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Abstract

The first characterization of the response of a neuron to a stimulus is
the peri-stimulus time histogram (PSTH). From a statistical viewpoint
the PSTH is an estimator of the intensity of the inhomogeneous Pois-
son process describing (asymptotically) the aggregated responses of the
neuron to repeated presentations of the stimulus. The PSTH is often
used to address qualitatively two questions: i) is the neuron responding
to the stimulation? ii) are the responses of a neuron to two different
stimuli different? We propose here quantitative answers based of the
PSTH. The observed state space is first finely binned before applying a
variance stabilizing transformation. The homogeneity ("Is the neuron
responding?") is then addressed by using a linear smoother estimator
for the scaled Poisson process intensity before building a confidence
set containing this estimator. The identity ("Are the two responses
identical?") is addressed by constructing the cumulative sum of the
difference of the scaled PSTH obtained with the two stimuli. This
cumulative sum tends under the null hypothesis towards a canonical
Brownian motion. Minimal surface domains containing the totality
of a given fraction of the realizations of a canonical Brownian motion
are available, allowing us to build an identity test. Our motivating
dataset arises from our own experimental work and is publicly avail-
able. Our proposed methods are implemented in publicly available and
documented codes for either R or Python.
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1 Introduction

Neurophysiologists often repeat the presentation of a given stimulus, e.g., an
odor when studying the olfactory system, and then, observe neuronal out-
puts (sequences / trains of action potentials / spikes). The outputs are time
aligned on the stimulus onset and their sum is generally modeled as a unidi-
mensional Poisson process—a key result from the theory of point processes
states that if the successive responses are independent, the resulting process
converges towards an inhomogeneous Poisson process (T. Brown 1978; Grige-
lionis 1963; Valerie Ventura et al. 2002). This paper focuses on two classical
questions in neurophysiology: i) is the process homogeneous (is the neuron
responding to the stimulation)? ii) are two given observations identical (are
the responses to two different stimuli different)?

A classical approach is to build the peri-stimulus time histogram or PSTH
(George L. Gerstein and Kiang 1960; Perkel, G. L. Gerstein, and Moore
1967), an estimator of the intensity of the Poisson process describing the
aggregation of the successive responses. The PSTH has been around for a
long time and remains the first descriptive statistics used when characterizing
stimulus / response relations in neurons. When constructing the PSTH, the
automatic bin width choice, or more generally the bandwidth choice when
smooth estimates are looked for, has rarely been touched upon (Kaufman,
Valérie Ventura, and Kass 2005; Pouzat and Chaffiol 2009; Reynaud-Bouret
et al. 2013; Shimazaki and Shinomoto 2007, 2010; Wallstrom, Liebner, and
Kass 2007) despite of its importance. Only pointwise confidence intervals
have been proposed to date (Dörrscheidt 1981; Pouzat and Chaffiol 2009)
meaning that the PSTH is rarely used as a quantitative tool. The assessment
of differences between two PSTH has received some attention (Dörrscheidt
1981; Ellaway 1978; Tam 2009; Ushiba et al. 2002) going generally through
an examination of the cumulative difference of the PSTH and linking this
question to the interpretation of cumulative sum charts (Hawkins and Olwell
1998; Siegmund 1985). The quantitative evaluation of the difference has
nevertheless not been farther than the definition of pointwise intervals that
can be appropriate for change point detection but fall short of addressing
the overall difference issue.

We propose to finely bin the observed state space before applying a vari-
ance stabilizing transformation (L. D. Brown, Cai, and Zhou 2010). The
homogeneity is then addressed by using a linear smoother (Wasserman 2006)
estimator for the scaled Poisson process intensity before building a confidence
set containing this estimator (Sun and Clive R. Loader 1994). The prior
variance stabilization is important since we justify the construction of the
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confidence sets by using Gaussian processes and this requires the observation
errors to be IID and to follow a Gaussian distribution. One may notice that
the smoothing bandwidth choice is not crucial : the null hypothesis is homo-
geneity of the process and a constant intensity cannot be over-smooth with a
linear smoother. In a second time, we address the question of identity of two
observed processes by applying a common binning on two observations fol-
lowed by variance stabilization and subtraction, bin per bin of the two scaled
processes. The resulting sequence of differences should then be, under the
null hypothesis of identity, a sequence of IID draws from a centered Gaussian
distribution with a known variance. We take into account multiple compar-
isons by first constructing the cumulative process (the differences contained
in the successive bins are added one by one in the bin order) that should
under the null hypothesis—and after proper rescaling—converge towards a
standard Brownian motion as stated in Donsker’s theorem (Billingsley 1999;
Durrett 2009). The question then boils down to testing if the rescaled dif-
ference process is compatible with a standard Brownian motion. We use the
results of Kendall, Marin, and Robert 2007 to build a minimal surface do-
main within which a prescribed fraction of the observed standard Brownian
motions will be entirely contained. The combination of Donsker’s theorem
with the minimal surface domain allows us to built a test. This test is free
since it does not depend on the true common underlying intensity of the two
observed process under the null hypothesis. The proposed tests are imple-
mented in two software environments: R and Python. The technique used
in the second test can clearly be applied to any context where a sufficient
number (50 or more) of tests are performed.

This article is organized as follows. Section 2 presents briefly the neu-
ronal data used in this article and the kernel based linear smoother used in
section 3. Section 3 presents the homogeneity test based on the confidence
set construction. Section 4 presents the identity test. A simulation study of
the sample size sensitivity of the identity test is presented in Section 5. In
Section 6, a discussion of the proposed test is carried out and perspectives
are presented. A companion document allowing readers to reproduce the
complete analysis presented in this article in both R and Python is available
on demand to the first author.
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2 Peri-stimulus time histograms and their smooth

estimates

2.1 The neurophysiological data and the two questions

Our dataset arises from our own experimental work and is publicly available—
either as part of our R package STAR (on the CRAN) or from the zenodo server
(DOI:10.5281/zenodo.14281, Pouzat and Chaffiol 2015)—and are fully de-
scribed in Pouzat and Chaffiol 2009. After recording the spontaneous activity
for a few minutes, a cockroach (Periplaneta americana) was stimulated with
an odor: citronellal, terpineol or a 50/50 mixture of the two. The record-
ings were made from the first olfactory relay of the insect with an interval
between stimulations long enough for the effect of the former to have dis-
appeared when the next comes. After a preprocessing called spike sorting
(Einevoll et al. 2012), sequences of action potentials or spike trains are ex-
tracted from the continuous raw data. We then get data representations
called raster plots (Fig. 6, in the Appendix). The main conclusions are:

• Neuron 1 is exited (its discharge frequency increases) by the stimula-
tion.

• Neuron 3 is inhibited with a delay (its discharge frequency decreases
after the stimulation).

• Neuron 2 is not clearly responding.

A second question of interest is to conclude if the responses for the same
neuron stimulated with different odors are identical or not (Fig. 7, in the
Appendix).

2.2 The "classical" peri-stimulus time histogram

As mentioned in the introduction, the aggregated process ("summation" of
all the responses) converges, under smooth assumptions, towards an inhomo-
geneous Poisson process. A peri-stimulus time histogram (PSTH) (George
L. Gerstein and Kiang 1960; Perkel, G. L. Gerstein, and Moore 1967), is,
in statistical terminology, a piecewise constant estimator of the Poisson pro-
cess intensity, λ(t), built conditionally on a bin width of duration δ. The
number of spikes falling in each of the k bins (from all the trials realigned on
the stimulus onset) is counted and noted {y1, . . . , yk}. These observations
are realizations from a set of Poisson random variables {Y1, . . . , Yk} with

4

https://zenodo.org/record/14281


parameters:

n

∫ ti+δ/2

ti−δ/2
λ(u) du ≈ nλ(ti) δ , i = 1, . . . , k , (1)

where ti is the center of a class (bin) and n is the number of stimulations.
The piecewise constant estimator of λ(t) is then defined by:

λ̂(t) = yi/(nδ) , if t ∈ [ti − δ/2, ti + δ/2) . (2)

2.3 Variance stabilization before smooth estimation

Our goal here is not intensity estimation per se, but the construction of a
confidence set containing the actual λ(t) (for all t), with a given probability.
We first transform the Poisson regression problem to a Gaussian regression
by stabilizing the variance (Anscombe 1948; L. D. Brown, Cai, and Zhou
2010) with a square root transform.

Let Xi,j be the number of spikes falling in bin i for trial j and let
Yi =

∑n
j=1Xi,j be the aggregated process. As noted by Anscombe 1948,

an improvement to the square root transform is given by transforming Yi as:

Zi = 2
√

(Yi + 1/4)/n . (3)

The effect of this variance stabilizing transformation is illustrated on Fig. 1.
The bin width should be chosen large enough to have a few events per bin
most of the time. We used δ = 25 ms in Fig. 1 giving us a typical count
between 3 and 4 before the stimulus onset. In our application, choosing this
bin width is not a problem since we can always increase our "stationary"
regime recording duration, before presenting the stimuli, in order to have
a reliable estimate of the spontaneous frequency of the neuron. The bin
width is then the targeted count divided by the product of the spontaneous
frequency and the number of trials.

2.4 Smooth estimation: Nadaraya-Watson estimator

After variance stabilization, we have a Gaussian regression setting:

Zi = r(ti) + ǫiσ , (4)

where the ǫi
i.i.d.∼ N (0, 1). Following Wasserman 2006 we use a Nadaraya-

Watson estimator:

r̂(t) =
k
∑

i=1

li(t)Zi .
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Figure 1: 20 responses of Neuron 1 to citronellal. Left: spike counts per bin.
Right: variance stabilized spike counts per bin. Chosen bin width: 25 ms.

The functions li are defined by:

li(t) =
K
(

t−ti
h

)

∑k
j=1K

(

t−tj
h

) . (5)

In this article we use the tricube kernel: K(t) = 70/81
(

1− |t|3
)3

I(t),

where I(t) is the indicator function.
Since after variance stabilization the variance is known we can set our

bandwidth by minimizing Mallows’ Cp criterion instead of using cross-
validation. More explicitly, we minimize:

(1/k)
k
∑

i=1

(Zi − r̂(ti))
2 + 2σ2

(

k
∑

i=1

li(ti)

)

/k .

Fig. 2 illustrates this procedure with the data of Fig. 1. Note that the
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optimal bandwidth (225 ms) is nearly ten times larger than the initial bin
width (25 ms).

Figure 2: Nadaraya-Watson estimator of Neuron 1 response to citronellal.
Left: Mallows’ Cp score vs bandwidth. Right: variance stabilized spike
counts per bin (black) and Nadaraya-Watson estimator with optimal band-
width.

3 Confidence set and homogeneity test

Let S is a large class of functions, we would like to provide a confidence
envelop B = {s ∈ S : u1(t) ≤ s(t) ≤ u2(t), ∀t ∈ [a, b]}, such that:

Pr {r ∈ B} ≥ 1− α (6)

for all r ∈ S (Wasserman 2006). Since smooth estimators exhibit a bias
that does not disappear even with large sample sizes, we built sets around
r = E(r̂) =

∑k
i=1 li(t)r(ti). Moreover we have:

Var (r̂(t)) = σ2
k
∑

i=1

li(t)
2 = (1/n)‖l(t)‖2 .

Since the stabilized variance is equal to 1/n.
We consider a confidence band for r(t) of the form:

I(t) =
(

r̂(t)− c‖l(t)‖/√n, r̂(t) + c‖l(t)‖/√n
)

,
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with c > 0 and a ≤ t ≤ b.
Following Sun and Clive R. Loader 1994 and Wasserman 2006 we have:

Pr {r(t) /∈ I(t) for some t ∈ [a, b]} =















Pr
{

maxt∈[a,b]
|r̂(t)−r(t)|
‖l(t)‖/√n

> c
}

,

Pr
{

maxt∈[a,b]
|
∑k

i=1
(ǫi/

√
n)li(t)|

‖l(t)‖/√n
> c
}

,

Pr
{

maxt∈[a,b] |W (t)| > c
}

,

where W (t) =
∑k

i=1 ǫili(t)/‖l(t)‖ is a Gaussian process.
The constant c is given by solving the tube formula (Sun and Clive R.

Loader 1994) for the distribution of the maximum of a Gaussian process:

α = Pr

{

max
t∈[a,b]

|
k
∑

i=1

ǫili(t)/‖l(t)‖| > c

}

≈ 2 (1− Φ(c)) +
κ0
π

exp−c2

2
,

and κ0 ≈ (b− a)/h
(

∫ b
a K ′(t)2dt

)1/2
.

Fig. 3 illustrates the construction of a 95% confidence set for Nadaraya-
Watson estimator of the citronellal response of Neuron 1. Although Wasser-
man 2006 describes a strategy to take the fact that the smoother bandwidth
was set from the data, we won’t need it here since our purpose is to test
the homogeneity of the intensity of the process. If the underlying intensity
is homogeneous, the (transformed) intensity should be a constant (that is, a
horizontal line on a graph like Fig. 3).

Note that linear smoothers cannot oversmooth a constant function since
Eq. (5) imposes a normalization. We can therefore decide than we would be
willing to miss some actual non-stationarities on a short time scale by using
a bandwidth slightly longer that the latter, giving us a reduced estimator
variance. Our knowledge of the (cockroach olfactory) system tells us that
typical responses last 100 ms to 1 s so in the case of the "dubiously respond-
ing" Neuron 2, we set our bandwidth to 1 s and get the result illustrated
on Fig. 4 allowing us to reject the null hypothesis of non-response at a 0.95
level.

4 Identity test

We now turn to our second question: the identity of the responses of a
given neuron to two different stimuli; and look for an answer that does not
require any hypothesis on the underlying process intensity, when the latter is
actually the same for the two situations. We could clearly use our previous
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Figure 3: Nadaraya-Watson estimator of Neuron 1 response to citronellal.
Variance stabilized data (black) Nadaraya-Watson estimator (blue) and 0.95
confidence band (red).

confidence set construction, setting the guaranteed probability of containing
the actual smooth intensity through a Bonferroni like correction, such that
the two bands would not overlap at, at least, one time point with a given
frequency under the null hypothesis of identity. But we can find a more
direct answer that is also, in principle, better since the inequality in Eq. (6)
becomes (asymptotically) an equality.

We nevertheless start as before by using a sequence of Poisson random
variable as a proxy for our process through time discretization. So when
we compare the citronellal and terpineol responses of Neuron 1, we use a
bin width of 25 ms and get to set of observations: {ycitron1 , . . . , ycitronk } and

{yterpi1 , . . . , yterpik }. We also stabilize the variance as we did before ( zi =

2
√

(yi + 0.25)/n ) to get: {zcitron1 , . . . , zcitronk } and {zterpi1 , . . . , zterpik }. Our
null hypothesis is that the two underlying inhomogeneous Poisson processes
are the same, that is:

zcitroni = r(ti) + ǫcitroni σ and zterpii = r(ti) + ǫterpii σ ,
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Figure 4: Nadaraya-Watson estimator of Neuron 2 response to citronellal.
Variance stabilized data (black) and 0.95 confidence band (red). We cannot
draw a horizontal line entirely contained within the band.

leading us to:

Zterpi
i − Zcitron

i√
2σ

= ǫi . (7)

We therefore want to test the null hypothesis H0 : the collection of observed

differences
Zterpi
i −Zcitron

i√
2σ

∼ N (0, 1). Under H0 we can apply Donsker theorem

(Billingsley 1999; Durrett 2009): under H0 the sequence of processes:

Sk(t) =
1√
k

⌊kt⌋
∑

i=1

Zterpi
i − Zcitron

i√
2σ

, 0 ≤ t ≤ 1,

converges in law towards a canonical Brownian motion.
It is direct to construct Sk(t) and check if the observed trajectory looks

Brownian or not. Ideally, we would like to define a domain in [0, 1] × R

containing the realizations of a canonical Brownian motion with a given
probability. To have a reasonable power, we would like the surface of this
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domain to be minimal, but Kendall, Marin, and Robert 2007 showed that
the upper boundary of this minimal surface domain is given by:

u∗(t) ≡
√

−W−1 (−(κt)2))
√
t, for κ t ≤ 1/

√
e

where W−1 is the secondary real branch of the Lambert W function (defined
as the solution of W (z) expW (z) = z ); κ being adjusted to get the desired
probability. A simpler to work with and almost minimal surface domain has
its upper boundary given by: u(t) = a + b

√
t (Kendall, Marin, and Robert

2007). An efficient and simple algorithm for adjusting a and b or κ is found
in C. R. Loader and Deely 1987. The comparison between the citronellal
and terpineol responses of Neuron 1 is shown on Fig. 5. The comparison
of even and odd stimulus number for terpineol has been added to the figure
as a control since we do not expect here any difference in the underlying
intensity.

Figure 5: Almost minimal surface domains with probabilities 0.95 (dashed
red) and 0.99 (red) of containing an observed canonical Brownian motion.
Black: terpineol - citronellal; blue: odd terpineol trials - even terpineol trials.
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5 Sample size sensitivity of the Brownian motion

based test

We estimated the coefficients a and b of the "square root boundary" for vari-
ous values of the "coverage probability", that is probability to have a realiza-
tion of a canonical Brownian motion entirely inside the domain (bounded by
the square root boundary). We used the numerical method of C. R. Loader
and Deely 1987 that also yields an absolute bound on the probability. We
thus obtained the results of Table 1.

Table 1: Coefficient a and b for (upper) boundaries given by a+b
√
t ensuring

a given coverage probability. Values have been rounded to the third digit
giving enough precision to reproduce the results of Table 2.

Cov. Prob. a b

0.99 0.312 2.891

0.98 0.308 2.668

0.97 0.305 2.531

0.96 0.302 2.429

0.95 0.300 2.348

0.94 0.298 2.279

0.93 0.296 2.220

0.92 0.295 2.167

0.91 0.293 2.120

0.90 0.292 2.077

We then performed a Monte Carlo simulation drawing for each sample
size, 100000 replicates. For each replicate, the approximate Brownian motion
was obtained by constructing its cumulative sum and rescaling it. The num-
ber of replicates crossing the 10 domains defined by the 10 sets of coefficients
of Table 1 was computed. The results are reported as "Agresti-Coull" 95%
confidence intervals (L. D. Brown, Cai, and DasGupta 2001) for the empiri-
cal coverage probability in Table 2. We can see that the empirical coverage
probability approaches systematically its nominal (asymptotic) value from
above. We can use this table to correct for the sample size: if a sample size
of size 50 is considered and if a coverage probability of 0.95 is requested, the
coefficients giving an asymptotic coverage probability of 0.93 should be used.

6 Discussion

Although PSTH have been heavily used for more than 50 years (George
L. Gerstein and Kiang 1960; Wall 1959) and despite of serious attempts at
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Table 2: Limits of the "Agresti-Coull" 95% confidence intervals of the em-
pirical coverage probability for various sample sizes (horizontal) and various
nominal coverage probabilities (vertical). The third decimal of the inter-
vals limits have been rounded upward, respectively downward for the upper,
respectively lower, limit.

25 50 75 100 250 500 750 1000 2500 5000 7500 10000

0.99 up 0.995 0.994 0.994 0.993 0.993 0.993 0.992 0.992 0.992 0.991 0.992 0.991

0.99 low 0.993 0.992 0.991 0.991 0.99 0.991 0.989 0.99 0.989 0.989 0.989 0.989

0.98 up 0.989 0.987 0.986 0.986 0.984 0.984 0.983 0.982 0.982 0.982 0.982 0.981

0.98 low 0.987 0.985 0.984 0.983 0.981 0.982 0.98 0.98 0.979 0.979 0.979 0.978

0.97 up 0.983 0.98 0.979 0.978 0.976 0.975 0.974 0.973 0.972 0.972 0.972 0.972

0.97 low 0.98 0.977 0.976 0.975 0.973 0.972 0.971 0.97 0.969 0.969 0.969 0.969

0.96 up 0.977 0.973 0.971 0.97 0.967 0.966 0.964 0.964 0.963 0.962 0.962 0.962

0.96 low 0.974 0.97 0.968 0.967 0.964 0.962 0.961 0.961 0.959 0.959 0.959 0.959

0.95 up 0.97 0.966 0.964 0.962 0.959 0.957 0.955 0.955 0.954 0.953 0.953 0.952

0.95 low 0.967 0.963 0.961 0.959 0.956 0.954 0.951 0.951 0.95 0.95 0.949 0.948

0.94 up 0.964 0.959 0.956 0.954 0.951 0.948 0.946 0.945 0.944 0.944 0.943 0.943

0.94 low 0.96 0.955 0.952 0.951 0.947 0.944 0.942 0.941 0.94 0.94 0.939 0.939

0.93 up 0.958 0.952 0.948 0.946 0.942 0.939 0.937 0.937 0.934 0.935 0.934 0.933

0.93 low 0.954 0.948 0.944 0.942 0.938 0.935 0.933 0.933 0.93 0.931 0.929 0.929

0.92 up 0.951 0.944 0.94 0.938 0.934 0.93 0.928 0.928 0.925 0.925 0.924 0.923

0.92 low 0.947 0.94 0.936 0.933 0.929 0.925 0.923 0.923 0.92 0.921 0.92 0.919

0.91 up 0.944 0.937 0.932 0.929 0.925 0.921 0.918 0.919 0.916 0.915 0.914 0.913

0.91 low 0.941 0.933 0.927 0.925 0.921 0.916 0.914 0.914 0.911 0.911 0.91 0.909

0.90 up 0.938 0.929 0.923 0.921 0.916 0.912 0.909 0.909 0.906 0.906 0.905 0.904

0.90 low 0.934 0.925 0.919 0.917 0.912 0.907 0.904 0.904 0.901 0.901 0.90 0.899

building a quantitative tool out of an essentially descriptive one (Dörrscheidt
1981; Ellaway 1978; Ushiba et al. 2002), this report contains, to our knowl-
edge, the first construction of PSTH based quantitative tests for two very
common questions in neurophysiology:

1. Is a given neuron responding "on average" to a given stimulus?

2. Are the responses of a given neuron to two different stimuli the same?

Essential for the validity of our tests is the convergence of the "aggregated
responses" making the PSTH towards an inhomogeneous Poisson process.
This is a well established result (T. Brown 1978; Grigelionis 1963; Valerie
Ventura et al. 2002), but practitioners still have to check that enough stimuli
have been used for the convergence to have been reached. Our methods
require a discretization of the observed (aggregated) process bringing the
problem into an easier to deal with Poisson regression framework. The bin
width setting, giving 3 or more events in each of the bins making the PSTH,
is not a limitation of our procedure. Experimentalists can in practice always
record enough data—in the "spontaneous regime"—to get an estimate of the
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neurons basal firing rate necessary to set the bin width. After discretization,
a well known variance stabilizing transformation (Anscombe 1948; L. D.
Brown, Cai, and Zhou 2010) makes the answer to the first question above
a direct application of (advanced) textbook methodology (Wasserman 2006)
through the construction of a confidence set / band. It should nevertheless
be noted that we are not the first to use variance stabilizing transformation
in a neuronal spike train analysis context: Brillinger and colleagues did it
in 1976 (D. R. Brillinger, Bryant, and Segundo 1976). The confidence band
can also be used to estimate the response delay, a parameter of interest in
neurophysiology: once a response threshold has been set, it is enough to find
the two times at which the two boundaries of the confidence band cross that
threshold in the upward direction.

We address the second question using a cumsum chart (Hawkins and
Olwell 1998), a tool that has also already appeared in the present context
(Ellaway 1978; Tam 2009; Ushiba et al. 2002); but we bring two decisive
improvements. Working with the difference of two observed PSTH makes our
test free. The combination of Donsker’s theorem (Billingsley 1999; Durrett
2009) with the Brownian confidence domain (Kendall, Marin, and Robert
2007) provides the first global test for an absence of drift in a cumsum chart
context. Our simulation study shows that when 250 of more bins are used (a
realistic number in practice) the actual test coverage probabilities are very
close to the nominal ones for the most commonly used values (Table 2).
They also show how to set the nominal value in order to get the right target
value for as few as 50 bins.
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A Raster plots of the analyzed data

The usual way of presenting "raw" spike train data when a stimulus has
been repetitively applied is the raster plot also referred to as a dot display
(Eggermont 1990; Glaser and Ruchkin 1976; Wall 1959) (David R. Brillinger
1992 uses the term rastor plot): neuronal responses are displayed one above
the other aligned on the stimulus onset; individual spikes are represented
by a dot, a tick or any other suitable glyph. Fig. 6 shows 20 successive
responses to a 0.5 s air puff of citronellal of three simultaneously recorded
neurons. Fig. 7 shows 20 successive responses of neuron 1 of Fig. 6 to 3
different odors: citronellal, terpineol and a 50/50 mixture of the two.

Figure 6: Example of 20 stimulations with citronellal for 3 simultaneously
recorded neurons in the first olfactory relay of an insect. Each tick represents
a spike occurrence. The first stimulation is at the bottom and the 20th at
the top. Stimulations are delivered during 500 ms (gray background)—in
fact the opening time of the valve diverting the continuous flux of moist
air through a vial saturated with the odor; the odor presentation on the
insect antenna does not stop when the valve closes but approximately 500
ms later—.
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Figure 7: Neuron 1: 20 stimulations with citronellal, terpineol and a mixture
of the two.
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