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1. Introduction

In the past decade, fiber-reinforced cementitious materials have
become structural materials which can be more efficient and
economical than common steel rebars reinforced concrete, for
instance. Successful precast or cast-in-place applications, where
fibers partially or totally supplement steel rebars, are reported in
the literature [1–5]. Fiber-reinforced concrete precast segments
or fiber-reinforced sprayed concrete or mortar are also technolog-
ical solutions for tunneling or roofing. Consequently, design codes
have recently been written in order to develop fiber-reinforced
concretes as structural materials [6–8]. Addition of fibers into
cementitious materials improves toughness, impact resistance
and ductility, reduces the tendency to crack propagation, prevents
spalling in case of fire loading and provides higher mechanical
strength [9–20]. Therefore, fibers are used to ensure users safety
and to design ultra-high performance fiber-reinforced concrete.

Fibers are generally included in a cementitious blend that is
mixed and placed more or less conventionally. Knowing the flow
properties of the fresh material is a key point as fibers are able to
move and to orient due to the concrete flow. Therefore, fibers
may induce anisotropic and heterogeneous mechanical behavior
that depends strongly on their dispersion and orientation state
[13,21–26]. It is well established that fiber orientation depends
on both process and material rheology [5,9,10,13,15,22,27–32].
Then, some works have been carried out on the effect of fibers
on the concrete rheology [11,28,30,33–35] and on the prediction
of fiber orientation during processing [29,31,36,37].

Yet, most of the models that predict flow and rod orientation in
fiber suspensions assume that the matrix is a Newtonian fluid.
However, cement-based materials, even self-consolidating ones,
exhibit most of the time plastic yield stress [38,39] and non-
Newtonian phenomena, such as shear thinning and shear thickening
behavior. In the range of shear rate applied in common concrete
processes, concrete can be considered as a viscoplastic Bingham
material which exhibits a linear viscous behavior when the yield
stress is exceeded [29,40].

Assuming a neglecting yield stress leads to discrepancy
between modeling results and experimental observations. Vis-
cous-based models predict a perfect alignment of the fiber in the
flow direction while it is not experimentally the case because the
material yield stress induces a constant resisting moment that can-
not be overcome by the flow when a critical orientation is reached.
It has recently been shown that the concrete or mortar shear yield
stress can be predicted from both the cement paste yield stress and
the volume fraction of immersed particles using micromechanical
homogenization approaches [30,32,41–43].

Fiber suspensions can be characterized according to the
volumetric fraction of solid particles in the fluid. Depending on
the fiber volume fraction /, some quantities such as hydrodynamic
or fiber–fiber interaction forces dominate the system. Typically,



three distinct regimes are observed in the literature [44]. In the
dilute regime, defined by / < 1/r2 where r is the aspect ratio, L/D
(length over diameter), the fibers are allowed to move without
any interference from the other particles. By increasing the number
of fibers, 1/r2 < / < 1/r, the semi-dilute domain is reached with
non-negligible hydrodynamic interactions between fibers. Further-
more, some fiber contacts are also possible. Finally the concen-
trated regime is obtained when each fiber experiences numerous
contacts with its neighbors: in this state, / > 1/r. Philipse [45,46]
suggested to describe the dense packing fraction of elongated par-
ticles (r� 1) as /fm = am/r and the loose packing fraction as /fc = ac/
r. For random fiber orientation with an aspect ratio included
between 50 and 100, Philipse [46] experimentally obtained
am = 4 and ac = 3.2, respectively. Therefore, Martinie [30] defined
three regions with different degrees of fiber interaction. When /
< /fc, the rheological behavior of the fiber suspension is close to
the suspending fluid. Increasing the volume fraction until /fc < /
< /fm induces that contact network between fibers influences the
rheological behavior of the cementitious material. Finally, the
material is not able to flow when / > /fm.

In the literature, few theories deal with the fiber orientation in
fiber-reinforced concrete or more generally in viscoplastic fluids,
during their forming and most of them are based on the research
field of molding of short fiber-reinforced polymers [36,47]. There-
fore the governing equations written in the framework of suspen-
sions of straight cylinders immersed in a Newtonian fluid applied
to fiber-reinforced concretes, even though the cement paste behav-
ior is not perfectly Newtonian.

Jeffery [48] developed a model for a single dilute spheroid
suspended into a Newtonian fluid. The particle orientation is
described by a unit vector pa, directed along its principal axis,
and its time evolution is given by the so-called Jeffery equation as:

_pa
J ¼ �

1
2
x � pa þ k

2
ð _c � pa � _c : papapaÞ; ð1Þ

where x and _c are the vorticity and deformation rate tensors,
respectively. The shape factor k = (r2 � 1)/(r2 + 1) is a parameter
related to the particle aspect ratio r. For a cylindrical particle, its
length L is greater than its diameter D and the slender body theory
[49–51] indicates that k = 1 (i.e. the thickness of the particle is
neglected). The orientation state of a fiber population can be repre-
sented by a probability distribution function wðpaÞ � wpa [52].
Therefore, Advani and Tucker [52] defined its moments called ori-
entation tensors, which compactly and efficiently characterize fiber
orientation. The second- and fourth-order orientation tensors a2

and a4 are given by:

a2 ¼
Z

pa
papawpa dpa; ð2Þ

a4 ¼
Z

pa
papapapawpa dpa: ð3Þ

The scalar measure of orientation for 3D orientation field can be
defined by [53]:

f ¼ 1� 27 detða2Þ: ð4Þ

f varies from 0 in case of a random orientation to 1 in case of a per-
fectly aligned orientation.

The main difficulty in modeling the behavior of fiber-reinforced
viscoplastic materials comes from the fact that these materials are
multiscale and contain many interacting constituents. This study
aims to develop an original constitutive law that describes the
anisotropic plastic behavior of the material induced by the
anisotropic orientation of fibers. This constitutive law provides
new theoretical tools that enable to improve the modeling of
fiber-reinforced materials exhibiting viscoplastic behaviors. This
2

theory represents a first step toward a complete description of
fiber-reinforced concrete rheology.

The overall objective of this work is divided into six distinct
parts. The first one consists in describing the key steps in the der-
ivation of the rheological model, in which interactions between
fibers are taken into account. In the two following parts, the model
is tested in simple shear flows and some analytical solutions are
given for isotropic fiber orientation. The fourth part deals with
the fiber orientation dynamics. The materials and the experimental
methodology are detailed in the fifth part. Finally, the proposed
model contains a few adjustable parameters that are determined
by fitting experimental data (i.e. yield stress values) for steel
fiber-filled reinforced kaolin pastes.

2. Model formulation

We supposed that fibers have a rod-like shape with a uniform
length L and a constant diameter D and large aspect ratio r� 1.
Furthermore, they are assumed rigid and are suspended in a visco-
plastic fluid. This material consists of mono-disperse rigid non-col-
loidal and non-Brownian spherical particles (i.e. sand) suspended
in a cement paste modeling as an incompressible yield stress fluid
that follows a Herschel–Bulkley law. To separate the different
constituent contributions, it is assumed that fiber length is greater
than spherical inclusion diameter, which is larger than cement (or
other binder) particle size. Therefore, the fiber–aggregate contacts
are not taken into account. Then, the proposed constitutive law
could be applied to any pasty suspension described by a Bingham
or Herschel–Bulkley model and containing elongated rigid
inclusions.

The total stress tensor r for a suspension is made up of the extra
stress tensor s and a hydrostatic contribution due to the pressure
P:

r ¼ �Pdþ s; ð5Þ

where d represents the identity tensor. The total extra stress tensor
s of the composite is:

s ¼ scm þ s f: ð6Þ

scm and sf represent the deviatoric stress tensors for the cementi-
tious material and fiber contributions, respectively.

2.1. Extra stress of rigid spheres in Herschel–Bulkley fluids

The cementitious material stress comes from the adding vol-
ume fraction /s of spherical particles in a Herschel–Bulkley fluid
with a yield stress scm

0 , a consistency K and a power-law index n.
Therefore, the cementitious material state equation is given by
[41]:

_c ¼ 0 if scm
6 scm

/s

scm ¼ scm
/s
_c

_cþK/s
_cn�1 _c if scm P scm

/s

8<
: ; ð7Þ

where the effective yield stress is:

scm
/s
¼ scm

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� /sÞð1� /s=/mÞ

�2:5/m

q
; ð8Þ

and the effective consistency reads as:

K/s
¼ Kð1� /sÞ

ð1�nÞ=2ð1� /s=/mÞ
�1:25ðnþ1Þ/m : ð9Þ

/m refers to the maximum packing fraction. _c and scm are the mag-
nitude of the deformation rate tensor _c and the suspending medium
stress tensor scm, respectively. Note that the presence of spherical
particles does not change the power-law index. It is also important
to remark that no interactions between rigid spheres and fibers are



taken into account. It means that the matrix is considered as a
homogeneous material.

2.2. Extra stress of rigid fiber suspended into a pseudoplastic fluid

As fibers are considered as slender bodies, their thickness can be
ignored and Brownian motion is neglected as particles are large
enough. It is assumed that addition of fibers in a cementitious
material contributes to its effective consistency through the hydro-
dynamic interactions and its effective yield stress due to the rod-
rod interactions, therefore sf ¼ sf

H þ sf
I . The stress induced by fibers

suspended into a pseudoplastic fluid is quite unrecognized [54,55].
The homogenization of the matrix contribution with a non-linear
power-law is not straightforward, and it is assumed the same
power-law as for the matrix (i.e. cementitious material). As a
result, the contribution of the fibers to the hydrodynamic stress
tensor is [55]:

sf
H ¼ K/s

/f
rnþ1

22n�1ðnþ 2Þp
nnaðnÞ4 : _c; ð10Þ

where aðnÞ4 is a fourth-order tensor called n-orientation tensor,
dependant of the strain rate tensor as already proposed by Sou-
loumiac and Vincent [54], and defined as:

aðnÞ4 ¼
Z

pa
papapapaj _c : papajn�1wpa dpa: ð11Þ

K/s
and n are the effective homogeneous matrix consistency (i.e. the

cement based matrix filled with spherical particles) and its power-
law index, respectively. /f represents the fiber volume fraction and
n is the average parallel drag coefficient of the fiber. We note that
Eq. (10) associated with Eq. (11) reduce to the typical constitutive
equation for the stress of fibers suspended into a Newtonian matrix
if for n = 1 and K/s

= g0 [51,56]:

sf
H ¼ g0/f

r2

6p
na4 : _c: ð12Þ

Eq. (10) or Eq. (12) describe the coupling between hydrody-
namic forces and fiber orientation and hence n is also called the
coupling coefficient. These both expressions are valid for semi-con-
centrated systems and even in these regimes, fiber–fiber interac-
tions are encountered. Therefore, an additional stress
contribution due to the contact forces acting between fibers must
be introduced [56]. The interaction force is assumed to be a lubri-
cation force with a non-linear power-law form [57]. Natale et al.
[57] showed that their model predictions are in good agreement
with the experimental findings for both suspensions of glass fibers
in a Newtonian polybutene and carbon nanotubes in a Newtonian
epoxy resin, demonstrating its ability to describe the behavior of
micro- and nanoscale rod suspensions. For a power-law index
between 0 and 1, Natale et al. [57] found that particle interactions
become predominant at low-shear rates, exhibiting an apparent
yield stress. To predict a pure yield stress behavior, the power-
law exponent is set to zero, indicating that the interaction force
is proportional to the relative velocity at the contact point and to
the scalar j _c : papaj�1 (some details are given below). Therefore,
the contribution to the extra stress due to fiber interaction
becomes:

sf
I ¼ b/2

f
8r2

p2L
kbð0Þ4 : _c; ð13Þ

where b is the consistency and k is a parameter related to the inten-
sity of the rod-rod interaction force. In the following, the super-
script a refers to the test fiber while b is used for the neighboring
fiber. bð0Þ4 is a fourth-order tensor called the n-interaction tensor
3

and has already been proposed by Natale et al. [57]. Its definition
is given by:

bð0Þ4 ¼
Z

pa

Z
pb

papapapajpa � pbjj _c : papaj�1wa
pw

b
pdpbdpa: ð14Þ

This tensor is completely symmetric and shows a direct depen-
dence on the rate of deformation. It is defined by forming the dya-
dic products of the unit vector pa, weighted by the Onsager
potential |pa � pb| and the scalar j _c : papaj�1, and then twice inte-
grating the product with respect to the distribution function over
all possible directions. The Onsager potential is directly propor-
tional to the contact probability that represents the probability
that a neighboring fiber interacts with the test fiber. Its maximum
equals one when two fibers interact orthogonally and its minimum
is null when two rods are both parallel [58]. wpb is the probability
to find an interacting fiber b with an orientation pb. The scalar
quantity j _c : papaj�1 is related to the non-linear intensity of the
interaction force.

2.3. Summary of the model

In summary, the fiber-reinforced viscoplastic fluids state equa-
tion reads:

r ¼ �Pdþ s; ð15Þ

_c ¼ 0 if s 6 sY

s ¼ sY þ sV if s P sY

�
; ð16Þ

where the yield stress contribution arises from the pasty suspen-
sion and the fiber–fiber interactions, such as:

sY ¼
scm

/s

_c
_cþb/2

f
8r2

p2L
kbð0Þ4 : _c : ð17Þ

The viscous stress contribution is given by the sum of the pasty
suspension consistency and the fiber hydrodynamic interactions:

sV ¼ K/s
_cn�1 _cþK/s

/f
rnþ1

22n�1ðnþ 2Þp
nnaðnÞ4 : _c : ð18Þ

s and sY are the second invariants defined by s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s : s=2

p
and

sY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sY : sY=2

p
, respectively. It is important to note that the last

term in Eq. (18) involves aðnÞ4 which is directly related to the fiber
orientation and to the magnitude of the deformation rate tensor.
All the above expressions are derived for a suspending material that
follows the Herschel–Bulkley law. If n = 1 and K = g0, these expres-
sions can be used to describe the behavior of a fiber-reinforced mor-
tar, where the suspending medium follows a Bingham law.

For the case of steady-state shear flow, the viscosity is deduced
from Eq. (16) and can be written as:

g ¼ 1 if s 6 sY

g ¼ scm
/s
_c þ 2/2

f r2Bbð0Þ1122 þ K/s
_cn�1 þ 2K/s

/f rnþ1AaðnÞ1122 if s P sY

(
;

ð19Þ

where A = nn/[22n-1(n + 2)p] and B = 8kb/(p2L), respectively. The first
two terms of the right hand side of Eq. (19) results from the yield
stress of the composite and the last two terms are the viscous con-
tribution. Eq. (19) also shows that some key components of the
fourth-order tensors (i.e. aðnÞ4 and bð0Þ4 ) are needed to evaluate the
viscosity. Closure approximations can be developed to express the
fourth-order tensors in terms of the second-order ones based on
the following works [59–61]. Even though closure approximations
are more and more accurate, they lead to some unavoidable errors.
Another possible strategy is to numerically solve the associated
Fokker–Planck equation by using numerical approaches such as
proper generalized decomposition [62,63]. Once, the distribution



Fig. 1. Individual and overall contributions to the steady-state reduced viscosity of
a fiber-reinforced viscoplastic fluid in simple shear flow. The results are obtained in
the case of isotropic fiber orientation distribution and n = 1.

Fig. 2. Reduced steady shear viscosity predictions as function of shear rate for
different values of the power-law index n.

Fig. 3. Variations of the aðn¼1Þ
1122 and aðn¼0Þ

1122 components as a functions of shear rate in
for simple shear flow. Also shown are the results obtained with Eq. (20) and
numerical integration for the case of n = 0.3 and n = 1.5.
function is numerically computed and then the aðnÞ1122 and bð0Þ1122

components are straightforwardly obtained for any shear rate using
Eqs. (11) and (14) without any approximations [64].

3. Isotropic orientation distribution in simple shear flows

In order to understand what the model predicts, a first set of
simulations was computed imposing an isotropic orientation dis-
tribution. This condition was chosen because it is the orientation
state generally assumed after a mixing. All the predictions pre-
sented in this section are obtained for the following conditions:
K = 50 Pa sn, scm

0 = 50 Pa, /s = 30%, /m = 58%, /f = 5%, r = 40, A = 1
and B = 75 Pa. These values are those generally encountered with
rigid fiber-reinforced cement-based materials [32] except for the
two last ones, which are chosen to highlight the model predictions.
It is interesting to note that the parameters considered in this first
set of simulations correspond to a semi-concentrated regime. In
the case of simple shear flow and for n = 1 (it means that the sus-
pending medium is a Bingham fluid), the four contributions of Eq.
(19) to the steady-state reduced viscosity of a fiber-reinforced
cementitious material are illustrated in Fig. 1. The hydrodynamic
contribution of the viscoplastic fluid is enhanced by the presence
of the spherical particles and is independent of the shear rate.
The same result is observed for the rod hydrodynamic contribu-
tion. At low shear rates, the yield stress exhibited by the viscoplas-
tic fluid and the fiber–fiber interactions are the dominant
mechanics while, at high shear rates, the hydrodynamic contribu-
tions become controlling. The transition between the two mechan-
ics is clearly represented by the trend of the reduced viscosity that
goes from a solid-like behavior to a plateau-like at high shear rates
that reaches the viscosity of the fiber suspension.

The effect of the power-law index n on the reduced viscosity is
highlighted in Fig. 2 for shear rates up to 100 s�1, which is not
really realistic. Varying n from 0.8 to 1.2, a full spectrum of behav-
ior is obtained, from shear thinning (n < 1) to shear thickening
(n > 1) and include Newtonian (n = 1). Hence, the power-law index
n controls the behavior of the suspensions at high shear rates. At
low shear rates, solid-like behaviors are observed independently
of the values of n.

4. Analytical solution for an isotropic orientation state in simple
shear flows

The aim of this part is to provide some analytical tools to easily
express some components of the fourth-order tensors in simple
shear with an isotropic fiber orientation. Numerical solutions
4

obtained by the discretization of probability distribution functions
are not very practical to evaluate the key components of the
fourth-order tensors aðnÞ4 and bð0Þ4 . Therefore we attempted to
express some analytical solutions in simple shear flows consider-
ing an isotropic fiber orientation. In that case, aðnÞ1122 needs to be
related to the applied shear rate _c and to the power-law index n.
When n = 1, a linear closure relation for the fourth-order orienta-
tion tensor [52] gives aðn¼1Þ

1122 ¼ 1=15, which is the exact value for iso-
tropic orientation and holds for any values of shear rates. In the
limit where n = 0, it is possible to perform some analytical integra-
tions of Eq. (11) and it results that aðn¼0Þ

1122 ¼ 1=3pj _cj (see Appendix A
for calculation details). Fig. 3 depicts the aðn¼1Þ

1122 and aðn¼0Þ
1122 compo-

nents for simple shear flow. It can be observed that these two
curves intersect at a critical shear rate of _cc ¼ 5=p s-1. At _cc , the
average force exerted by a power-law fluid on fibers having an
isotropic orientation is equivalent to the average force exerted by
a Newtonian matrix for the same fiber orientation state. Therefore
it can be deduced that the aðnÞ1122 component for on isotropic orien-
tation state writes as:
aðnÞ1122 ¼
1

15
p
5

_c
��� ���n�1

: ð20Þ

For the cases of n = 0.3 (shear thinning behavior) and n = 1.5
(shear thickening behavior), Eq. (20) is compared to the numerical
integration of Eq. (11) and the obtained results are indistinguish-
able. Up to now, no obvious analytical solutions are available for



Fig. 4. Variations of the bð0Þ1122 component normalized with the shear rate as
functions of shear rate. The black long dash line indicates the normalized bð0Þ1122

component value for an isotropic orientation state. Also shown is the variation of
the scalar measure of orientation f.
fiber orientation states different from isotropic (except when fibers
are perfectly aligned in one direction) and for arbitrary flow
conditions.

It remains to find a way to express bð0Þ1122. Eq. (14) involves the
Onsager potential |pa � pb| that is often replaced by the Maier–
Saupe potential 1 � papa:pbpb corrected by numerical prefactors
to reach the exact value for the isotropic orientation state
[56,65]. Thus straightforward algebraic calculations yield to (see
Appendix B):

bð0Þ1122 ¼
1

12j _cj : ð21Þ

Note that the difference between the analytical solution [Eq.
(21)] and the numerical integration of Eq. (14) is around 1.2%,
especially at low shear rates (a 120 � 120 cell grid was used [64]).

Thanks to these analytical solutions for an isotropic fiber orien-
tation, the viscosity in the case of steady-state shear flow becomes:

g ¼ 1 if s 6 sY

g ¼ scm
/s
_c þ 1

6

/2
f r2B

_c þ K/s
_cn�1 þ 2

15 K/s
/f rnþ1Aðp5 _cÞn�1 if s P sY

(
:

ð22Þ

The absolute value has been removed as positive applied shear
rate is assumed. Finally, with the same set of constitutive parame-
ters used in part 3, the model predictions give identical results of
those presented in Fig. 2 (results not shown).
5. Fiber orientation dynamics

Natale et al. [57] showed that the expression of the orientation
time evolution for the test fiber a is given by:

_pa ¼ _pa
J

� /f NI
1
2

_c � pa � 1
2

_c : papapa þ q _c
@ ln wpa

@pa

����
�����
���� _c : papa

� ����
�1

�
Z
jpa � pbjwpb dpb;

ð23Þ

where _pa
J is the Jeffery equation [Eq. (1)] and q is a dimensionless

interaction coefficient. This diffusional term (the third term in the
brackets in Eq. (23)) is not due to the Brownian motion, but repre-
sents the rotational fluctuations undergoing by the test fiber, when
5

the suspension is under flow. Finally, NI is directly proportional to
the intensity of the friction between particles.

From Bird et al. [66], the probability distribution function wpa

may be regarded as a convected quantity:

Dwpa

Dt
¼ � @

@pa � ð _p
awpa Þ; ð24Þ

where D/Dt represents the material derivative and reduces to par-
tial derivative in the case of homogenous flows. Combining the pre-
vious conservation equation [Eq. (24)] and the fiber angular velocity
equation [Eq. (23)] leads to the governing equation known as the
Fokker–Planck equation. The probability distribution function eval-
uated for steady-state is:

@

@pa � ð _p
a
I wpaÞ ¼ /f NIqj _c j

@

@pa

�
@wpa

@pa

��� _c : papa
����1
Z ���pa � pb

���wb
pdpb

� �
; ð25Þ

where

_pa
I ¼ _pa

J �
1
2

/f NIð _c � pa � _c : papapaÞ _cj

: papaj�1
Z

pa � pb
�� ��wpb dpb: ð26Þ

Solving the orientation fields via the probability distribution is
detailed in [57] and [64]. Therefore, it is possible to obtain micro-
structural information from the model predictions. More precisely,
the steady-state components of bð0Þ1122 are numerically computed in
simple shear flow. The parameter values used for the calculation
are /fNI = 0.1 s�1 and q = 0.25. The evolution of bð0Þ1122j _cj versus _c is
plotted in Fig. 4. For the suspension, the scalar measure of orienta-
tion f [Eq. (4)] can be used as a compact representation of the
overall orientation of the fibers without significant loss of informa-
tion and is also illustrated in Fig. 4. Initially, the fibers tend toward
an isotropic orientation until a shear rate around 1 s�1, and only at
larger shear rates do they orient along the flow direction. This is
confirmed by the scalar f which depicts a steady value close to
0.2, indicating a quasi-isotropic fiber orientation, and then
increases until 1, corresponding to a fully orientation in the flow
direction. A small undershoot is observed at a shear rate around
0.2 s�1. Until the shear rate at which the minimum appears, the
tendency of the fibers to get oriented in the flow direction is over-
come by the particle-particle interactions. At higher shear rates the
hydrodynamic interactions become more important and the fibers
get oriented. The bð0Þ1122 component for the isotropic orientation
state is also given in Fig. 4 for information purposes.

Fig. 4 is also useful to express the yield stress value for different
fiber orientation states. From Eq. (19), the yield stress of the
composite becomes:

sY ¼ scm
/s
þ 2/2

f r2Bbð0Þ1122 _c: ð27Þ

Therefore, the presence of fibers induces an anisotropic yield
stress depending on how the fibers are oriented. Investigations in
elongational flows were not performed.
6. Materials and experimental methodology

A kaolin paste was chosen to emphasize the rheological features
due to the fibers in the suspension. The kaolin clay used was a
Powdered Polwhite BB from Imerys� (Kaolins de Bretagne, Ploem-
eur, France). The specific gravity of the clay was 2.65, the largest
clay grain size approximately 40 lm and mean grain size close to
9 lm. The kaolin powder specific area is 105 cm2/g and the
water/kaolin mass ratio used is 1.1.



Fig. 5. Relative yield stress as a function of the fiber factor. Results for the model
predictions are also shown.
Steel fibers were dispersed in kaolin pastes in order to measure
their yield stresses. Two cylindrical shapes with a constant diame-
ter of 160 lm are tested: their lengths are 6 and 13 mm, leading to
aspect ratios r of 37.5 and 81, respectively. Their specific gravity is
7.85 and their Young modulus is 210 GPa. Note that the largest clay
grain size, which represents 0.1% of clay grains, is of the same order
as the fiber diameter (40 lm as compared to 160 lm).

Six different weight fractions of fibers with r = 37.5 were used
corresponding to fiber factors, r/f [67] of 0.75, 1.5, 2.25, 3, 3.38
and 3.56, respectively, and four different weight fractions of fibers
with r = 81 were used corresponding to fiber factors of 0.81, 1.62,
2.43 and 3.24, respectively. Therefore, all the investigated fiber
suspensions range from the dilute to the concentrated regimes.

Kaolin and water were firstly mixed in a Hobart mixer. Then,
the material was poured in five different cylindrical containers of
10 cm in diameter and 15 cm in height. Fibers were manually
added and dispersed in the paste in order to obtain a random
homogeneous dispersion. This procedure also ensures us that the
fiber orientation is close to the isotropic state.

An Anton Paar Rheolab QC rheometer equipped with two vane
geometries well adapted for mineral paste and mortar is used for
the measurements. The geometries consist of four blades around
a cylindrical shaft. The vane sizes are 60 mm in height and
40 mm in diameter for the first one, and 40 mm and 22 mm,
respectively, for the second one. Tests were carried out in an ‘‘infi-
nite’’ gap in order to avoid wall effects.

A measurement stage was performed during 180 s on the rhe-
ometer to obtain the yield stress at five given resting times, follow-
ing the procedure described by Mahaut et al. [43]. Stress growth is
used to determine the yield stress with an apparent shear rate of
10�2 s�1. At such shear rate, viscosity effects are negligible. As a
consequence, the yield stress is computed from the maximum tor-
que T value which is required for the onset of the flow, i.e. when
the apparent yield stress (static yield stress) is reached on the
cylindrical shearing surface:

s0 ¼
T

pD2

2 H þ D
3

� � ; ð28Þ

where T is the torque peak value, H is the tool height and D is its
diameter. The measured yield stress values of the unfilled kaolin
pastes are found to be 404 ± 32 Pa for the suspensions with
r = 37.5 and 521 ± 14 Pa for the suspensions with r = 81,
respectively.

7. Data and predictions

Fig. 5 depicts the relative yield stress sY=scm
/s

(i.e. ratio between
the yield stress of the kaolin paste containing fibers and the yield
stress of the kaolin paste without any fibers) as a function of the
fiber factor, r/f. Due to the operating method, the fiber orientation
state for the different suspensions is assumed isotropic. With the
addition of the fibers, the relative yield stress increases with a sig-
nificant enhancement at fiber factor close to 3.5. This effect is more
pronounced as the fiber aspect ratio equals 37.5. The relative yield
stress data with r = 81 describe linear dependences at low fiber fac-
tors and then exhibit quadratic trends as fiber contents increase.

The predicted relative yield stress for an isotropic fiber orienta-
tion state is obtained from Eq. (27) using Eq. (21):

sY

scm
/s

¼ 1þ
/2

f r2B
6scm

/s

: ð29Þ

Results are given in Fig. 5 by the dash lines using the parameters
B = 1200 Pa for r = 37.5 and B = 2924 Pa for r = 81. The fits are in
very good agreement with the experimental data. However, some
discrepancies are observed for suspensions with fibers having an
6

aspect ratio of r = 37.5 and a fiber factor larger than 3. It may be
explained by the validity the fiber contact probability, which was
derived for large aspect ratio (i.e. r� 1) [56,68].

It is interesting to do an analogy between fibers having an
isotropic orientation and inclusions with spherical shape for the
prediction of the yield stress. Martinie et al. [30] have defined an
equivalent fiber solid volume fraction /f,eq = /sm/fr/4 for reinforced
suspensions. This equivalent fiber solid volume fraction replaces
the spherical particle fraction in the yield stress prediction of
Chateau et al. [41]. Based on the work of Perrot et al. [32], it is then
possible to determine the yield stress values for rigid fiber-
reinforced suspensions as:

sY

scm
/s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� /sm/f

r
4a

1� /f
r
4

� �2:5/sm
a

vuut ; ð30Þ

where the dense packing fraction is /sm = 0.6 [32]. The constant a
(with a < 1) is defined as a fitting parameter, which is used to
exactly match the fiber volume fraction corresponding to the yield
stress divergence. The value of a is expected to be close to 1 in order
to find a yield stress divergence for volume fraction ranging
between r/3.2 and r/4, which are some critical fiber packing volume
fractions defined in [46]. Fig. 5 reports the predicted relative yield
stress given by Eq. (30). Results show that the two curves are indis-
tinguishable, meaning that Eq. (30) is independent of the fiber
aspect ratio for in the investigated range. Furthermore, the fittings
obtained with a = 0.63 and a = 0.59 for r = 37.5 and r = 81, respec-
tively, underestimate the experimental data for fiber factor higher
than 1.

Our first observations show that the physics from which the
model is derived is of a great relevance. The proposed assumptions
seem to be quite reasonable but further efforts are necessary,
mainly concerning the determination of the fiber contact probabil-
ity. Indeed, the derivation of fiber contact probability corresponds
to rods with their centers outside of an imaginary tube with a
diameter of 2D entering through the curved surface [69]. Improve-
ments can be performed by considering fibers with their centers
outside the tube, entering through the end surfaces [70] and with
fibers having their centers within the tube [71]. In simple shear
flows, exact solutions for isotropic fiber orientations are obtained
but approximations should be proposed for other fiber orientation
states. Improvement of the present work can also be accomplished
by considering a contribution to the yield stress due to the
presence of the fibers and not only to their orientation. Fig. 4
reports that bð0Þ1122 will be zero when fibers will be perfectly aligned,



indicating that the yield stress of the suspension equals the one of
the matrix. This is a paradox that should be corrected by including
a finite thickness for the particles in the model.
8. Conclusions

A new constitutive law has been proposed to describe the yield
stress and consistency of non-dilute fiber suspensions in viscoplas-
tic materials. The total extra stress of the composite is considered
as the sum of the contributions of the viscoplastic fluid (Herschel–
Bulkley fluid filled with spherical inclusions) and fiber contribu-
tions (hydrodynamic and non-linear fiber–fiber interactions),
respectively. This model is able to predict shear thinning and shear
thickening behaviors as well as anisotropic yield stress depending
on the fiber orientation. The extra stress term involves two fourth-
order tensors, the orientation and interaction tensors, respectively,
where both quantities are function of the effective deformation
rate. In simple shear flow, analytical expressions for both tensors
are given for an isotropic fiber orientation state.

In order to illustrate the model, a rheological study of suspen-
sions with different fiber volume fractions have been performed
using kaolin pastes and steel fibers having two distinct aspect
ratios. The investigated fiber suspensions range from the dilute
to the concentrated regimes. Results showed a fairly good agree-
ment in terms of the predicted yield stress values. For kaolin pastes
having the largest aspect ratio, the measured relative yield stress
was found to be quadratic functions of the fiber factor, as predicted
by the model. Only one parameter is required to predict the yield
stress values for an isotropic fiber orientation. In this work, the
expression for the anisotropic yield stress has not been experimen-
tally validated.
Appendix A

In simple shear flow (where _c is the applied shear rate) and with
n = 0, the scalar quantity j _c : papajn�1 involved in Eq. (11) writes:

_c : papaj j�1 ¼ ð2 _c cosð/Þ sinð/Þj j sin2ðhÞÞ
�1
; ð31Þ

where the components of the unit vector pa, which gives the orien-
tation of a single fiber, are related to the angles (h, /) in spherical
coordinates by [52]:

p1 ¼ sinðhÞ cosð/Þ

p2 ¼ sinðhÞ sinð/Þ: ð32Þ

p3 ¼ cosðhÞ

Therefore the a1122 component of að0Þ4 becomes for an isotropic
fiber orientation (i.e. wpa ¼ 1=4p):

aðn¼0Þ
1122 ¼

1
4p

Z /¼2p

/¼0

Z h¼p

h¼0

cos2ð/Þ sin2ð/Þ sin3ðhÞ
2 _c cosð/Þ sinð/Þj j dhd/: ð33Þ

By performing some straightforward algebraic calculations, we
obtain:

aðn¼0Þ
1122 ¼

1
3pj _cj : ð34Þ
Appendix B

The Onsager potential |pa � pb|, contained in the interaction
tensor defined by Eq. (14), is generally approximated using Taylor
series expansion until the first order. Then a prefactor is introduced
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to reach the exact value for the isotropic orientation state and it
leads to [65]:

pa � pb
�� �� � 5p

16
1� 3

5
papa : pbpb

� �
: ð35Þ

Therefore, according to its definition Eq. (14) and using Eq. (35),
bðn¼0Þ

4 becomes for an isotropic fiber orientation (i.e.
wpa ¼ wpb ¼ 1=4p):

bð0Þ4 ¼
1

16p2

Z
pa

Z
pb

papapapa p
8

1þ3
2

1�papa : pbpb
� �	 


j _c : papaj�1dpbdpa:

ð36Þ

In simple shear flow, calculations of the 1122-component of
give:

1
16p2

Z
pa

Z
pb

papapapað1�papa : pbpbÞj _c : papaj�1dpbdpa ¼ 2
9pj _c j ; ð37Þ

and

1
16p2

Z
pa

Z
pb

papapapaj _c : papaj�1dpbdpa ¼ 1
3pj _c j : ð38Þ

As a result, the bð0Þ1122 component of bð0Þ4 writes as:

bð0Þ1122 ¼
p
8

1
3p _cj j þ

3
2

2
9p _cj j

� �
¼ 1

12 _cj j : ð39Þ
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