Moreover, the TRIAD algorithm can only accommodate two vector observations, which may lead to difficulty
in treating information when the observation of more than two vectors is available. For instance, in this case, the
observation of which pair of vectors provides the best attitude estimate using the TRIAD algorithm may not be
known a priori. Additionally, it does not take the relative reliability of the vector observations into account, even
in the case of two vector observations. These drawbacks of the TRIAD algorithm disappear in optimal algorithms,
which compute the best attitude estimate based on a cost function for which all vector observations are taken into
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account simultaneously. Optimal algorithms are, however, computationally more expensive than the TRIAD algo-
rithm. The first and also the best-known optimal attitude estimation problem is the least-square Wahba problem
[52]. It consists in finding a rotation matrix Â ∈ SO(3) which minimizes the cost function

J(A), 1

2

n≥2∑
i=1

ki|vBi −AvIi |2, (2)

where A corresponds to the transpose of the estimated attitude R̂ ∈ SO(3) (i.e., A = R̂T ); {vBi } is a set of
measurements of n (≥ 2) unit vectors, expressed in the body frame; {vIi } are the corresponding unit vectors,
expressed in the inertial frame; and {ki} is a set of non-negative weights which can be designed based on the
reliability of the corresponding measurements. Wahba’s problem allows arbitrary weighting of vector observations. In
[42], the author proposes the particular choice ki = σ−2

i , the inverse variance of the measurement vBi , in order to
relate Wahba’s problem to Maximum Likelihood Estimation of the attitude based on an uncorrelated noise model
[42]. In fact, the cost function J(A) defined by Eq. (2) can be rewritten as

J(A) =
1

2

n≥2∑
i=1

kitr
(
(vBi −AvIi )(v

B
i −AvIi )

T
)
=

1

2

n≥2∑
i=1

ki
(
|vIi |2 + |vBi |2

)
− tr(ABT ),

with B,
∑n≥2

i=1 kiv
B
i (v

I
i )

T . Therefore, the problem of finding a rotation matrix Â which minimizes J(A) is equiv-

alent to finding a rotation matrix Â which maximizes tr(ABT ). The first solutions to Wahba’s problem, based on
this observation, were proposed in 1966 by Farrell and Stuelpnagel [53] and by Wessner, Velman, Brock in the same
paper1. However, these solutions, being computationally expensive, are not well suited to real-time applications. For
instance, Farrell and Stuelpnagel’s method requires a polar decomposition of the matrix B into a product B = UP
(with U an orthogonal matrix2 and P a symmetric and positive semidefinite matrix) and a diagonalization of P
into P = WDWT 3 (with W a orthogonal matrix and D a diagonal matrix whose diagonal elements are arranged

in decreasing order, i.e., D = diag(d1, d2, d3) with d1 ≥ d2 ≥ d3). The optimal rotation matrix Â is then given by

Â = UWdiag(1, 1, det(U))WT .

As for Wessner’s solution, which is a particular case of Farrell and Stuelpnagel’s solution, the optimal rotation
matrix Â is calculated according to

Â =
(
BT
)−1 (

BTB
)1/2

.

For this solution, due to the inverse of BT , a minimum of three (non-collinear) vector observations must be available,
knowing that two non-collinear vectors are sufficient for attitude reconstruction using the TRIAD algorithm. In
addition, the calculation of the square root of the matrix BTB also requires expensive computation. For example,

it is necessary to diagonalize BTB as BTB =WBDBW
T
B to obtain

(
BTB

)1/2
=WBD

1/2
B WT

B .
No solution to Wahba’s problem was able to replace the TRIAD algorithm in practice, until Davenport’s q-

method [10] and the numerical technique QUEST (QUaternion ESTimator) [41] were proposed. By using the
quaternion parameterization, Davenport transformed Wahba’s problem into the problem of finding the largest
eigenvalue λmax of the symmetric Davenport matrix K ∈ R4×4 defined by

K ,
[
C − γI3 z
z⊤ γ

]
,

with C ,B +BT , γ, tr(B), z,
∑n≥2

i=1 kiv
B
i × vIi . The optimal quaternion, corresponding to the optimal rotation

matrix Â of Wahba’s problem, is the normalized eigenvector qmax of K associated with the eigenvalue λmax. In
fact, the largest eigenvalue λmax may be obtained by solving analytically the largest zero of the fourth-degree
characteristic polynomial det(K−λI4) [10]. However, Davenport’s q-method is also computationally complex. This
leads to the development of the QUEST algorithm by Shuster [41] on the basis of Davenport’s q-method. QUEST
consists in solving numerically the equation det(K − λI4) = 0, or equivalently

λ4 − (a+ b)λ2 − cλ+ (ab+ cγ − d) = 0, (3)

with4 a, γ2−tr(adj(C)), b, γ2+|z|2 , c, det(C)+z⊤Cz, d, z⊤C2z. More precisely, based on Shuster’s observation

1These solutions were sent to Wahba and he presented them in that paper.
2det(U) can be either 1 or −1.
3Note that any symmetric matrix is diagonalizable.
4Recall that adj(A)A = A adj(A) = det(A)In, for an n× n matrix A.
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that λmax is close to λo ,
∑n≥2

i=1 ki, QUEST makes use of the Newton-Raphson method to solve Eq. (3), with
λo as the initial guess. It thus avoids the computation of all eigenvalues of K (i.e., all solutions to Eq. (3)).
QUEST is theoretically less robust than Davenport’s q-method, but it is clearly faster (normally few iterations
are sufficient) and has proven to be reliable in practice (e.g., QUEST was implemented in the Magsat satellite in
1979). Many alternative numerical solutions for QUEST and Davenport’s q-method to Wahba’s problem have been
proposed like, for instance, the Singular Value Decomposition (SVD), the Fast Optimal Attitude Matrix (FOAM),
the Estimator of the Optimal Quaternion (ESOQ), ESOQ-1, ESOQ-2 algorithms [29]. These solutions, along with
QUEST, for Wahba’s problem require a trade-off between computational time and precision; for instance, the
number of iterations has to be defined in advance. Additionally, their main shortcoming concerns the memoryless
characteristic in the sense that information contained in measurements of past attitudes is not preserved.

3.2 Dynamics attitude filtering and estimation

Since a filtering algorithm is usually preferred when measurements are obtained over a range of times and especially
when vector measurements are noisy, many alternative solutions to algebraic methods have been proposed. They
combine the vector measurements with the kinematic equation of rotation (i.e., Eq. (1)) and the angular velocity
measurements. In this manner, the attitude estimation methods such as TRIAD, QUEST, SVD, FOAM, ESOQ,
etc. can still be used as a preprocessor (i.e., the role of an attitude sensor) for a certain number of attitude filtering
methods, such as in many Kalman filters (KFs), extended Kalman filters (EKFs), or Kalman-like filters (see, e.g.,
[11], [21], [28], [9], [3] and the references therein), or nonlinear observers (see, e.g., [40], [24], [25], [47], [51]). However,
this process is not a prerequisite and is loosened in many attitude filtering methods, including KFs and EKFs, as
proposed in [43], [1], [13], [25], [26], [30], [50], [9], etc. This leads to simpler, faster, and (probably) more accurate
methodologies. For instance, consider the filter QUEST algorithm (a recursive discrete-time Kalman-like estimator)
[43]. The author proposes to calculate the estimated attitude using QUEST algorithm and by propagating and
updating the matrix B (which is, itself, involved in the Davenport matrix K) as

B(tk) = µΦ3×3(tk, tk−1)B(tk−1) +

nk∑
i=1

kiv
B
i (v

I
i )

T ,

where Φ3×3(tk, tk−1)B(tk−1) is the state transition matrix of the transpose of the rotation matrix R, µ is a fading
memory factor and nk is the number of vector observations at time tk. An alternative sequential algorithm for the
filter QUEST is the recursive quaternion estimator (REQUEST) [1] which propagates and updates the Davenport
matrix K by

K(tk) = µΦ4×4(tk, tk−1)B(tk−1) +

nk∑
i=1

kiKi,

where Φ4×4(tk, tk−1)B(tk−1) is the quaternion state transition matrix and Ki is the Davenport matrix for a single
vector observation

Ki =

[
vBi (v

I
i )

T +vIi (v
B
i )

T −((vBi )
T vIi )I3 (vBi × vIi )

(vBi × vIi )
T (vBi )

T vIi

]
.

The main shortcoming of the filter QUEST and REQUEST algorithms concerns the fading memory factor µ which,
being arbitrarily chosen, makes these solutions suboptimal filters. This leads to the development of the Optimal-
REQUEST algorithm [8][Ch.3] which, being essentially based on the REQUEST algorithm, further optimally cal-
culates the fading memory factor µ in the update stage of REQUEST according to a covariance optimization
argument. Note that the filter QUEST, REQUEST, and Optimal-REQUEST algorithm, being based on QUEST,
are numerical gradient methods and computationally more expensive than other modern algorithms (such as non-
linear attitude observers) due to their optimization-based nature.

Other worthy examples are nonlinear attitude observers. The earliest nonlinear observer was proposed by Sal-
cudean [40] using the unit quaternion representation. This work has led to the development of a significant body
of nonlinear attitude observers over the last fifteen years, by exploiting either the unit quaternion or the rotation
matrix [40], [35], [51], [47], [24], [46], [25], [49], [32], [12], [16]. The performance of recent observers is comparable
to modern nonlinear filtering techniques [9]. They generally have much stronger stability and robustness properties
and are simple to tune and implement [25]. Most early nonlinear attitude observers were developed on the basis
of Lyapunov analysis. However, the attitude estimation problem has also become an intuitive example for the
development of recent theories on invariant observers for systems with symmetry [4], [5], [6], [25], [19], [48]. For

6



instance, an illustrative example concerning the nonlinear explicit complementary filter proposed by Mahony et al.
[25] is taken. This method is basically inspired by the Luenberger observer [22] in the sense that the dynamics of

the estimated attitude R̂ contains two parts: a main part copying the dynamics of the real attitude (i.e., Eq. (1))
and an innovation part allowing the correction of the estimated attitude to the real attitude. For instance, if the
gyro measurements are not affected by biases, the observer dynamics is given as

˙̂
R = R̂S

(
ω +

n∑
i=1

kiv
B
i × v̂Bi

)
, (4)

with ki positive constant gains designed based on the reliability of the corresponding measurements, and v̂Bi , R̂T vIi .
An important issue of the attitude filtering concerns the gyro bias, leading to a complementary approach in which
the gyroscopes are used to filter the vector measurements, which are in turn used to estimate the gyro bias (e.g., [25],
[47], [51]). By making a constant gyro bias assumption (i.e., ωy = ω + bω, with ωy the gyro measurement and bω
the constant gyro bias vector), a complete version of the explicit complementary filter is given as [25]

˙̂
R = R̂S(ωy − b̂ω + σR)
˙̂
bω = σb

σR ,
n∑

i=1

kiv
B
i × v̂Bi

σb , −kbσR

(5)

with kb, ki positive constants. This is a continuous version; however, a discrete version can be easily derived. It
can also be conveniently rewritten in quaternion form [25], [16]. Furthermore, a fast attitude estimation method
from vector observations like TRIAD or QUEST can be used for a good initial attitude estimate. This observer is
derived by considering the Lyapunov function candidate

L ,
n∑

i=1

ki|vBi − R̂T vIi |2 +
2

kb
|bω − b̂ω|2 (6)

whose derivative along any solution to the error system is L̇ = −2∥Pa(R̃M)∥2 ≤ 0, with R̃ , R̂TR, M ,∑n
i=1 v

B
i (v

B
i )

T , ∥ · ∥ the Frobenius norm and Pa(·) the skew-symmetric projection operator in square matrix space.
With at least two non-collinear vector observations the estimated attitude asymptotically converges to the real one,
for almost all initial conditions, even in the case of time-varying vectors (see [25], [48] for the detailed proofs). This
is the strongest possible result knowing that no smooth globally asymptotically stable observers exist on SO(3) due
to the topology obstruction of the rotation group [2]. In the case of a single vector observation, the solutions to this
filter are still well-posed, whereas analytically reconstructing the attitude from a single vector observation is not
possible. In particular, almost-global asymptotical stability is still ensured in the case of a single vector observation
under the persistent excitation assumption (i.e., if the vector’s direction or the vehicle’s attitude is permanently
varying) [26].

Remark 1 Interestingly, the first term in the right-hand side of the Lyapunov function L defined by (6) corresponds

to the cost function J(R̂T ) related to Wahba’s problem. Therefore, in the absence of gyro bias, the (numerical)
solution to the bias-free explicit complementary filter (4) converges asymptotically/exponentially to the optimal
solution to Wahba’s problem for almost all initial conditions under observability conditions.

A generalized version of the explicit complementary filter (5) recently proposed by Jensen [18] is given as follows
˙̂
R = R̂S(ωy − b̂ω +KPσ)
˙̂
bω = −KIσ

σ ,
n∑

i=1

kiv
B
i × v̂Bi

(7)

with ki positive constant scalar gains; KP and KI symmetric positive definite matrices (not necessarily con-
stant). Clearly, this generalized observer offers a larger tuning space than the explicit complementary filter (5)
while ensuring similar stability and convergence properties; and it is shown that bias-free multiplicative extended
Kalman filter (MEKF) and constant-gain MEKF correspond to its particular cases [18].

7



4 Nonlinear attitude observers for aerial robotic systems

4.1 Sensor measurements

The most basic instrumentation embarked on an aerial robot for attitude estimation is a MEMS IMU, which can
be complemented with a GPS or airspeed sensors. Assume that the IMU consists of a 3-axis gyroscope, a 3-axis
accelerometer and a 3-axis magnetometer.

• The 3-axis gyroscope measures the angular velocity ω

ωy = ω + bω + ηω,

where ηω ∈ R3 is the measurement noise and bω ∈ R3 denotes a constant (or slowly time-varying) gyro bias.
Generally, gyroscopes are rather robust to noise and quite reliable for aerial robotics applications.

• The specific acceleration aB ∈ R3 expressed in the body-fixed frame B is defined as aB = RT (v̇ − ge3), where
the vehicle’s acceleration expressed in the inertial frame I is v̇, and the gravitational acceleration expressed
in the frame I is ge3, with e3 = (0, 0, 1)T . The 3-axis accelerometer measures this specific acceleration

ay = aB + ba + ηa,

where ηa ∈ R3 is the measurement noise and bω ∈ R3 denotes a bias term. Accelerometers are highly sensitive
to vibration and, thus, often require significant low-pass mechanical and/or digital filtering to be usable.

• The 3-axis magnetometer measures the ambient magnetic field

my = mB +Bm + ηm,

where ηm ∈ R3 is the measurement noise, mB = RTmI ∈ R3 is the Earth’s magnetic field expressed in the
body frame B and Bm ∈ R3 represents the sum of all local magnetic disturbances generated by motors and
currents, as well as external magnetic fields experienced by vehicles that manoeuvre in built environments.
While the magnetometer noise ηm is usually low, the local magnetic disturbance Bm can be significant,
especially if the sensor is near the power wires of the motors.

4.2 Application of the explicit complementary filter for IMUs

In view of the attitude estimation survey in Section 3, most existing methods of attitude estimation make use
of the measurement of at least two known non-collinear inertial vectors. Obtaining measurements of two known
vectors is, however, difficult in practice and in particular for small aerial robots. In fact, while the magnetometer
provides a vector measurement related to the Earth’s magnetic field, the accelerometer does not directly measure
the gravitational direction. This is due to the vehicle’s linear acceleration involved in the specific acceleration that
is measured by the accelerometer. However, most robotic vertical take-off and landing (VTOL) vehicles (such as
multicopters, or ducted fans) spend a significant amount of time in near hovering or slow forward flight, with v̇ ≈ 0;
thus, using the accelerometer as an inclinometer has been shown to be efficient in practice during this flight regime.
In fact, it is known that for an ideal thrust controlled aerial vehicle, the measurement of the gravitational direction
cannot be directly extracted from accelerometer measurement data [27], [33], [36]. However, VTOL robotic vehicles
are subject to secondary aerodynamic forces (e.g., blade flapping and induced drag) that inject low frequency
information on the gravitational direction into the accelerometer measurements [27], [33]. It follows that the model
aB ≈ −gRT e3 is an effective model for vector attitude measurement in a wide range of practical systems [13], [24],
[25], [32].

4.2.1 Standard implementation and associated coupling issues

Once the approximation aB ≈ −gRT e3 is made, the standard implementation of the explicit complementary filter
(5) consists in defining the innovation term σR as [25]

σR , k1uB × ûB + k2m̄B × ̂̄mB, (8)

with k1,2 positive constant gains, uB , −aB/g, uI , e3, ûB , R̂TuI , m̄B , mB/|mI |, m̄I , mI/|mI |, ̂̄mB ,
R̂T m̄I . However, it has been recognized that this standard implementation encounters some coupling issues that
are well discussed in [16], [17], [30].
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• Magnetic disturbances and bias influence the estimation of roll and pitch angles. In many applications espe-
cially for small-size electric motorized aerial robots, significant magnetic disturbances are almost unavoidable,
leading to significant time-varying deterministic error between mB and RTmI . This not only leads to large
estimation errors of the yaw angle but also non-negligible errors in the roll and pitch estimation.

• The dynamics of roll, pitch and yaw estimates are highly coupled. This implies that the estimation of the yaw
angle strongly affects the estimation of the roll and pitch angles. This issue can be observed by analyzing the
linearized system around the system equilibrium. For the sake of simplicity, let us, for instance, neglect the
gyro-bias bω and the dynamics of the estimated bias b̂ω only in this discussion. This supposition in association
with Eqs. (5) and (8) yields the following dynamics of the error attitude matrix R̃ = RR̂T

˙̃
R = −(k1e3 × R̃e3 + k2m̄I × R̃m̄I)×R̃. (9)

Consider a first order approximation of R̃ around the equilibrium R̃ = I3 as R̃ ≈ I3 + x×, with x ∈ R3. Note
that locally the first, second and third components of x correspond, respectively, to the roll, pitch and yaw
error estimates. From Eq. (9) it can easily be verified that

ẋ ≈

−k1−k2(1−m̄2
I,1) k2m̄I,1m̄I,2 k2m̄I,1m̄I,3

k2m̄I,1m̄I,2 −k1−k2(1−m̄2
I,2) k2m̄I,2m̄I,3

k2m̄I,1m̄I,3 k2m̄I,2m̄I,3 −k2(1−m̄2
I,3)

x (10)

In practice, the gravity vector and the Earth’s magnetic field vector (i.e., e3 and m̄I) can be “ill-conditioned”
in the sense that they are very close to each other. In such a case, the third component of m̄I is dominant
to its first and second ones. For example, in France m̄I,3 ≈ 0.9. As a consequence, in view of Eq. (10) the
dynamics of the roll and pitch errors (i.e., x1 and x2) are strongly coupled with the yaw error dynamics (i.e.,
x3).

• On the other hand, the ill-conditioning of the two vectors e3 and m̄I may also lead to the impossibility of
finding a set of “non-high” gains {k1, k2} so as to provide the system with fast time response, bearing in
mind that high gains may excessively amplify measurement noises. For discussion purposes and without loss
of generality, let us, for instance, assume that m̄I,2 ≈ 0 (i.e., m̄2

I,1 + m̄2
I,3 ≈ 1) and m̄2

I,3 ≫ m̄2
I,1. Under this

approximation, it is straightforward to verify that three poles of System (10) are given by:

λ1 = −(k1+k2)

λ2 = −1
2 (k1+k2)

(
1+

√
1− 4k1k2m̄2

I,1

(k1+k2)2

)

λ3 = −1
2 (k1+k2)

(
1−
√
1− 4k1k2m̄2

I,1

(k1+k2)2

)
≈−k1k2m̄

2
I,1

k1+k2

The pole λ1 is associated with the pitch dynamics, and the poles λ2 and λ3 are associated with the coupled
roll and yaw dynamics. The less negative pole λ3, approximated by −k1k2m̄2

I,1/(k1+k2), will be very close

to zero if k1 and k2 are not chosen sufficiently high, since m̄2
I,1 ≪ 1. This leads to slow time response of the

coupled roll and yaw dynamics.

4.2.2 Modified solutions for overcoming coupling issues

Decoupling of input signals to ensure that the roll and pitch estimates are not influenced by magnetic disturbances
was considered in [32], [30], [17], [16] and represents an important modification of the standard implementation of
the explicit complementary filter (i.e., Observer (5) with σR given by (8)) in order to improve the overall quality
of the attitude estimate. Let us discuss these strategies.

The solution proposed by Martin and Salaun [30], [32] consists in creating another inertial vector as the cross
product of the gravitational direction and the Earth’s magnetic field direction, and its associated “artificial” mea-
surement based on the cross product of accelerometer and magnetometer measurements. More precisely, the
following vectors are computed

vI , uI ×mI

|uI ×mI |
, vB , uB ×mB

|uB ×mI |
, (11)
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with uB , −aB/g, uI , e3. Then, the explicit complementary filter (5) can be applied with the innovation term
σR now defined as (compare to (8))

σR , k1uB × ûB + k2vB × v̂B, (12)

with k1,2 positive constant gains, ûB , R̂TuI , v̂B , R̂T vI . This solution ensures the decoupling of the roll and
pitch estimates from magnetic disturbances locally in the general case [30] and globally in the presence of a constant
magnetic bias in the inertial frame (as additionally proved in [17]).

Inspired by the work of Martin and Salaun, we have proposed another observer termed conditioned observer
[16], which still takes the same form as the explicit complementary filter (5) but with the modified innovation terms
σR and σb given by {

σR , k1uB × ûB + k2
(
(vB × v̂B)

T ûB
)
ûB

σb , k3uB × ûB + k4vB × v̂B
(13)

with k1,2,3,4 positive constant gains satisfying k3 > k4, uB , −aB/g, uI , e3, and (compare to (11) and see Fig. 2)

vI , πuImI

|πuImI |
, vB , πuBmB

|πuImI |
, (14)

with πx , |x|2I3 − xxT , ∀x ∈ R3, denoting the projection on the plan orthogonal to x. The conditioned observer
ensures the global decoupling of the roll and pitch estimates from magnetic disturbances and also from the dynamics
of yaw estimate in the general case. This decoupling property is clearly stronger than that of the previous solution.
Moreover, in contrast with the standard implementation of the explicit complementary filter (5), fast convergence
rate can still be achieved with non-high gains even in the case of ill-conditioning of the gravity and Earth’s magnetic
field directions [16].

Figure 2: Vectors involved in the conditioned observer.

4.3 GPS-aided attitude observers

Most existing (“classical”) attitude observers/filters rely on the small acceleration assumption (i.e., v̇ ≪ g) so that
the gravitational direction measurement can be approximated by the accelerometer measurement, as discussed in
the previous subsection. For many VTOL vehicles in aggressive motion, however, the vehicle’s linear accelerations
can be important and can induce large errors on the attitude estimate. This is also the case for fixed-wing aircraft
manoeuvring in a limited space and making some rapid turns. To deal with strong linear accelerations, a comple-
mentary GPS measurement of the linear velocity can be combined with the accelerometer measurement to estimate
the vehicle’s acceleration and, subsequently, improve the precision of the attitude estimate. In this way, some
GPS–aided attitude observers have been proposed recently [31], [15], [38] on the basis of the following differential
equations {

v̇ = ge3 +RaB
Ṙ = RS(ω)

(15)
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For instance, the cascade attitude observer proposed by Hua [15] consists in, first, estimating the specific acceleration
expressed in the inertial frame aI , v̇ − ge3 and, then, in using this estimated value along with magnetometer
measurements to recover the whole attitude estimate on the basis of the explicit complementary filter [25]. More
precisely, in order to estimate the specific acceleration aI , the following observer was proposed{

˙̂v = k1(v − v̂) + ge3 +QaB
Q̇ = QS(ω) + kv(v − v̂)aB

T − kqmax(0, ∥Q∥ −
√
3)Q

(16)

with k1, kv, kq positive constant gains and Q ∈ R3×3 an auxiliary matrix which is not a rotation matrix. The last

term in the expression of Q̇ creates a dissipative effect when the Frobenius norm of Q becomes larger than
√
3,

allowing it to be driven back to this threshold and thus avoiding numerical drifts of Q. It is shown that the errors
(aI −QaB, v− v̂) converge to zero [15]. Consequently, one can view either QaB or QaB + k1(v− v̂) as the estimate
of aI . From here, the author proposed the following attitude observer on the basis of the explicit complementary
filter [25] {

˙̂
R = R̂S(ω + σR)

σR , k2mB × R̂TmI + k3aB × R̂T (QaB + k1(v − v̂))
(17)

with k2,3 positive constant gains. Almost global convergence of the observer is proved. Furthermore, in the special
case of constant accelerations of the vehicle, almost-global asymptotic stability of the observer is achieved.

Invariant attitude observers: When the objective consists in combining the estimation of the attitude and the
filtering of the linear velocity (and eventually the position), some invariant attitude observers have been proposed
recently [31], [15], [38]. The earliest nonlinear invariant GPS–aided attitude observer was proposed by Martin and
Salaun [31]. When measurements are not affected by bias, this observer has the form

˙̂v = k1(v − v̂) + ge3 + R̂aB
˙̂
R = R̂S(ω + σR)

σR , k2((mB × R̂TmI)
TaB)aB + k3aB × R̂T (v − v̂)

(18)

with k1,2,3 positive constant gains. This defines an invariant observer [5], [20] in the sense that it preserves the
(Lie group) invariance properties of System (15) w.r.t. constant velocity translation v 7→ v + v0 and constant
rotation of the body frame R 7→ RR0. A practical advantage of this solution is the (local) decoupling of the roll
and pitch angles estimation from the measurements of the Earth’s magnetic field (which may be rather erroneous
due to magnetic disturbances). However, only local exponential stability of the estimation error is proven in [31]
(based on the linearized estimation error dynamics), under some assumptions on the reference motion (i.e., “smooth
trajectory”).

Motivated by this result, other GPS-aided attitude invariant observers have been proposed with associated
Lyapunov-based convergence and stability analyses [15], [38]. The invariant observer proposed by Hua [15] is given
by 

˙̂v = k1(v − v̂) + ge3 + R̂aB
˙̂
R = R̂S(ω + σR)

σR , k2mB × R̂TmI + k3aB × R̂T (v − v̂)

(19)

with k1,2,3 positive constant gains. In fact, observer (19) is slightly different from observer (18), which is a simplified
version of the observer proposed in [31] suited to the case without gyro biases. The sole difference between observers

(18) and (19) lies in the definition of σR where the term k2((mB × R̂TmI)
TaB)aB in (18) is replaced in (19) by

k2(mB × R̂TmI). Another invariant observer was proposed by Robert and Tayebi [38], which can be rewritten in
the following form 

˙̂v = k1(v − v̂) + ge3 + R̂aB +
1

k1
R̂S(σR)aB

˙̂
R = R̂S(ω + σR)

σR , k2mB × R̂TmI + k3aB × R̂T (v − v̂)

(20)

with k1,2,3 positive constant gains. The additional term (1/k1)R̂S(σR)aB involved in the dynamics of v̂ in (20)
constitutes the difference between observers (20) and (19), allowing the authors to establish simpler Lyapunov-
based stability and convergence analyses. The main interest of both studies [15] and [38] is to yield semi-global
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exponential convergence proofs. Both observers (19) and (20) guarantee the semi-global stability property under a
“high-gain”-like condition on k1 which indicates that the size of basin of attraction is proportional to k1 and tends
to be almost-global when k1 tends to infinity. In fact, the “high-gain” condition is only sufficient, and simulation
results seem to indicate that the basin of attraction does not depend on the value of k1 (> 0). But the proof of this
property remains an open problem.

It is worth noting that, contrary to observer (18), all three observers (19), (20) and (16)–(17) do not ensure
the (local) decoupling of the estimation of the roll and pitch (Euler) angles from the magnetic measurements.
This suggests –as an open problem– the design of an observer that combines the advantages of these observers. For
instance, observers (18) and (16)–(17) can be combined, yielding the following attitude observer (in the replacement
of (17)) {

˙̂
R = R̂S(ω + σR)

σR , k2((mB × R̂TmI)
TaB)aB + k3aB × R̂T (QaB + k1(v − v̂))

(21)

with Q the (numerical) solution to System (16). Specifying the stability domain of this observer, however, remains
open.

4.4 Airspeed-aided attitude observer for fixed-wing UAVs

For fixed-wing UAVs that manoeuvre in GPS denied environments (e.g., indoor or near to buildings), an alternative
solution of attitude estimation based on IMU and improved with GPS data is the use of pressure sensors such
as pitot tubes that measure the magnitude of the airspeed (i.e., the speed of the vehicle relative to the air) as a
replacement of GPS velocity measurements. A nonlinear complementary filter/observer of this nature was proposed
[23]. Magnetometer is not used in this study since the authors are only interested in roll and pitch estimation, but
the incorporation of magnetometer measurements into the observer for additional yaw estimation can be done as
described hereafter.

In [23], Mahony et al. consider the case where an aircraft performs a level turn (i.e., constant altitude) with
constant turn radius ρ > 0 and zero sideslip angle. In this case, the vehicle experiences the centripetal acceleration

ac ≈ ω × (ω × ρr),

with r the unit vector from the aircraft to the turning center. In order to eliminate the dependence on the unknown
turn geometry, the approximation ω× ρr ≈ Vair is made, so that the centripetal acceleration can be approximately
given by ac ≈ ω × Vair. The airspeed vector Vair is not directly measured, but it can be recovered from the
measurement of the norm |Vair| given by the pitot tubes and from the knowledge of the angle-of-attack α as follows

Vair = |Vair|

Cα0
Sα

 . (22)

The linearized dynamics model of the angle-of-attack approximately satisfy

α̇ = − c0
|Vair|

α+ θ̇ + α0, (23)

with c0 and α0 constant parameters, and θ̇ ≈ ω2. By numerically integrating Eq. (23), the angle-of-attack α can
be obtained, which enables the computation of the airspeed vector Vair according to Eq. (22) and, subsequently, of
the approximated measurement of the centripetal acceleration ac (≈ ω × Vair).

Once the centripetal acceleration ac is computed, the gravitational direction expressed in the body frame can
also be obtained from accelerometer readings as

uB = RTuI ≈ −(aB − ac)

|aB − ac|
,

with uI , e3. Then, the explicit complementary filter (5) can be applied with the innovation term σR defined as

σR , k1uB × ûB
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with positive constant gain k1 and ûB , R̂TuI . Although, several assumptions and approximations are made, the
reported experimental results are quite satisfactory [23].

The yaw angle may be recovered under the persistent excitation condition [26]. It can also be estimated
when magnetometer measurements are involved by using the conditioned observer [16] (i.e., observer (5) with the
innovation terms σR and σb defined by (13)–(14)).

5 Conclusions

Several attitude estimation techniques –ranging from algebraic vector observations-based attitude determination
algorithms to dynamics attitude filtering and estimation methodologies– have been reviewed and commented upon
in relation to practical implementation issues. A particular attention is devoted to the applications of the well-
known nonlinear explicit complementary filter/observer [25] to aerial robotics, using a low-cost and light-weight
inertial measurement unit, which can be complemented with a GPS or airspeed sensors. In the case of “weak”
linear accelerations, the vector direction estimate of the gravitational direction can be derived from accelerometer
measurements with reasonably good accuracy and, thus, the explicit complementary filter can be directly applied.
In this case, decoupling of input signals to ensure that the roll and pitch estimates are not disturbed by deviation in
the magnetometer measurements represents an important improvement of the basic algorithm. On the other hand,
in the case of “strong” linear accelerations, the combination of IMU with GPS-velocity or airspeed measurements
allows the overall quality of the attitude estimate to be effectively improved.

Acknowledgments

This work has been supported by the French Agence Nationale de la Recherche through the ANR ASTRID SCAR
project “Sensory Control of Aerial Robots”.

Acronyms

• IMU: Inertial Measurement Unit.

• GPS: Global Positioning System.

• MEMS: microelectromechanical systems.

• VTOL: vertical take-off and landing.

• UAV: Unmanned Aerial Vehicle.

• QUEST: QUaternion ESTimator.

• SVD: Singular Value Decomposition.

• FOAM: Fast Optimal Attitude Matrix.

• ESOQ: Estimator of the Optimal Quaternion.
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