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Observer Design for Motorcycle’s Lean and Steering Dynamics
Estimation: a Takagi-Sugeno Approach

Dalil Ichalal, Hichem Arioui and Sd Mammar

Abstract—In this paper, a nonlinear motorcycle model is only few works dealing with the problem of motorcycle state
considered in order to estimate both the lean and steering gpservation.
dynamics. The model is transformed into a Takagi-Sugeno (T-S) |, the |iterature, most studies have mainly concerned the

form using the well-known sector nonlinearity approach. The timati f the | d . like th teeri
first contribution of this work is the exactness of the obtained ©Stimation ot ine lean dynamics uniike tne steering one.

T-S model compared to the considered nonlinear model, where Different techniques have been proposed to estimate the
the weighting functions of the T-S model depend on unmeasured roll angle: for example, frequency separation filtering ¢4]

state variables. A novel approach to construct a nonlinear extended Kalman filters, [18]. These techniques, performed
unknown input fast observer is proposed. The objective is under restrictive assumptions (dynamic steering is neggec

the simultaneous reconstruction of the state variables and the fi d f i ¢ t robust inst t
rider's torque. The observer's convergence is studied using ire-road forces are linear, etc.), are not robust aga

Lyapunov theory guaranteeing boundedness of the state and Variations of the forward velocity.
unknown input estimation errors which is expressed by the The topic of estimation of the steering angle (not the

Input to State Practical Stability (ISpS). Stability conditions  rider’s torque reconstruction) is not well covered in litiere
are then expressed in terms of Linear Matrix Inequaliies  5q he jean angle estimation problem. However, a few results
(LMI). Finally, simulation results are provided to confirm the . . ’
suitability of the proposed nonlinear observer. have been obtained in [6], where an LPV observer has
been used to design single-sensor control strategies for a
I. INTRODUCTION semi-active steering damper. The approach is a simple gain

Currently, powered two-wheeled (PTW) vehicles is a meadcheduling for an LTI motorcycle model under three constant
of transport increasingly sought after, especially for théorward velocities (50, 100 and 140 m/s). Unfortunately, no
opportunities it offers to sidestep traffic congestion. sThiguarantees for stability or convergence of the LPV observer
increase in vehicle fleet to PTW is accompanied by the blagte given outwards these constant velocities.
of the number of accidents. For a long time, industrial soci- To the best knowledge of the authors, the simultaneous
eties record on their roadways thousands of deaths and otigstimation of the lean and the steering dynamics (rider's
fatalities per year. Road safety institutions have laudchdorque) have never been addressed.
several preventive actions (radar, tickets, etc.) andareke
programs headed for safety systems, mainly for cars. Some
of these steps have brought their results, since the numberOur long term objective points the identification of all
of fatalities recorded a significant decrease over the ast f pertinent inputs and dynamic states improving the risk guan
years. However, if the number of fatalities experiences dlification of the loss-of-control during cornering. Indeed
overall decrease, the PTW remains a particularly dangeroitadequate cornering is responsible for most motorcycle
transportation, [13], [2]. fatalities, especially for single motorcycle crashes. Fafe

Development of safety systems for cars has reachedcarnering, riders should respect: 1) a suitable speed defor
certain maturity. Unfortunately, for motorcycles it is notstarting the corner, 2) the road conditions (under weak
the case. The most prominent example is that of the ABdjction) and 3) weather conditions do not allow optimal
that exists for 20 years, but is not still standard equipmemisibility when riding. Early warning systems are based
for PTW and its use remains marginal, [7]. The direcgenerally on related work carried out for standard cars
transposition of security systems, from cars to motorgycle[15]. The goal is the synthesis of a function estimating the
is not obvious because of the complex motorcycle dynamiggaximum safe speed at which a vehicle can be kept stable on
(highly nonlinear, [5], [8]), for example. In addition, admbof the road while moving at a constant longitudinal velocityeon
the design of a safety system, we must ensure the avaijabilgircular section. This velocity depends, among other facto
of the relevant dynamic states in order to quantify the risRn the lateral frictiorus whose computation involves all the
(loss of control, skidding, etc.). PTW dynamics can bdélynamic states of the PTW and a good modeling of the tire-
estimated through suitable sensors and/or observers.Bhe froad contact [15]. This makes the success of such warning
way is generally avoided for several reasons: price, nois®/stems strongly dependent on the availability of dynamic

measurement, feasibility, etc. On the other hand, there agtates of the motorcycle. Correlating this fact with thehyg
nonlinear dynamics, standard observation approaches are
All the authors are with the IBISC Laboratory, Evry- gqyestionable and less efficient. To answer this real chgdlen
Val-d’Essonne  University, 40, rue de Pelvoux, 91020 Evry dd in thi l b hesis b
Courcouronne Cedex{dal i | . i chal al, hichem arioui, we address In this paper a nonlinear observer synthesis base

sai d. mamar }@ bi sc. uni v-evry. fr on Takagi-Sugeno approach for PTW vehicles.

Il. PROBLEM STATEMENT



Takagi-Sugeno fuzzy structure is one of the most intemotion, due essentially to the effect of lateral forces from
esting approach to model nonlinear behaviors as proven the front and rear wheelsf; et F,) and the yaw and roll
recent years [16], [17]. Indeed, it offers a way to represemhotions under rider’'s steering actions. The study of such a
nonlinear complex behaviors by a more tractable mathematiodel aims to reconstruct the dynamic states of a motorcycle
ical formulation inspired by linear models. It consists orin cornering situation.
decomposing the operating state space on several regiondhese movements expressed by the following equations
and each region is modeled by a linear model. Thankgll the parameters are defined in Annex 2):
to nonlinear weighting functions which satisfy the convex e« Lateral motion
sum property, thg overall nonlinear behavior of a system MVy+Mek@ + (Mg j+Mch) 9+Mred = Fyr +Fyr (1)
is characterized in a compact set of the state space. In
recent years, some works are dedicated to the study of
nonlinear systems via T-S models, especially in observers (Msj+M; h) Ny + 810+ ap () + 8gd + auvi ) + ByVid = > My
design [9], [3], [1]. The proposed observer in this paper is . Yaw motion @
inspired from the linear adaptive one in [19] and adapted
to T-S models with unmeasurable premise variables which Mtk (¥ +Vxi) + a2+ b1 § 18 — bavxp — aswd = > M,
constitutes an open and interesting field of research. thdee . Steering motion ®)
the most developed work in the literature are limited only to ) . ,
the case of T-S models with measurable premise variables. Myely +ag@+Crl +C20 — asVkp+ Caw = ) Ms  (4)
T-S models with unmeasurable premise variables have g ere:
interesting properties, namely, the ability to transform a

« Roll motion

general nonlinear model into a T-S model by the use ofy Mx = (M¢j+Mh)gsin(g)+ (Mreg—nFs)sin(d)
nonlinear sector nonlinearity transformation with no loss (5)
of information (see [10] and references therein), and it isz M, = I¢Fy—IF,—Tcoge) (6)
pointed out in [20] that T-S models with unmeasurable .

premise variables can describe a wider class of nonlineaz Ms = (Mfeg_”FZf) sin(¢)

systems. + (Mfeg—nF;¢)sin(e)sin(d) + 1 )

The paper is organized as follows: Section Il present$pq |ateral forcesr,; and Ry, acting, respectively, on the

the lateral dynamics model of a motorcycle and a Takagkqnt and rear wheels depend on the sideslip angleand
Sugeno formulation of the considered model. In Section IV, . and camber angleg and y, are expressed by:

a unknown input and state observer for estimating the motor-

cycle lateral dynamics and the steering torque is syntadsiz { Fyt = —Crias 4 Crays 8)
The convergence of the observer is studied with Lyapunov Fr = —Cror +Cr2y

theory and an optimization problem under LMI constraintgvhere

is provided to design the observer in such a way to guarantee ap = wHg-nd\ coge)

the ISpS Property which illustrates the boundedness of the YX 9)
state and unknown input errors. Finally, Section V provides ar = ("V;ﬂ)
some simulations results and discussions on the proposedd .
an
observer. Vi = @+ dsin(e)
(10)
I11. M OTORCYCLE MODEL DESCRIPTION i=0

A. Nonlinear model of the motorcycle In this work, a normal riding is considered (without taking
into account the limit situations) which justifies the linea
form of the lateral forced s and F, with respect to both
sideslip and camber angles.

gr By replacing the mathematic expressions of the forces in
the dynamics model and by choosing the state vector as

,‘ Xt)=w g o 05 ], the system is rewritten as follows:

€y
EX(t) = A(X(t), w)x(t) + Bt (t) 11)
where E is a constant nonsingular matriB, is a constant
V%@U matrix andA(X) is a nonlinear matrix given by:

Fyf Vy Fyr ann a12(Vx) 0 a4
a1 az(Vx)  a3(Vx) a4

Fig. 1. Geometrical representation of the Sharp’s motorcyubelel A(X) = 0 ag2(Vx, @) 0 aga(Vx, @)
0 0 1 0

The lateral dynamics of a motorcycle are represented by as1(Vx)  asa(W)  asa(W)  asa(Vx, @)
a model with four equations [14], [15] describing the latera 0 0 0 0



as(W)  aie IV. OBSERVER DESIGN

22283 Ziig:; The following lemma is used in the proof of the observer’s
0 0 convergence study.
asa(Vy)  ass(Vi) Lemma 1:Consider two matriceX andY with appropri-
1 0 ate dimensionsG a positive definite matrix. The following
property holds
M ez e3 0 es5 0
er en e3 0 es 0 XTY+YTX <XTGX+YTGlY G>0  (16)
e;3 &3 €3 0 e55 0 The objective of this section is to provide a new approach
E= 0O 0O O 1 0 o in order to design observers for T-S fuzzy systems with
&5 &5 €5 0 e5 0 unmeasurable premise variables which is the case for the
0O O O O o0 1 considered motorcycle model. The observer aims to estimate
T simultaneously, the state variables and the rider’s tqrque
B=(0 —coge) 0 0 1 0) especially, the lateral velocityy, the roll angle ¢ and
The componentsy; and g; of, respectively, the matrix the steering torqua which constitute the most important
A(x) andE are given in Annex 1. variables in synthesizing risk function for riding assiste.

The following nonrestrictive assumptions can be made
Assumption 1:In the remaining it is supposed that

In ord_er to express_the model n .T'S fuzzy structure, let | the statex(t) is bounded (stable or stabilized motorcy-
us consider the following nonlinearities:

B. Exact T-S model of a motorcycle nonlinear model

cle)
2= 73— 17 7o sm((P)7 2= (12) « rank(CB) = ny (ny is the dimension of the unknown
Vx () input vector)

It is important to notice that the motorcycle, contrarily to « the torque derivative (t) is bounded byrimax

a standard vehicle with four wheels, is stable only for &n the case of the considered motorcycle modi(t) =
range longitudinal velocities,. Consequently, takingy in Ny = 1. The third assumption is not restrictive since the
the interval where the motorcycle is stable, the bounds ¢Rriation of the rider’s steering torque is bounded.

the premise variables are given by: A State estimation

Zmin <z< Znax ) ) .
L - < L ox Let us consider the T-S model given by the equations (14)
gi” - §2 - gax and (15). The state observer is then given by the following
i 2222 s equations:
By following the well-known sector nonlinearity approach R() =3 (v, %) (AR(L) +Li(y(t) — (1)) + BE(t)
(see [17] for more details), the obtained model is: =
16
Ex(t) = Z\M (v, X) AX(t) + BT(t) (13)
i=

The number 16 of sub-models comes from the fact that 4 (}7)

nonlinearities are chosen (see [17] for more details). (—’:Siné'e:j us conS|dgr th_e state est|m_at|on e[e(jr) ?hx(t) _X.(t)
the matrixE is nonsingular, its inverse —! exists and allows and torque estimation erroeg(t) = 7(t) — 7(t). The matrices

to write the model (13) in the form: L, F a_nd the scalar§ and o, of the observer, are to pe
16 determined in such a way to ensure state and unknown input
X(t) = Zlui (v, X)AIX(t) +B(t) (14) estimation errors with a minimal bound to have an accurate
i=

estimations.
whereA — E-Lof andB = E-12 Using equations (14), (15) and (17), the state estimation
= | = 2.
C. Measurement equation

error obeys the following differential equation:
16
Sensors generally available allow to measure differete sta ét) = ZM (v, X)Die(t) + Ber (1) +A(t) (18)
variables, as the roll and yaw rat@sy and both the steering i=

angle and the steering angle rétendd, which leads to the \yhere:

output equation: ¢ =A-LC (29)
y(t) = Cx(t) (15)
and:
where: 16
010000 A) = 3 (i) = i (e ) A1) (20)
0 01 00O i=
C=looo0oo01o0 i i imati
Notice that if the state estimation errors converge to zibm,
0 00O0O01 termA(t) converges also towards zero. In addition, since the



weighting functions are bounded and the state verfor The parameteF is then chosen sufficiently large in order to
is also bounded (see assumption 1), the té{n is then have a minimal value o® which guaranteeing a more ac-
bounded. The objective is to design the matritgsF and curate estimations. Otherwise,Aft) # 0, the state estimate
the scalard” and o guaranteeing an accurate estimation oérrors guaranty the Input To State Practical Stability 85p
the state and the unknown input by minimizing the boundiven by the following property

of the state and unknown estimation errors.

A a
B. Observer's convergence study lleit)|l, < )\max (t \/7||A M)l + \/7> (30)

From Assumption 1 and the fact that the functigpsare
bounded, the ternA(t) is bounded. Indeed, the system is
stable which provides bounded states for bounded infiyt
Under bounded perturbation terfxt), the observer (17) is
synthesized by solving the optimization problem under LMI V(t) = &' (t)Peft }eT r-le (t 31
constraints given in the Theorem 1. (® (t)Pe(t) + —er ()M e (t) (31)

Definition 1: ([12], [11]) The system (18) verify the Input whereP = PT >~ 0 andT > 0. In the framework of the
To State PracéErlcl:aI Stability (ISpS) if there exists /.2 n45rcycle model, the dimension ofis 1 then the parameter
function B : R*™ xR — R, @ /# function @ 1R — R s 5 sealar. (For more general case, we HageR™ where
and a constant such that for each inpu\(t) satisfying ny is the dimension of the unknown input vector).

[A(t)]|, < and each initial conditions(0), the trajectory = A . 4ing to the equation (18). the time derivativevt
of (18) associated te(0) andA(t) satisfies is given t;yg quation (18). ! Vativet)

le(®)ll, < B(le(O)] ) +a (|aM)]lL)+d  (21)
Theorem 1:Under the Assumption 1, given a positive v (t) = ZM Vi, X )(¢TP+P¢) e(t)
scalarso and a anda € [0,1], if there exists a symmetric
and positive definite matrif, gain matricesV; and positive
scalarsG, y, n and S solution to the following optimization

Proof: In order to prove the convergence of the state
and torque estimation errors, let us consider the following
Lyapunov function:

+ —er(t)r e (t) 4 2eT (t)PA(t) + 2€T (1)BT Pe(t)

problem,i=1,...,16 (32)
P.m:?.y an+(1-ajy Knowing thate; (t) = 7 — 7(t) and given the expression of
st o T(t) (17), the time derivative of the Lyapunov function (32)
BTP—FC 22) becomes:
16
Qi+aP  -Z®[PB-PB P V) = S m(vR(t)e" (H)Qiet)
( ~1BTPO—BTP  Wwiaf  —1gTP | <0 G '
P -1pB — 2 .
o ) — S OF(§(t)+o8y(t))
anl Q 2 iy
( Q anl ) >0 (24) + EeI(t)r (1) +2eT (1)PA(Y)
Q> (25) + 2el (t)B"Pe(t) (33)
where: whereQ; = ®T P+ P®;. Using the output equations, we have
Q = ATP+PA-MC-C'M (26) q,(t)_: Ceft) and gy(t) = _Cé, then, equation (33) can be
2 1 rewritten under the following form:
Y = —EBTPB+EG (27)
2
. : t)Qie(t) — el (t)FCh;e(t
Q = diagP ) 28) ;u. Vo X(1) (€ (VQ:e(t) — — €] (FCae))
2 .
and T = S1, then the state and torque estimation errors - Eer( JFCA(t) — 2el (t )FCe(t)+EeI(t)F*1T(t)
are bounded. The gains of the observer are computed from 2
L; = P~1M; andF is obtained directly by solving the above - EGI (t)FCBe (t) +2¢" (1)PA(t) (34)

optimization problem. The attenuation level of the transfe
from A(t) to state and unknown input estimation errors i$JSing lemma 1 and the fact that the first derivativerols

bounded and given by the quanti g\;‘ﬁ(&;’ In addition, bounded byrimax (assumption 1), we obtain

If A(t) =0 the state and unknown input estimation errors EeT(t)r i)
(norms of errors) converge to a set around the origin with a o’
”/A (Q9 . 1 1
size defined by the quantit % where: < EeI(t)Ge[(t) aTT( e ir-1(t)
1 P 1 1 P
5:5Tfma2\max(r leir 1) (29) < EeI(t)Ger(t)—kErlzma)Amax(F 'eir-1 (35)



and using assumption 1. It is possible to obtain matrlees one obtains the inequality

andP such thaB"P = FC holds. The time derivative of the
Lyapunov function (34) is then bounded as follows

V() < Zlul Vi, X Qe()—%eI(t)BTPCDie(t)
- iT()BTPA() 2el (t)BT Pe(t)
- %el(t)BTPBe((t)+%e¥(t)eer(t)
+ %Tfma@max(r’lG’lr’l)+ZeT(t)PA(t) (36)

Let us definex(t) =
is equivalent to:

[e'(t) er(t) A(t)]T. The inequality (36)

V(t) < NT ZM Vi, (1)) ZiX(t)

— aej(t)Qe(t) +yAT()AM) +5  (37)
wherea andyare positive scalar€ = diag(P, )ea(t)
€' (t) e (t)]" and

Qi+aP ~ioTPB-PB P
Zi=( —-18"Po —BTP w+ar - _1lgTp

P PB —y?
(38)
and .
5= Erfmax/\max(rfleflrfl) (39)

2 1
Ww=_=B'PB+ =G
g (o}

Q = O/ P+ P,

16

Now, if XT(t) 3 (v, R(t))ZiX(t) < O then the inequality
i=1

(37) can be blounded as follows

V() < —ael (t)Qa(t) + yAT (H)A() + & (40)
which is equivalent to
V(t) < —aV(t)+ yAT (DA() + 6 (41)
It follows
t
V) < Ve Ty e a)fds
. 0
+ & /e 9t-9gs (42)
/
—at y 2 0
< VO™ + A0l + 4 (43)

Knowing that Amin(Q) [[ea(t)||2 < V(t) < Amax(Q) lea®)|,

where:
P O
(o )

i
0 &

AmaX(Q) _at X 2 é
Amin(Q) (e + a 1AM+ C() (44)

By using the square root on (44), on obtains

(“t L1800+ \f)

(45)
According to Lyapunov formulation of Input To State Prac-
tical Stability (ISpS), the state and unknown input errors
converge to a region which will be minimized in order to
achieve a more accurate estimation of the states of thelgehic
and the torque applied on the handlebar. This ball is smaller
as the constand and the attenuation level of the transfer
from A(t) to the state estimation errors are smaller. To
enhance the performances of the observer, a minimal values
of these quantities are obtained by the following reasaning

Let us consider the quantit: Amax 7 < /N wheren is a

positive scalar. It is then sufﬁment to minimize the term
and assumin@min(Q) > 1 (Q > 1), on obtains:

)\max( )

lea(t)3 <

)\max

/\mn

lea(®)]l, <

<V (46)
which is transformed eaS|Iy into:
(an)’1-Q'Q>0 47)
Using Shur's complement lemma:
( "g' a?ﬂ )>o (48)
/\max(Q)5

The second quantit (O] is minimized by choosing
the parametersr and G sufficiently large for minimizing

the term d and the the ter A::?Tx((g)) is treated above.

Finally, the bound of this term will bg/d/a multiplied by

n. Always in the purpose of minimizing the two quantities,
in theorem 1, the chosen objective function is a linear
combination betweem and y. By choosing the change of
variablesS= I -1 andM; = PL;, the linear matrix inequalities

in theorem 1 are obtained. ]

V. SIMULATION RESULTS

The nonlinear system, including longitudinal and lateral
dynamics of two-wheeled vehicle is used. It requires three
inputs: the rider’s steering torque applied on the handieba
T (see Figure 2) and the angular velocities of both front
and rear wheelgo; and «y. The observer estimating the
lateral dynamics and steering torque using only the medsure
statesy, @ given by the inertial unit and and d obtained
from a suitable encoder. The gains of the observer were
calculated by solving the optimization problem under LMI
constraints proposed in theorem 1. The obtained attemuatio
level, from the termA(t) to the state and unknown input
estimation errors isy = 2.6119. The initial conditions of
the system arex(0) =[0 0 0 0 0 Q" and those of the
observer arx(0) =[1 1 01 1 0 Q1)". The adaptation law



providing an estimation of the steering torque is designe

: N 0.4 ; ;
in such a way to have a fast convergenceidf) to 7(t).
The chosen parameters ame=1, 0 =5 anda = 0.99. If 0.3 1
A(t) =0, the state and unknown input estimation erre(ts
and e,(t) converge to a ball around the origin having the 0.2 |
size ,/j\\mx((g))g ~ 0.1, for Timax= 40. In the steady state 0.1 ]
|At)]|,, is less than @7, the attenuation oA(t) is then g ol |
given by 4/ AA;T:(XED?L < nyllAl)|, ~ 2.78. A satisfactory @
state and unknown input estimation results are then olstain 0.1 il
as shown in figures 2 and 3 which is also illustrated by th ~ _, 5 ]
state estimation errors depicted in figure 4.

_0.3 4

Steering torquet (blue) and its estimate (red)
T T T T T -0.4 : : : :
0 1 2 3 4 5

t(s)

Fig. 4. State estimation errors on the time raf@e5|(s)

v, and estimated y (m/s) dy and estimated dp (rad/s)

.
onso

|
0 2 4 6 8 10 12 14 16 18 20
t(s) deand estimated @ (rad/s)

Fig. 2. Rider’s torque (blue) and estimated torque (red) o

vy and estimated y. (m/s) dy and estimated ap (rad/s)

‘

nee
-
228

G

Fig. 5. Actual states (blue) and estimated states (red) isedomeasure-
1 ment situation

L dvandesimatedd (avs) 0 Sand estimateds (rad) torque adaptation law can only guarantee the ISpS property.
S N ;g;\/w“\* Nevertheless, the simulation results are satisfactomthEc
% N S 0 N more, some parameters in the proposed design approach are
fixed a priori, in future work, this will be treated in order to
Fig. 3. Actual states (blue) and estimates states (red) take them into account in the optimization problem leading

to optimal values which give better results and less theoret

In order to test the observer in the presence of measurgounds values.
ment noise, let us consider the same observer's parameters
and assume that the measurement signals are affected by
a centered and random noise with magnitude 5% of the In this paper, an unknown input and state observer for
maximal values of the measured variables. The obtainexstimating the lateral dynamics and the steering torque in
results are depicted in the figure 5, the states are themotorcycles is proposed. A nonlinear model is then consid-
estimated accuratly. The estimation of the steering torqueed with some nonlinearities and time-varying longitadin
is also acceptable, but the effect of the measurement noigelocity. The proposed approach is based on the transfor-
is visible. This is due to the presence of a derivation in thenation of the nonlinear lateral dynamics model using sector
adaptation law leading to estimate the steering torque amdnlinearity transformation in Takagi-Sugeno structuhe
also due to the large value bf It is then possible to reduce specificity of this part is that the weighting functions of
the effect of the measurement noise by reducing the valdikee T-S model depend on the state variables which are not
of I'. A compromize can then be obtaind by an adequiate totally measured. The study of this type of model is more
selected sufficiently large to ensure an accurate estimafio difficult compared to T-S models with measured premise
the unknown input and sufficiently less to reduce the effeatariables. Based on the obtained model, an adaptive olsserve
of the measurement noise. is then proposed. The observer’s convergence is studiad usi
Of course the I1SpS property is weaker than ISS or asympyapunov theory and LMI conditions are given to ease the
totic stability, but the proposed observer with the estiomeé  design of the observer with dedicated softwares. It is jgoint

VI. CONCLUSION



Steering torquet
T

Fig. 6. Steering torque (blue) and estimated steering tofieaed in noised

measurement situation

out that this observer guaranty the ISpS property. Sinarati

results are provided which illustrate the effectiveness of
the proposed observer in estimating both the states and

the steering torque. In future work, the T-S model will

be refined by taking into account some other nonlinear
behaviors, namely, the nonlinear form of the lateral forces
(Pacejka’'s or Dugoff's model) and taking into account the
longitudinal motion. The observer will be then redesigned
for more accuracy. In addition, the lateral and longitutlina

forces estimation will be considered in order to estima& th

road adhesion. This is in the perspective to synthesis risk
functions which inform the rider on dangerous situations.

Some validation results in real situations will be publithe

in future papers.

The components of the matriA(x(t)) are defined as

follows:
a1 =
app(w) =
as =
ais(w) =

6 =
a1 =

ap(w) =

ax(w) =
g =
as(V) =
P =

ag (W, @) =

ag(p) =
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VIII. ANNEX 2

Mass of front frame

Mass of rear frame

Distance between the center of gravity

of the front frame and ground

Distance between the centers of gravity

of each frame

Distance between the center of gravity

and the front wheel

Distance between the center of gravity

and the rear wheel

Distance between the fork and the center

of gravity

Height of the center of gravity

Steering head angle

Polar moment of inertia of front wheel

Polar moment of inertia of rear wheel

Camber inertia of rear wheel.

radius of the front wheel

radius of the rear wheel

Acceleration due to gravity.

Front and rear tire relaxation lengths respectively
total mass of the motorcycl®l = Ms + My

Front and rear tire cornering

stiffnesses respectively

Front and rear tire camber stiffnesses respectively
Pneumatic trail

Forward speed

Front and rear tyre relaxation lengths respectively
Front wheel load

road’s curvature
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