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Abstract

The first characterization of the response of a neuron to a stimulus
is the peri-stimulus time histogram (PSTH). From a statistical viewpoint
the PSTH is an estimator of the intensity of the inhomogeneous Poisson
process describing (asymptotically) the aggregated responses of the neu-
ron to repeated presentations of the stimulus. The PSTH is often used
to address qualitatively two questions: i) is the neuron responding to the
stimulation? ii) are the responses of a neuron to two different stimuli dif-
ferent? We propose here quantitative answers based on the PSTH. The
observed state space is first finely binned before applying a variance sta-
bilizing transformation. The homogeneity ("Is the neuron responding?")
is then addressed by using a linear smoother estimator for the scaled
Poisson process intensity before building a confidence set containing this
estimator. The identity ("Are the two responses identical?") is addressed
by constructing the cumulative sum of the difference of the scaled PSTH
obtained with the two stimuli. This cumulative sum tends under the
null hypothesis towards a canonical Brownian motion process. Minimal
surface domains containing the totality of a given fraction of the realiza-
tions of a canonical Brownian motion process are available, allowing us
to build an identity test. This identity test can also be used to compare
the neuron’s activity before and after the stimulus presentation making
also an homogeneity test. Our motivating dataset arises from our own
experimental work and is publicly available. Our proposed methods are
implemented in publicly available and documented codes for either R or
Python.

1 Introduction
Neurophysiologists often repeat the presentation of a given stimulus, e.g., an
odor when studying the olfactory system, and then, observe neuronal outputs
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(sequences / trains of action potentials / spikes). The outputs are time aligned
on the stimulus onset and their sum is generally modeled as a unidimensional
Poisson process since a key result from the theory of point processes states
that if the successive responses are independent, the resulting process converges
towards an inhomogeneous Poisson process (Grigelionis, 1963; Brown, 1978;
Ventura et al., 2002). This paper focuses on two classical questions in neu-
rophysiology: i) is the process homogeneous (is the neuron responding to the
stimulation)? ii) are two given observations identical (are the responses to two
different stimuli different)?

A classical approach is to build the peri-stimulus time histogram or PSTH
(Gerstein and Kiang, 1960; Perkel et al., 1967), an estimator of the intensity
of the Poisson process describing the aggregation of the successive responses.
The PSTH has been around for a long time and remains the first descriptive
statistics used when characterizing stimulus / response relations of neurons.
Using classical statistical tools, we provide a framework to use the PSTH as
a quantitative tool. The interest of deriving distributional properties of the
PSTH is twofold since it leads to quantitative answers to our two questions:
(i) is the Poisson process homogeneous, i.e. is the intensity constant along the
signal— a new test of homogeneity is proposed in Section 4—; (ii) are two PSTH
identical—an identity test is proposed in Section 5—.

Homogeneity test have been proposed in the literature (Cox and Lewis, 1966)
and are reviewed in section 2. The assessment of differences between two PSTH
has received some attention (Ellaway, 1978; Dörrscheidt, 1981; Ushiba et al.,
2002; Tam, 2009) going generally through an examination of the cumulative dif-
ference of the PSTH and linking this question to the interpretation of cumulative
sum charts (Siegmund, 1985; Hawkins and Olwell, 1998). The quantitative eval-
uation of the difference is generally done through pointwise intervals; that can
be appropriate for change point detection but fall short of addressing the overall
difference issue. When constructing the PSTH, the automatic bin width choice,
or more generally the bandwidth choice when working with smooth estimates,
has rarely been addressed despite of its importance (Kaufman et al., 2005; Shi-
mazaki and Shinomoto, 2007; Wallstrom et al., 2007; Pouzat and Chaffiol, 2009;
Shimazaki and Shinomoto, 2010; Reynaud-Bouret et al., 2014).

Following Cox and Lewis (1966, Sec. 3.2, pp 43-44) we finely bin the observed
state space before applying a variance stabilizing transformation (Anscombe,
1948; Freeman and Tukey, 1950; Brown et al., 2010). The homogeneity is then
first addressed by using a linear smoother (Wasserman, 2006) estimator for the
scaled Poisson process intensity before building a confidence set containing this
estimator (Sun and Loader, 1994). We are therefore not performing kernel den-
sity estimation (KDE). KDE does not require prior binning of the data but
does not lead to the construction of confidence sets. The prior variance stabi-
lization is important since we justify the construction of the confidence sets by
using Gaussian processes and this requires the observation errors to be IID and
to follow a Gaussian distribution. In a second time, we address the question
of identity of two observed processes by applying a common binning on two
observations followed by variance stabilization and subtraction, bin per bin of
the two scaled processes. The resulting sequence of differences should then be,
under the null hypothesis of identity, a sequence of IID draws from a centered
Gaussian distribution with a known variance. We take into account multiple
comparisons by first constructing the cumulative process (the differences con-
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tained in the successive bins are added one by one in the bin order) that should
under the null hypothesis—and after proper rescaling—converge towards a stan-
dard Brownian motion process as stated in Donsker’s theorem (Billingsley, 1999;
Durrett, 2009). The question then reduces to testing if the rescaled cumsum of
the difference process is compatible with a standard Brownian motion process.
We use the results of Kendall et al. (2007) to build a minimal surface domain
within which a prescribed fraction of the observed standard Brownian motion
processs will be entirely contained. The combination of Donsker’s theorem with
the minimal surface domain allows us to built a test. This test is free since it
does not depend on the true common underlying intensity of the two observed
process under the null hypothesis. This test can also be used to compare the
neuron’s activity before and after stimulus presentation—when enough data are
available—giving a second way of addressing the homogeneity issue. The pro-
posed tests are implemented in two software environments: R and Python. The
technique used in the second test can clearly be applied to any context where a
sufficient number (50 or more) of tests are performed.

Section 3 presents briefly the neuronal data used in this article and the kernel
based linear smoother used in section 4. A simulation study of the sample
size sensitivity of the identity test is presented in Section 6. In Section 7, a
discussion of the proposed test is carried out and perspectives are presented.
The Supplementary Files allow readers both to reproduce the complete analysis
presented in this article and to apply it to the complete data set (or a new data
set) using R or Python.

2 Existing homogeneity tests
Cox and Lewis (1966) present tests for homogeneous Poisson (Sec. 6.3) and
renewal (Sec. 6.4) processes. The tests for Poisson processes use the fact that if
the observed times: {t1, t2, . . . , tn} are a realization of a homogeneous Poisson
process with rate λ on the time interval [0, t0], then, conditionally on n, the
total number of events observed at the end of the time period, the quantities:
{u(i) = ti/t0}i=1,...,n are observations of the order statistics of n IID draws
from a uniform distribution on (0, 1). It is then possible to apply a Kolmogorov
test or an Anderson-Darling test against this null hypothesis giving a uniform
conditional test for a Poisson process. Durbin (1961, p. 48) followed by Lewis
(1965) argue further for the use of what Cox and Lewis (1966, pp 154-155)
dubbed Durbin’s transformation of the ti in order to improve the power of
these tests against the uniform null hypothesis. The algorithm producing this
transformation follows:

1. Go from the {u(i) = ti/t0}i=1,...,n discussed in the previous paragraph to
the intervals: {c1 = u(1), ci = u(i)−u(i−1) (i = 2, . . . , n), cn+1 = 1−u(n)}
(the latter should IID realizations from an exponential distribution with
parameter 1).

2. Get the order statistics {c(1), . . . , c(n)} and form the differences gi = (n+

2 − i)
(
c(i) − c(i−1)

)
for i = 1, . . . , n + 1 with c(0) = 0 (they should be

independent exponentially distributed random variables with means 1).

3. The observations u′(i) =
∑i
j=1 gj for i = 1, . . . , n should then be observa-
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tions from the order statistics of n IID draws from a uniform distribution
on (0, 1).

As pointed out by Cox and Lewis (1966, p. 158) the tests on transformed data
are sensitive to discretization: they fail to apply if the latter is too coarse. The
data used in this manuscript were sampled at 12800 Hz with a spike sorting
procedure (Sec. 3.1) that did not properly cope with sampling jitter (Pouzat
and Detorakis, 2014). This unaccounted for sampling jitter amounts to a "too
coarse" sampling and give rise to a pronounced stair-case aspect of the empirical
cumulative distribution function (ECDF) of the u′(i) for small values of i. This
leads to spurious positive values when applying the Anderson-Darling test. We
therefore decided when working with the transformed data to jitter the original
observed times uniformly by plus or minus half a sampling period (in practice
plus or minus 40 µs). This destroys the stair-case aspect without touching the
overall structure as illustrated and investigated in our Supplementary Files.

In addition to these tests against a uniform distribution on (0, 1), the cor-
relation coefficients of the successive inter-event intervals at different lags (the
autocorrelation function of the inter-events intervals) should be inspected and
the log of the survivors function—that should be a straight line under the null
hypothesis—should be plotted.

3 Peri-stimulus time histograms and their smooth
estimates

3.1 The neurophysiological data and the two questions
Our datasets arise from our own experimental work. They are publicly available
either as part of our R package STAR (on the CRAN) or from the zenodo server
(DOI:10.5281/zenodo.14281, Pouzat and Chaffiol 2015). The data are fully
described in Pouzat and Chaffiol (2009). After recording the spontaneous ac-
tivity for a few minutes, cockroaches (Periplaneta americana) were stimulated
with odors (citronellal, terpineol, etc). The recordings were made from the first
olfactory relay of the insect with an interval between stimulations long enough
for the effect of the former to have disappeared when the next comes. After a
preprocessing called spike sorting (Eggermont, 1990; Einevoll et al., 2012), se-
quences of action potentials or spike trains were extracted from the continuous
raw data. We then got data representations called raster plots (Fig. 5, in the
Appendix, Brillinger 1992). A very common question is then: is the neuron
responding? A second question of interest is to decide whether the responses
for the same neuron stimulated with different odors are identical or not (Fig.
6, in the Appendix). This type of stimulus-response study is very common in
neurophysiology where experimentailists are trying to characterize the response
spectrum of neurons. For the data used here this means that many odors were
systematically presented to the animal and, for each neuron recorded in the first
olfactory relay, the number of odors generating a response (first question above)
was looked for and, when a neuron did respond to several odors, the responses
identity (second question above) was addressed. Ultimately, from a behavioral
viewpoint, neurophysiologists try to understand how animals (like us or like
insects) can identify a huge number of odors with a small (< 100-1000) number
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of different olfactory receptor types.

3.2 The "classical" peri-stimulus time histogram
As mentioned in the introduction, the aggregated process ("summation" of
all the responses) converges, under smooth assumptions, towards an inhomo-
geneous Poisson process. A peri-stimulus time histogram (PSTH) (Gerstein
and Kiang, 1960; Perkel et al., 1967), is, in statistical terminology, a piecewise
constant estimator of the Poisson process intensity, λ(t), built conditionally
on a bin width of duration δ. The number of spikes falling in each of the k
bins (from all the trials realigned on the stimulus onset) is counted and noted
{y1, . . . , yk}. These observations are realizations from a set of Poisson random
variables {Y1, . . . , Yk} with parameters:

n

∫ ti+δ/2

ti−δ/2
λ(u) du ≈ nλ(ti) δ , i = 1, . . . , k , (1)

where ti is the center of a class (bin) and n is the number of stimulations. The
piecewise constant estimator of λ(t) is then defined by:

λ̂(t) = yi/(nδ) , if t ∈ [ti − δ/2, ti + δ/2) . (2)

Our two motivating questions can be stated as statistical tests:

• Homogeneity test correspond to the test of H0 : λ(t) = λ versus H1 : ∃t1
and t2 such that λ(t1) 6= λ(t2).

• Identity test: Let λ1(t) and λ2(t) be the intensities of two Poisson process
derived from the PSTH of a single neuron from two different stimulations,
then we test H0 : λ1(t) = λ2(t) for all t versus H1 : ∃t such that λ1(t) 6=
λ2(t).

3.3 Variance stabilization before smooth estimation
Our goal here is not intensity estimation per se, but the construction of a confi-
dence set containing the actual λ(t) (for all t), with a given probability. We first
transform the Poisson regression problem to a Gaussian regression by stabilizing
the variance (Anscombe, 1948; Freeman and Tukey, 1950; Brown et al., 2010)
with a square root transform.

Let Xi,j be the number of spikes falling in bin i for trial j and let Yi =∑n
j=1Xi,j be the aggregated process. As noted by Freeman and Tukey (1950),

the best overall stabilization for small counts if obtained by transforming Yi as:

Zi =
√
Yi +

√
Yi + 1 . (3)

The variance of Zi is then 1. Our software implementations consider the trans-
formation as a parameter, the user can work with Freeman-Tukey transforma-
tion as well as Anscombe transformation (Zi = 2

√
Yi + 3/8) or the one of Brown

et al. (Zi = 2
√
Yi + 1/4).

The bin width should be chosen large enough to have a few events per bin
most of the time. We set this width such that an expected number of 3 events
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per bin was obtained using the spontaneous frequency estimated from 60 seconds
long recordings without stimulus presentation—more specifically, the width was
set to the smallest millisecond larger or equal to the targeted count divided by
the product of the spontaneous frequency and the number of trials. Following
Freeman and Tukey (1950), an expected number of 3 events is sufficient to
ensure the stability of the transformed variance.

3.4 Smooth estimation: Nadaraya-Watson estimator
After variance stabilization, we have a Gaussian regression setting:

Zi = r(ti) + εi , (4)

where the εi
i.i.d.∼ N (0, 1). Following Wasserman (2006) we use a Nadaraya-

Watson estimator:

r̂(t) =

k∑
i=1

li(t)Zi .

The functions li are defined by:

li(t) =
K
(
t−ti
h

)∑k
j=1K

(
t−tj
h

) . (5)

In this article we use the tricube kernel: K(t) = 70/81
(

1− |t|3
)3

I(t), where
I(t) is the indicator function of interval [−1, 1].

Since after variance stabilization the variance is known we can set our band-
width by minimizing Mallows’ Cp criterion instead of using cross-validation.
More explicitly, we minimize:

(1/k)

k∑
i=1

(Zi − r̂(ti))2 + 2

(
k∑
i=1

li(ti)

)
/k .

Fig. 1 illustrates this procedure with the citronnellal response of neuron 2
from data set e070528. Note that the optimal bandwidth (110 ms) is ten times
larger than the initial bin width (11 ms).

4 Confidence set and homogeneity test
Let S be a large class of functions, we would like to provide a confidence envelop
B = {s ∈ S : u1(t) ≤ s(t) ≤ u2(t), ∀t ∈ [a, b]}, such that:

Pr {r ∈ B} ≥ 1− α (6)

for all r ∈ S (Wasserman, 2006). Since smooth estimators exhibit a bias that
does not disappear even with large sample sizes, we built sets around r = E(r̂) =∑k
i=1 li(t)r(ti). Using the fact that the estimator is a linear function of the

observations and that the latter follow (asymptotically) a Gaussian distribution
centered on the true value with a unit variance we have:

Var (r̂(t)) =

k∑
i=1

li(t)
2 .

= ‖l(t)‖2 .
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Figure 1: Nadaraya-Watson estimator of Neuron 2 response to citronellal (from
experiment e070528). Left: Mallows’ Cp score vs bandwidth. The dots corre-
spond to the "discrete set" of bandwiths chosen before seeing the data to build
the confidence bands (see section 4). The line corresponds to a "continuous set".
Right: variance stabilized spike counts per bin (grey) and Nadaraya-Watson es-
timator with optimal bandwidth from the discrete set (black). The bin width
used to build the stabilized PSTH (grey) was 11 ms long, the optimal one in
the discrete set is ten times as large. The stimulus onset comes at time 0.

We consider a confidence band for r(t) of the form:

I(t) = (r̂(t)− c‖l(t)‖, r̂(t) + c‖l(t)‖) ,

with c > 0 and a ≤ t ≤ b.
Following Sun and Loader (1994) and Wasserman we have:

Pr {r(t) /∈ I(t) for some t ∈ [a, b]} =


Pr
{

maxt∈[a,b]
|r̂(t)−r(t)|
‖l(t)‖ > c

}
,

Pr
{

maxt∈[a,b]
|
∑k

i=1 εili(t)|
‖l(t)‖ > c

}
,

Pr
{

maxt∈[a,b] |W (t)| > c
}
,

where W (t)
.
=
∑k
i=1 εili(t)/‖l(t)‖ is a Gaussian process.

The constant c is given by the solution the tube formula (Sun and Loader)
for the distribution of the maximum of a Gaussian process:

α = Pr

{
max
t∈[a,b]

|
k∑
i=1

εili(t)/‖l(t)‖| > c

}
≈ 2 (1− Φ(c)) +

κ0
π

exp−c
2

2
,

and κ0 ≈ (b− a)/h
(∫ b

a
K ′(t)2dt

)1/2
. This confidence envelop / band construc-

tion assumes implicitly that the kernel if fixed, that is the kernel bandwidth
(parameter h in Eq. 5) is known before observing the data. Although we will
argue in the discussion that we can reasonably choose this bandwidth (in the
500 ms — 1 s range) in the context of our system, we present here a more gen-
eral approach following the development of Wasserman. We chose a discrete set
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of 5 bandwidths—the bin width multiplied by 5, 10, 50, 100 and 500; the black
dots on Fig. 1, left; the rightmost dot is not shown—from which the best was
chosen by minimizing the Cp. In the context of testing this consideration of 5
different models (one for each bandwidth) amounts to multiple comparison for
which a Bonferroni correction was applied. Fig. 2 illustrates the construction of
a 95 % confidence envelop for the Nadaraya-Watson estimator of the citronellal
response of Neuron 2. If the underlying intensity was homogeneous, the (trans-
formed) intensity should be a constant and a horizontal line like the black line
of Fig. 2 should be entirely contained within the envelop. Based on Fig. 2 we
can reject the null hypothesis of homogeneity at the 95 % level. This conclusion
can clearly be reached without contructing the figure since the null hypothesis
can be accepted as long as the maximum of the lower boundary is lower than
the minimum of the upper one.

Figure 2: Confidence envelop at 0.95 level for the Nadaraya-Watson estimator
of Neuron 2 response to citronellal. In black, an horizontal line completely
within the band prior to the stimulus but not after it. The stimulus onset is at
time 0.

5 Identity test
We now turn to our second question: the identity of the responses of a given
neuron to two different stimuli; and look for an answer that does not require
any hypothesis on the underlying process intensity, when the latter is actually
the same for the two situations. We could clearly use our previous confidence
set construction, setting the guaranteed probability of containing the actual
smooth intensity through a Bonferroni correction, such that the two bands would
not overlap at, at least, one time point with a given frequency under the null

8



hypothesis of identity. But we can find a more direct answer that is also, in
principle, better since the inequality in Eq. (6) becomes (asymptotically) an
equality.

We nevertheless start as before by using a sequence of Poisson random
variables as a proxy for our process through time discretization. So when
we compare the citronellal and terpineol responses of Neuron 1 (from exper-
iment e060817, Fig. 6, in the Appendix), the bin width is automatically
set at 18 ms and we get two sets of observations: {ycitron1 , . . . , ycitronk } and
{yterpi1 , . . . , yterpik }. We also stabilize the variance as we did before ( zi =
√
yi +

√
yi + 1 ) to get: {zcitron1 , . . . , zcitronk } and {zterpi1 , . . . , zterpik }. Our null

hypothesis is that the two underlying inhomogeneous Poisson processes are the
same, that is:

zcitroni = r(ti) + εcitroni and zterpii = r(ti) + εterpii ,

leading us to:
Zterpii − Zcitroni√

2
= εi . (7)

We therefore want to test the null hypothesis H0 : the collection of observed
differences Zterpi

i −Zcitron
i√

2
∼ N (0, 1). Under H0 we can apply Donsker theorem

(Billingsley, 1999; Durrett, 2009) that states that the sequence of processes:

Sk(t) =
1√
k

bktc∑
i=1

Zterpii − Zcitroni√
2

, 0 ≤ t ≤ 1, (8)

converges in law towards a canonical Brownian motion process.
It is direct to construct Sk(t) and check if the observed trajectory is, or is

not, consistent with a Brownian motion process. Ideally, we would like to define
a domain in [0, 1]×R containing the realizations of a canonical Brownian motion
process with a given probability. To have a reasonable power, we would like the
surface of this domain to be minimal, but Kendall et al. (2007) showed that the
upper boundary of this minimal surface domain is given by:

u∗(t) ≡
√
−W−1 (−(κt)2))

√
t, for κ t ≤ 1/

√
e

where W−1 is the secondary real branch of the Lambert W function (defined
as the solution of W (z) expW (z) = z ); κ being adjusted to get the desired
probability. An almost minimal surface that is simpler to work with has its
upper boundary given by: u(t) = a+b

√
t (Kendall et al., 2007). An efficient and

simple algorithm for adjusting a and b or κ is found in Loader and Deely (1987).
The comparison between the citronellal and terpineol responses of Neuron 1
(from experiment e060817) is shown on Fig. 3. Fig. 7 in the Appendix,
showing the smooth stabilized PSTH of the two responses, helps understanding
the observed motion (black on Fig. 3). The peak response of terpineol is
larger than the one of citronellal accounting for the sharp upward jump before
0.5 normalized time on Fig. 3. Then, between second 1.5 and second 6, the
terpineol response remains slightly above the citronellal one (Fig. 7) explaining
the constant upward drift after normalized time 0.5 on Fig. 3. The comparison
of even and odd stimulus number for terpineol has been added to Fig. 3 as a
control since we do not expect here any difference in the underlying intensity.

9



Figure 3: Comparison between the citronellal and terpineol responses of Neuron
1 (from experiment e060817). Almost minimal surface domains with probabil-
ities 0.95 (dashed grey) and 0.99 (grey) of containing an observed canonical
Brownian motion process. Black: terpineol - citronellal (curve built out of 612
(zterpii − zcitroni )/

√
2 observations); noisy grey curve: even terpineol trials - odd

terpineol trials (curve build out of 315 (zterpi,eveni −zterpi,oddi )/
√

2 observations).

5.1 An additional homogeneity test
The homogeneity question can also be formulated as an identity question: is the
process before stimulus onset identical to the one after onset? This requires to
have the stimulus onset late enough in the acquisition epoch, or a spontaneous
discharge rate large enough, giving a sufficiently large value of parameter k
in Eq. 8—since k equals the duration divided by the bin width that is itself
inversely proportional to the spontaneous rate. If such is the case, like for the
citronellal responses of neuron 2 of experiment e070528 we considered before
(the stimulus onset comes 6 seconds after the beginning of the acquisition epoch
and the spontaneous rate is high at 19.6 Hz), we can obtain a sequence (zbeforei )
with (stabilized) counts before stimulus onset and a corresponding sequence
(zafteri ) using data recorded after the stimulation. Applying the procedure we
just described for the different responses of neuron 1 from experiment e060817,
we get here Fig. 4. The conclusion is the same as the one drawn from Fig.
2: the neuron is responding to the citronellal stimulation. The portion of the
observed motion leaving the confidence region in the upper direction between
0.1 and 0.2 normalized time units corresponds to the dip following the stimulus
onset on Fig. 2 (between time 0.5 and 1.0).
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Figure 4: Citronellal response of neuron 2 from experiment e070528. The six
seconds prior to the stimulus presentation are compared to the 6 seconds after
it. Almost minimal surface domains with probabilities 0.95 (dashed grey) and
0.99 (grey) of containing an observed canonical Brownian motion process. The
black curve is built out of 546 values of (zbeforei − zafteri )/

√
2.

6 Sample size sensitivity of the Brownian motion
process based test

We estimated the coefficients a and b of the square root boundary for various
values of the coverage probability, that is probability to have a realization of a
canonical Brownian motion process entirely inside the domain (bounded by the
square root boundary). We used the numerical method of Loader and Deely
(1987) that also yields an absolute bound on the probability. We thus obtained
the results of Table 1.

We then performed a Monte Carlo simulation drawing for each sample size,
100000 replicates. For each replicate, the approximate Brownian motion process
was obtained by constructing its cumulative sum and rescaling it. The number of
replicates crossing the 10 domains defined by the 10 sets of coefficients of Table
1 was computed. The results are reported as "Agresti-Coull" 95% confidence
intervals (Brown et al., 2001) for the empirical coverage probability in Table 2.
We can see that the empirical coverage probability approaches systematically
its nominal (asymptotic) value from above. We can use this table to correct
for the sample size: if a sample size of size 50 is considered and if a coverage
probability of 0.95 is requested, the coefficients giving an asymptotic coverage
probability of 0.93 should be used.
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Table 1: Coefficient a and b for (upper) boundaries given by a+ b
√
t ensuring

a given coverage probability. Values have been rounded to the third digit giving
enough precision to reproduce the results of Table 2.

Cov. Prob. a b
0.99 0.312 2.891
0.98 0.308 2.668
0.97 0.305 2.531
0.96 0.302 2.429
0.95 0.300 2.348
0.94 0.298 2.279
0.93 0.296 2.220
0.92 0.295 2.167
0.91 0.293 2.120
0.90 0.292 2.077

Table 2: Limits of the "Agresti-Coull" 95% confidence intervals of the empirical
coverage probability for various sample sizes (horizontal) and various nominal
coverage probabilities (vertical). The third decimal of the intervals limits have
been rounded upward, respectively downward for the upper, respectively lower,
limit.

25 50 75 100 250 500 750 1000 2500 5000 7500 10000
0.99 up 0.995 0.994 0.994 0.993 0.993 0.993 0.992 0.992 0.992 0.991 0.992 0.991
0.99 low 0.993 0.992 0.991 0.991 0.99 0.991 0.989 0.99 0.989 0.989 0.989 0.989
0.98 up 0.989 0.987 0.986 0.986 0.984 0.984 0.983 0.982 0.982 0.982 0.982 0.981
0.98 low 0.987 0.985 0.984 0.983 0.981 0.982 0.98 0.98 0.979 0.979 0.979 0.978
0.97 up 0.983 0.98 0.979 0.978 0.976 0.975 0.974 0.973 0.972 0.972 0.972 0.972
0.97 low 0.98 0.977 0.976 0.975 0.973 0.972 0.971 0.97 0.969 0.969 0.969 0.969
0.96 up 0.977 0.973 0.971 0.97 0.967 0.966 0.964 0.964 0.963 0.962 0.962 0.962
0.96 low 0.974 0.97 0.968 0.967 0.964 0.962 0.961 0.961 0.959 0.959 0.959 0.959
0.95 up 0.97 0.966 0.964 0.962 0.959 0.957 0.955 0.955 0.954 0.953 0.953 0.952
0.95 low 0.967 0.963 0.961 0.959 0.956 0.954 0.951 0.951 0.95 0.95 0.949 0.948
0.94 up 0.964 0.959 0.956 0.954 0.951 0.948 0.946 0.945 0.944 0.944 0.943 0.943
0.94 low 0.96 0.955 0.952 0.951 0.947 0.944 0.942 0.941 0.94 0.94 0.939 0.939
0.93 up 0.958 0.952 0.948 0.946 0.942 0.939 0.937 0.937 0.934 0.935 0.934 0.933
0.93 low 0.954 0.948 0.944 0.942 0.938 0.935 0.933 0.933 0.93 0.931 0.929 0.929
0.92 up 0.951 0.944 0.94 0.938 0.934 0.93 0.928 0.928 0.925 0.925 0.924 0.923
0.92 low 0.947 0.94 0.936 0.933 0.929 0.925 0.923 0.923 0.92 0.921 0.92 0.919
0.91 up 0.944 0.937 0.932 0.929 0.925 0.921 0.918 0.919 0.916 0.915 0.914 0.913
0.91 low 0.941 0.933 0.927 0.925 0.921 0.916 0.914 0.914 0.911 0.911 0.91 0.909
0.90 up 0.938 0.929 0.923 0.921 0.916 0.912 0.909 0.909 0.906 0.906 0.905 0.904
0.90 low 0.934 0.925 0.919 0.917 0.912 0.907 0.904 0.904 0.901 0.901 0.90 0.899

7 Discussion
Although PSTH have been heavily used for more than 50 years (Wall, 1959;
Gerstein and Kiang, 1960) and despite of serious attempts at building a quan-
titative tool out of an essentially descriptive one (Ellaway, 1978; Dörrscheidt,
1981; Ushiba et al., 2002), this article contains, to our knowledge, the first con-
struction of PSTH based quantitative tests for two very common questions in
neurophysiology:

1. Is a given neuron responding "on average" to a given stimulus?

2. Are the responses of a given neuron to two different stimuli the same?

We emphasized "PSTH based" since Cox and Lewis (1966) proposed homogene-
ity tests for Poisson processes. As should be clear from section 2, their tests have
the advantage of working on the raw data while our requires prior binning; but
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their tests are global while our is local. Our test has the additional advantage of
extending a statistic the neurophysiologists are used to work with. We show in
the Supplementary files that, when applied to the citronellal response of neuron
2 from data set e070528—the one illustrated in section 4—the Anderson-Darling
test after Durbin’s transformation of the data is the only significant one at the
95% level.

Essential for the validity of our tests is the convergence of the "aggregated re-
sponses" making the PSTH towards an inhomogeneous Poisson process. This is
a well established result (Grigelionis, 1963; Brown, 1978; Ventura et al., 2002),
but practitioners still have to check that enough stimuli have been used for
the convergence to have been reached (the Supplementary Files contain a com-
prehensive description of how this was done on the data analyzed here). Our
methods require a discretization of the observed (aggregated) process bringing
the problem into an easier to deal with Poisson regression framework. The bin
width setting, giving 3 or more events in each of the bins making the PSTH,
is not a limitation of our procedure. Experimentalists can in practice always
record enough data—in the "spontaneous regime"—to get an estimate of the
neurons basal firing rate necessary to set the bin width. After discretization,
a well known variance stabilizing transformation (Freeman and Tukey, 1950;
Anscombe, 1948; Brown et al., 2010) makes the answer to the first question
above a direct application of (advanced) textbook methodology (Wasserman,
2006) through the construction of a confidence set / envelop. It should never-
theless be noted that we are not the first to use variance stabilizing transfor-
mation in a neuronal spike train analysis context: Brillinger and colleagues did
it in 1976 (Brillinger et al., 1976). The confidence envelop can also be used to
estimate the response delay, a parameter of interest in neurophysiology: once
a response threshold has been set, it is enough to find the two times at which
the two boundaries of the confidence envelop cross that threshold in the upward
direction.

The homogeneity test illustration we have given in Fig. 2, assumed that
little was known a priori on the response characteristic time. This led us to
consider a (small) set of kernel bandwidths requiring a Bonferroni correction
and leading to a larger confidence envelop. But prior knowledge on this system
tells us that typical odor responses exhibit a characteristic time of 500 ms to 1
s. In such cases we would therefore set the kernel bandwith to 750 ms and build
the confidence envelop directly. Our proposed homogeneity test can clearly be
used in both of these contexts.

We address the second question using a cumsum chart (Hawkins and Olwell,
1998), a tool that has also already appeared in the present context (Ellaway,
1978; Ushiba et al., 2002; Tam, 2009); but we bring two decisive improvements.
Working with the difference of two observed PSTH makes our test free. The
combination of Donsker’s theorem (Billingsley, 1999; Durrett, 2009) with the
Brownian confidence domain (Kendall et al., 2007) provides the first global
test for an absence of drift in a cumsum chart context. Our simulation study
shows that when 250 of more bins are used (a realistic number in practice) the
actual test coverage probabilities are very close to the nominal ones for the most
commonly used values (Table 2). They also show how to set the nominal value
in order to get the right target value for as few as 50 bins.

From a neurophysiological perspective, the construction of confidence en-
velops—instead of the pointwise confidence intervals leads to a much safer eval-
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uation of the presence / absence of a response for the class of neurons illus-
trated on Fig. 1, 2 and 4. The members of this class have a "high" spontaneous
discharge rate (20-30 Hz) with "bursty" patterns (periods of relative silence al-
ternate with periods of high discharge frequency). They tend to exhibit small
responses when they do respond and this response / no response issue was not
settled with our pointwise intervals. The members of the other, more frequent,
neuronal classes have a more regular spontaneous discharge with a lower rate
(5-10 Hz)—a member of this class is illustrated on Fig. 3—, they usually ex-
hibit much more pronounced responses. A general comparison of the PSTH plus
pointwise confidence intervals (Fig. 8, Pouzat and Chaffiol 2009) with the same
PSTH plus a confidence envelop (Supplementary Files) makes this point. The
same goes for the identity / non-identity of two responses to two different stim-
uli of a given neuron. For the neuron used on Fig. 3, the pointwise confidence
intervals always overlap and even if they did not at best a tentative conclu-
sion could be drawn, while our new identity test gives us a very clear answer.
Our proposed methods drastically improve the interpretations of PSTH with a
minimal investment since we provide implementations in both R and Python.
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A Raster plots of the analyzed data
The usual way of presenting "raw" spike train data when a stimulus has been
repetitively applied is the raster plot also referred to as a dot display (Wall,
1959; Glaser and Ruchkin, 1976; Eggermont, 1990)—Brillinger (1992) uses the
term rastor plot—: neuronal responses are displayed one above the other aligned
on the stimulus onset; individual spikes are represented by a dot, a tick or any
other suitable glyph. Fig. 5 shows 15 successive responses to a 0.5 s air puff
of citronellal of neuron 2 from experiment e070528. Fig. 6 shows 20 successive
responses of neuron 1 of experiment e060817 to 2 different odors: citronellal
and terpineol.

Figure 5: Example of 15 stimulations with citronellal for a neuron in the first
olfactory relay of an insect (neuron 2 from experiment e070528). Each tick
represents a spike occurrence. The first stimulation is at the bottom and the
15th at the top. Stimulations are delivered during 500 ms starting at time 0—in
fact these 500 ms are the opening time of the valve diverting the continuous flux
of moist air through a vial saturated with the odor; the odor presentation on
the insect antenna does not stop when the valve closes but approximately 500
ms later—.

B Smooth stabilized PSTH of the terpineol and
citronellal responses of neuron 1

In order to facilitate the interpration of Fig. 3 the smooth stabilized PSTH of
the terpineol and citronellal responses of neuron 1 from experiment e060817 are
shown on Fig. 7.
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Figure 6: Neuron 1 from experiment e060817: 20 stimulations with citronellal
and terpineol. The stimulus starts at time 0 (the valve was opened for 500 ms
like in Fig. 5).
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Figure 7: SmoothStabilizedPSTH instances computed from the citronellal
(black) and terpineol (grey) responses of neuron 1 from experiment e060817.
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