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lab [1] suggested in their paper that the deflection of a simply
stic plate under uniform load is not affected by the small length

is insensitivity of the deflection solution of a simply supported
with respect to the small length terms of Eringen's model is not
ailed in the literature (for example, see [2] for beam problems).
f the nonlocal plate (in the Eringen sense) is larger than the one of
n in many papers available in the literature. We prove in this reply
Navier's method has to be correctly applied for highlighting the

nomenon of the deflection solution, as compared to exact analytical
1. The simply supported beam

Let us consider the bending of a simply supported nonlocal Euler–Berrnoulli beam under uniformly distributed load. The
Eringen's differential equation [3] is assumed for the bending-curvature constitutive law:

M� l2cM″¼ EIw″ and M″¼ q (1)

One recognizes in this case a nonlocal Euler–Bernoulli beam under a uniformly distributed load, whose analytical
solution is given by Reddy and Pang [4], Wang et al. [5], and Zhang et al. [6]. The fourth-order differential equation of the
Challamel), jnreddy@tamu.edu (J.N. Reddy).
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bending problem of this nonlocal beam is given by

EIwð4Þ ¼ q� l2c q″ (2)

This fourth-order differential equation is not affected by the small length scale terms in case of uniform loading:

qðxÞ ¼ q0 ) EIwð4Þ ¼ q (3)

whereas the boundary conditions of this simply supported problem are given, for the nonlocal beam, as

wð0Þ ¼ 0; Mð0Þ ¼ EIw″ð0Þþql2c ¼ 0; wðLÞ ¼ 0 and MðLÞ ¼ EIw″ðLÞþql2c ¼ 0 (4)

leading to the solution ([4–6 or 7]):

wðxÞ ¼ q
EI
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The nonlocal term plays a softening effect, and the deflection of the nonlocal beam is larger than the one of the local
problem, given by

w0ðxÞ ¼
q
EI
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The softening behavior of the nonlocal approach with respect to the local one, has been recently confirmed for this
bending problem by a microstructured discrete approach [7].

2. Navier's solution

Now, if we analyse this problem using the Navier's solution (see, for example [8]), we can expand the distributed load in
trigonometric format:

qðxÞ ¼ ∑
1

n ¼ 1
Qn sin

nπx
L

� �
(7)

In the particular case of uniform loading qðxÞ ¼ q0, one calculates

Qn ¼
2
L

Z L

0
q0 sin

nπx
L

� �
dx¼ 2q0

nπ
1�ð�1Þn� �¼ 4q0

nπ
for n¼ 1; 3; 5… (8)

It can be easily checked that

∑
1

n ¼ 1

2q0
nπ

1�ð�1Þn� �
sin

nπx
L

� �
¼ q0 (9)

If now the deflection is assumed in a trigonometric series, as in the usual Navier's method

wðxÞ ¼ ∑
1

n ¼ 1
Wn sin

nπx
L

� �
(10)

By replacing Eq. (10) in Eq. (3), and using Eq. (7), one obtains the series identity:

EI ∑
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n ¼ 1
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nπ
L
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One finally finds that the deflection of the nonlocal beam is not affected by the small length scale terms:

wðxÞ ¼ ∑
1

n ¼ 1

Qn

EI
L
nπ

� �4

sin
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L

� �
¼w0ðxÞ (12)

However, in the case of uniform loading, it is wrong to set that

q″ðxÞ ¼ � ∑
1

n ¼ 1
Qn

nπ
L

� �2
sin

nπx
L

� �
¼ �2q0

L2
∑
1

n ¼ 1
1�ð�1Þn� �ðnπÞ sin nπx

L

� �
(13)

The reason is that q″ðxÞ ¼ 0 if qðxÞ ¼ q0, whereas ∑1
n ¼ 1½1�ð�1Þn�ðnπÞ sin ðnπx=LÞ is generally a divergent series. We are not

allowed to make the derivation in the series term, because for the specific case qðxÞ ¼ q0, the sinusoidal-based series
function which should be an odd function is then discontinuous at its boundaries. This discontinuous nature of the function
in the Fourier series makes the simple derivation invalid as it is.

Clearly, following the reasoning presented in this part, the deflection should be unaffected by the small length terms of
the nonlocal model, whereas the exact solution is of the nonlocal model Eq. (5) contains some length term effects.

The reason of this apparent paradox is due to the limit of validity of Navier's method for this problem.
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3. A modified Navier's solution

In fact, the deflection assumed in the form as in Eq. (10) cannot fulfill all the boundary conditions of the nonlocal
problem given in Eq. (4). It means that it cannot constitute a complete basis for this problem.

Navier's solution implicitly assumed

w″ð0Þ ¼w″ðLÞ ¼ 0 (14)

whereas the nonlocal solution is based, for simply supported beams, on

EIw″ð0Þ ¼ EIw″ðLÞ ¼ �ql2c (15)

It is well known that Navier's solution cannot be used for arbitrarily boundary conditions, and in the present problem,
the static boundary conditions are clearly not fulfilled by the sinusoidal basis.

It is then recommended to use a modified version of Navier's solution. Integrating twice the unaffected fourth-order
differential equation (Eq. (3)) leads to the following solution:

EIw″ðxÞ ¼ qx2

2
þAxþB (16)

where the constants A and B are identified from the static boundary conditions (Eq. (4)), thus leading to

EIw″ðxÞ ¼MðxÞ� l2cM″ðxÞ ¼ EIw″
0ðxÞ�ql2c ¼

qx2

2
�qL

2
x�ql2c (17)

It is now possible to use the trigonometric basis expressed by Eq. (10) in the second-order differential equation (Eq. (17)):
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One finally finds

Wn ¼ 1þ lc
2 nπ
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(19)

We finally obtain the same equation as the one given by Eq. (5), where the small length terms appear to increase the local
deflection:

wðxÞ ¼ ∑
1

n ¼ 1
1þ lc

2 nπ
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Zw0ðxÞ (20)

Note that Eq. (20) would also be obtained by replacing the series expression Eq. (10) in Eq. (2) integrated two times.
In conclusions, the bending of simply supported nonlocal beams or nonlocal plates under uniform loading presents some

scale effects. Navier's solution has to be correctly applied for capturing accurately these scale effects. Also, much of the
discussion presented herein is equally valid for shear deformable beams and plates [9] and we will not elaborate the
details here.

Note: Prior to the publication of the comment by Golmakani and Rezatalab [1], JSV did not contact the authors
(Aghababaei and Reddy [9]) to seek their response. Only after reading the published comments, we have prepared this
response.
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