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In this paper we use a variational method in order to estimate the optical flow. We use a combined Local-Global strategy coupled with a local choice of the regularization term. In order to improve the computation time we have implemented a parallel in time algorithm. As application of the optical flow we present an example of image reconstruction.

INTRODUCTION

In this paper we present a new adaptive strategy for the determination of optical flow. We use the Combined Local-Global (CLG) strategy first presented by Andrés Bruhn, Joachim Weickert and Christoph Schnörr in 2005 [START_REF] Bruhn | Lucas/kanade meets Horn/Schunck: Combining local and global optic flow methods[END_REF]. It is a combination of Lucas and Kanade's method [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF] which figures out the aperture problem by assuming a local constancy hypothesis and the global method of Horn and Schunck [START_REF] Horn | Determining optical flow[END_REF]. Our work follows Z. Belhachmi and F. Hecht's article [START_REF] Belhachmi | Control of the effect of regularization on variational optic flow computation[END_REF] on the control of the regularization parameter. While most of methods use a priori estimation in order to choose the regularization parameter their method consists in a posteriori estimation of a parameter locally chosen. This becomes a piecewise continuous function. Concerning the algorithm in order to improve computation time we have used a parallel in time method first presented by J.-L. Lions, Y. Maday, and G. Turinici [START_REF] Lions | Résolution d'edp par un schema en temps "pararéel[END_REF] in 2001. It is called "parareal" method. Contrary to well-known decomposition domain methods this one allows separating the work with respect to time steps. The principle is to first operate a fast coarse resolution and then use obtained solutions as initial values of each process. Finally we will make an application of the estimation of the optical flow following the idea described by Harald Grossauer in [START_REF] Grossauer | Inpainting of movies using optical flow. Book section: Mathematical Models for Registration and Applications to Medical Imaging[END_REF]. It is an example of film restoration using the combination of the optical flow and image inpainting. In our case we choose the complex Ginzburg-Landau equation to do the restoration. In the first part of this article we remind the optical flow problem and the combined Local-Global strategy. Then we recall Belhachmi and Hecht's adaptive control to expose in a second part the parareal algorithm to improve the computation time. In the last part we give an application of movies restoration using the optical flow and image inpainting.

II. OPTICAL FLOW PROBLEM

A. Variational optical flow estimation

We consider a sequence of successive images where ߗ ⊂ ℝ² represents the image domain. The intensity of a pixel at moment ݐ is defined by the functional

:ܫ Ω × [0, T] → ℝ ሺ,ݔ ݕሻ, ݐ ⟼ ,ݔ‪ሺܫ ,ݕ ݐሻ (1) 
Thanks to John Barron, David Fleet and Steven Beauchemin method [START_REF] Barron | Performance of optical flow techniques[END_REF] we use a convolution with a Gaussian ܭ ఙ of standard deviation ߪ to work with smoothed images. Thus we define the smoothed image sequence

݂ሺ,ݔ ,ݕ ݐሻ = ሺܭ ఙ ⋆ ܫሻሺ,ݔ ,ݕ ݐሻ.
The optical flow ݑ = ሺݑ ଵ , ݑ ଶ ሻ is the displacement of a pixel between two images. We will present numerical results obtained with two frames of the RubberWhale sequence (Fig. 1). This sequence is provided by the site of Middleburry www.vision.middleburry.edu/flow/. We give the ground truth solution in Fig. 2 and the color map in Fig. 3. The color map helps us to visualize the optical flow by assigning a color to each vector based on its orientation. The intensity of the color determines the vector's norm. Following the brightness constancy assumption brightness intensity stays the same between two successive frames ݂ሺ,ݔ ,ݕ ݐሻ = ݂ሺݔ + ݑ ଵ , ݕ + ݑ ଶ , ݐ + 1ሻ.

In small displacements we can assume that ݂ is ܥ ଵ ሺ[0, ∞[; ℝሻ. So by using a first order Taylor expansion we obtain the fundamental constraint of optical flow

݂ ௫ ݑ ଵ + ݂ ௬ ݑ ଶ + ݂ ௧ = 0 (2) 
with the notation ݂ = డ డ .

In this way we have to determine two unknowns ݑ ଵ and ݑ ଶ with only one equation. This problem is called "aperture problem". To go through this ill posed-ness Lucas and Kanade [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF] assume that every pixel of a neighborhood of size ߩ moves similarly. Thus, we determine optical flow ݑ by minimizing the functional

ܭ ఘ ⋆ ቀ൫݂ ௫ ݑ ଵ + ݂ ௬ ݑ ଶ + ݂ ௧ ൯ ଶ ቁ
where ܭ ఘ is a Gaussian deviation of parameter ߩ.

At the same time as Lucas and Kanade, Horn and Schunck proposed [START_REF] Horn | Determining optical flow[END_REF] another method to overcome the aperture problem. Contrary to the local assumption they proposed a global approach. They introduced a regularization part and consider ݑ as a minimizer of the global energy

 ቀ൫݂ ௫ ݑ ଵ + ݂ ௬ ݑ ଶ + ݂ ௧ ൯ ଶ + ߙሺ|∇ݑ ଵ | ଶ + ݑ∇| ଶ | ଶ ሻ ቁ ݕ݀ݔ݀ ஐ
where ߙ is the constant regularization parameter which acts as a penalizer and leads to smoother flow field (bigger is ߙ smoother is the flow). The idea of the Combined Local-Global strategy is, as it is suggested, to combine both methods and minimize the functional

 ൬ܭ ఘ ⋆ ൫݂ ௫ ݑ ଵ + ݂ ௬ ݑ ଶ + ݂ ௧ ൯ ଶ + ߙሺ|∇ݑ ଵ | ଶ + ݑ∇| ଶ | ଶ ሻ൰ .ݕ݀ݔ݀ ஐ
According to Euler-Lagrange equations we have the system

൝ ܭ ఘ ⋆ ሺ݂ ௫ ሻ ଶ ݑ ଵ + ܭ ఘ ⋆ ൫݂ ௫ ݂ ௬ ൯ݑ ଶ + ܭ ఘ ⋆ ሺ݂ ௫ ݂ ௧ ሻ -αΔݑ ଵ = 0 ܭ ఘ ⋆ ሺ݂ ௬ ݂ ௫ ሻݑ ଵ + ܭ ఘ ⋆ ൫݂ ௬ ൯ ଶ ݑ ଶ + ܭ ఘ ⋆ ൫݂ ௬ ݂ ௧ ൯ -αΔݑ ଶ = 0 (3) 
that we finally write as

ቊ αΔݑ + ܬ ఘ ݑ = ݂ in Ω ௗ௨ ௗ = 0 on ߲Ω (4) 
with

ܬ ఘ = ൭ ܭ ఘ ⋆ ሺ݂ ௫ ሻ ଶ ܭ ఘ ⋆ ൫݂ ௫ ݂ ௬ ൯ ܭ ఘ ⋆ ൫݂ ௬ ݂ ௫ ൯ ܭ ఘ ⋆ ൫݂ ௬ ൯ ଶ ൱ and ݂ = ቆ ܭ- ఘ ⋆ ሺ݂ ௫ ݂ ௧ ሻ ܭ- ఘ ⋆ ൫݂ ௬ ݂ ௧ ൯ ቇ.

B. Adaptive regularization

In this part we are interested to control the parameter ߙ. The regularization parameter is now a function. This local choice of ߙ is based on a posteriori strategy analysis. The idea was proposed by Z. Belhachmi and F. Hecht [START_REF] Belhachmi | Control of the effect of regularization on variational optic flow computation[END_REF]. The general method for the choice of the regularization parameter consists on seeking an optimized value of ߙ before the discretization. The choice of the regularization is an important part of the resolution because a small value is necessary to approximate correctly the Neumann boundary condition on edges of objects but it increases the maximum value of the optical flow. So in order to have a better estimation we prefer a larger regularization. The local choice of ߙ allows to decrease its value on regions where we need a small ߙ and keep a large value in the rest of the image.

We work in the space ܪ ଵ which is a Hilbert space for the scalar product

ሺ,ݑ ݒሻ ఘ = න ݒ∇ݑ∇ ݕ݀ݔ݀ + න ܬ ఘ ݑ • ݕ݀ݔ݀ݒ ஐ ஐ
and the norm

‖ݑ‖ ு భ ሺஐሻ = ሺ,ݑ ݑሻ ఘ ଵ ଶ ൗ .
Another choice of Hilbert space is given in [START_REF] Belhachmi | Control of the effect of regularization on variational optic flow computation[END_REF]. ሺΩ ℓ ሻ ଵழℓழ is a subdivision of Ω. We define ߙሺ,ݔ ݕሻ a piecewise function such that ߙሺ,ݔ ݕሻ = ߙ ℓ on Ω ℓ . The weak formulation of the problem above with the adapted

ߙ is: for all ݒ ∈ ܪ ఘ ଵ ሺΩሻ, find ݑ ∈ ܪ ఘ ଵ ሺΩሻ, such that  ߙሺ,ݔ ݑ∇‪ሻݕ • ݕ݀ݔ݀ݒ∇ +  ݒ ் ܬ ఘ ݕ݀ݔ݀ݑ =  ݂ • ݕ݀ݔ݀ݒ ஐ ஐ ஐ . By posing ܽ ఈ ሺ,ݑ ݒሻ = න ߙሺ,ݔ ݑ∇‪ሻݕ • ݕ݀ݔ݀ݒ∇ + න ݒ ் ܬ ఘ ݕ݀ݔ݀ݑ ஐ ஐ ݂ሺݒሻ = න ݂ • ݕ݀ݔ݀ݒ ஐ this problem finally becomes: find ݑ ∈ ܪ ఘ ଵ ሺΩሻ such that ܽ ఈ ሺ,ݑ ݒሻ = ݂ሺݒሻ.
(5) The existence of a week solution of ( 5) is due to the Lax-Milgram Lemma and is proved in [START_REF] Belhachmi | Control of the effect of regularization on variational optic flow computation[END_REF]. We recall the proposition (a complete proof is given in [START_REF] Belhachmi | Control of the effect of regularization on variational optic flow computation[END_REF])

Proposition 1 Let ݑ ∈ ܪ ఘ ଵ ሺߗሻ be a solution of ܬ ఘ ݑ = ݂. For ߙ > 0 we have the two inequalities ݑ‖ ఈ ‖ ఘ,ఈ ≤ ܿ ብܬ ఘ భ మ ݑብ మ ሺఆሻ (6)
and [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF] with ܿ a constant independent of ߙ and ߙ and ߙ ெ are respectively the minimal and the maximal value of ሺߙ ℓ ሻ ଵழℓழ .

ݑ‖ -ݑ ఈ ‖ ఘ,ఈ ≤ ܿ ቀ ఈ ಾ ఈ ቁ భ మ ቛߙ భ మ ݑߘ ఈ ቛ మ ሺఆሻ
Since we want to locally choose the regularization parameter we will have a large ratio ఈ ಾ ఈ . So we will use the inequality [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF] in the error indicator.

Let ሺܶℎሻ be a regular subdivision of Ω. Each element ܭ ∈ ܶℎ is a triangle with maximal size ℎ. We define the space of approximations

ܸ = ሼݒ ∈ ܥሺΩ ഥ ሻ, ݒ | ∈ ܲ ଵ ሺܭሻ ଶ ሽ
where ܬ ఘ, is an approximation of ܬ ఘ and ܽ ఈ, of the bilinear term ܽ ఈ where ܬ ఘ is replaced by ܬ ఘ, . The discrete problem also reads: for all ݒ ∈ ܸ find ݑ ఈ, such that

ܽ ఈ, ൫ݑ ఈ, , ݒ ൯ = ݂ሺݒ ሻ.
The control of the regularization is done through an error indicator which is given for each element ܭ ∈ ܶℎ by

ߟ = ߙ ି ଵ ଶ ℎ ฮ݂ + ߙ Δݑ ఈ, + ܬ ఘ, ݑ ఈ, ฮ మ ሺሻ మ + 1 2 ߙ ି ଵ ଶ ℎ ଵ ଶ ቛൣߙ∇ݑ ఈ, ݊ ൧ ቛ మ ሺሻ మ ∈ఌ ಼
where ߝ represents the set of all edges ݁ of .ܭ The diameter of ܭ is noted ℎ and the diameter of an edge ݁ is ℎ . ݊ represents the normal vector from ݁, ߙ is the maximum between the ߙ of the two neighbors of an edge and ]ݎ[ represents the jump over the edge ݁ that means the difference between the outside and the inside value.

The error indicator ߟ shows the finite element error and the model error. On discontinuities this value is large so to improve the solution we decrease ߙ following this formula

ߙ ାଵ = max ൮ ߙ 1 + ߢ max ൬ ߟ ‖ߟ ‖ ஶ -0.1,0൰ , ߙ ௦ ൲
where ߢ is an arbitrary control parameter and ߙ ௦ is a sill. In this way, if the relative error is greater than 10% we reduce the value of ߙ. In an other hand, if it is less than 10% the denominator is equal to one and so ߙ stays the same.

To sum up we present different steps of the method.

• Compute a first approximation ݑ ఈ of the optical flow. This estimation is done on a Cartesian grid ܶℎ where we have one cell per pixel. Define ݅ = 0.

• ݅ = ݅ + 1. Build an adapted mesh ܶℎ with the metric error indicator.

• Local choice of ߙ ሺ,ݔ ݕሻ on ܶℎ .

• Go to step 2.

C. Numerical Results

On the Fig. 4 we present solutions obtained with a constant regularization ߙ = 3000 and a locally adapted parameter with ߙ = 3000. As we can see on the Fig. 5 a small regularization implies a good estimation of the edges but there are too many details on the texture. That's why we have initially chosen a large ߙ . In this way the vector field is smoothed enough and after the adaptation on edges we can improve the estimation. To show the evolution of the estimation's accuracy with the adaptation of ߙ we present in Fig. 6 the evolution of the Average Angular Error (AAE). We recall the formula of the angular error

arccos ݑ ଵ, ݑ ଵ, + ݑ ଶ, ݑ ଶ, + 1 ටሺݑ ଵ, ଶ + ݑ ଶ, ଶ + 1ሻሺݑ ଵ, ଶ + ݑ ଶ, ଶ + 1ሻ
where ൫ݑ ଵ, , ݑ ଶ, ൯ is an approximation of the vector field and ൫ݑ ଵ, , ݑ ଶ, ൯ represents the exact flow field. Finally we show in Fig. 7 the adapted mesh obtained after 20 steps of adaptation and the evolution of the number of degrees of freedom. The initial mesh is fine enough and we don't need to refine it. However, regions where the parameter ߙ is large are sufficiently smoothed by the regularization to allow a larger mesh. Moreover with the adaptation step we decrease the number of degrees of freedom. As we can see in Fig. 7.b. this number decreases significantly until the second iteration and stays relatively low. This implies a gain of computation time. 

III. PARAREAL METHOD FOR OPTICAL FLOW

A. Presentation of the algorithm

As we could have seen in the above section the adaptive strategy to control parameter ߙ is a good method to have a fine characterization of the geometry which gives a better estimation of the flow field and to strongly reduce the number of degrees of freedom. Now we want to improve the computation time by parallelizing our program. However, classical methods of parallelization are not well adapted to our problem. As we are dependent of the mesh geometry we can't use usual domain decomposition methods and the parallelization on graphic cards is not adapted to the mesh adaptation. For these reasons we choose a parallel in time algorithm.

The word "parareal" was first stated by J.-L. Lions, Y. Maday and G. Turinici [START_REF] Lions | Résolution d'edp par un schema en temps "pararéel[END_REF] to represent a parallel in time method. The aim is to couple coarse and fine resolutions to construct a predictor-corrector process [START_REF] Bal | A parareal time discretization for nonlinear pde's with application to the pricing of American put[END_REF] where the fine resolution is made in parallel. In order to use the parareal method we add a variation in time of the flow field. The problem to solve becomes

൝ ݑ߲ ݐ߲ -ߙΔݑ + ܬ ఘ ݑ = ݂ in Ω, ݐ ∈ [0, ܶ] ݑሺ0ሻ = 0 Let 0 = T < T ଵ < ⋯ < T = T be a partition of [0, ܶ].
The idea is to first solve the problem with a coarse method on [0, ܶ] with a large time step Δܶ. Then we solve the problem with a finer method of time step Δݐ (where Δݐ < Δܶ) on each interval [ܶ , ܶ ାଵ ]. For each fine resolution we take the initial condition ݑ = ݑሺܶ ሻ which is the correspondent coarse solution. In this way we can do many fine problems in parallel since we have coarse solutions.

We set ࣡ and ℱ a coarse and a fine solver of the optical flow problem where ℱ is at least as accurate as ࣡. In our case we took an Euler implicit method. We consider Δܶ = ܶ/ܰ and Δݐ = Δܶ/ܯ corresponding time steps where ܰ and ܯ are respectively the total number of coarse time steps and the total number of fine time steps.

We first compute a coarse approximation of the flow field ݑ on [0, ܶ] ൜ ܷ ାଵ = ࣡ሺܷ ሻ, ݊ = 0, … , ܰ ܷ = ܷሺܶ ሻ.

At this point we start the global iterative part of the algorithm. We begin by the sequence ሺܷ ሻ of these coarse approximations and we compute a fine approximation on [ܶ , ܶ ାଵ ] such that

ቊ ݑ ,ାଵ = ℱ൫ݑ , ൯, ݉ = 0, … , ܯ ݑ , = ܷ .
The first remark is that the fine solution allows to correct the first coarse prediction in order to get a better approximation of ݑሺܶ ሻ. Indeed the initial value used for each coarse resolution can be updated with respect to the fine approximation

ܷ ෩ ାଵ = ݑ ,ெ .
After that we do a new coarse resolution which begins at ݊ = ݇ + 1 where ݇ is the number of the current global iteration

ܷ ෩ ାଵ = ࣡൫ܷ ෩ ൯.
Finally we can update the sequence of coarse approximations with the prediction-correction formula

ሺܷ ௪ ሻ ାଵ = ܷ ෩ ାଵ -ܷ ାଵ + ݑ ,ெ .
We end by updated ܷ to then start the next iteration

ܷ = ܷ ௪ .
Obviously the maximum number of global iterations is ݇ = ܰ. However, doing ܰ iterations would correspond to the same result than the sequential algorithm. In fact it would be worse because of the MPI communications and update parts. Hence we check after each global iteration if two successive global results are significantly different and if they don't we stop our program.

In order to illustrate the program we present the pseudo code of the parareal algorithm.

Initialisations :

ܷ ௗ = 0 Coarse resolution:

For ݊ = 0 to ܰ -1 ܷ = ࣡ሺܷ ௗ ሻ ܷ ௗ = ܷ ܷ ௗ [݊] = ܷ ݑ ௦௧௧ [݊ + 1] = ܷ End For 2.
Global iterative loop for parareal resolution: ݇ = 0 While error > tolerance and ݇ < ܰ a. Parallel resolution (same for each CPU ݅):

ݑ ௗ = ݑ ௦௧௧ [݅] For ݉ = 0 to ܯ -1 ݑ = ℱሺݑ ௗ ሻ ݑ ௗ = ݑ End For b. MPI communications: sharing data Each CPU sends his ݑ ௗ in ݑ ௧ [݅] c. Compute error ݎݎݎ݁ = ฮݑ ௧ ]݁ݖ݅ݏ݅݉[ -ݑ ௧ ฮ మ d. Prediction-correction: ݑ ௦௧௧ [݇ + 1] = ݑ ௧ [݇] For ܫ = ݇ + 1 to ܰ -1 ܷ ௗ = ݑ ௦௧௧ ]ܫ[ ܷ = ࣡ሺܷ ௗ ሻ ܷ ௗ = ܷ ܷ ෩ = ܷ ௗ ]ܫ[ ܷ ௗ ܫ[ ] = ܷ ௗ ݑ ௦௧௧ ܫ[ + 1] = ܷ + ݑ ௧ ]ܫ[ -ܷ ෩ End For ݇ + + End While
The best way to show that the method works is to compare solution obtained with the original sequential algorithm. During the first global iteration the first Computational Process Unit (CPU) has the same start point than the sequential version and executes ܯ small steps. So the ܯ first steps are the same during the first iteration. Before the second global iteration, the start point of the second CPU is updated with the result obtained with the CPU 0. In this way for the second global iteration, results of the two first CPU are the same than results of sequential code and so on. In the Fig. 8 we show the error in ܮ ଶ norm between the two algorithms for each global iteration. The prediction-correction step improves the accuracy of all next CPUs. 

B. Numerical Results

Obviously for such a code the optical flow is near to the result obtained in sequential without adaptation. So in order to improve the accuracy of the result we apply an adaptation of the parameter ߙ during the first coarse resolution. On the Fig. 9 we can see the difference between the two launches. The first one is without adaptation and the second is with adaptation. The AAE is improved from 26.7 to 26.3 and we can observe on the picture that edges are more accurate. In the following table we give computation times with respect to the number of CPU used. As we can see, the algorithm is non-scalable which means that we don't gain as many time of execution as the number of CPU used. There are two principal reasons for that. Firstly the multiple correction steps generate a lot of communications between processors. Then, this method is efficient when the correction step has acted several times for all CPUs. Indeed, we have seen above that estimations of all CPU are improved at each prediction-correction step. So if we have a big number of CPU and we do a big number of prediction-correction steps then the estimation is well done. However, as predictioncorrection steps are expansive we need to have a big number of fine iterations for each CPU. This means that this method is more efficient for long problems in time with a very big number of iterations and a big number of CPU.

IV. MOVIE'S RESTORATION

A. Presentation of the method

We present now the application coupling optical flow and inpainting image first proposed by Harald Grossauer in [START_REF] Grossauer | Inpainting of movies using optical flow. Book section: Mathematical Models for Registration and Applications to Medical Imaging[END_REF]. In order to reconstruct a damaged image of a movie we need to identify which part of this image needs to be treated. We call it the "mask of damage". To identify this mask we consider three consecutives frames ݂ ିଵ , ݂ and ݂ ାଵ . We compute the optical flow ℎ from ݂ ିଵ to ݂ and the optical flow ℎ from ݂ ାଵ to ݂ . So we have these following relations

݂ ିଵ ሺݔ + ℎ ሻ ≈ ݂ ሺݔሻ ≈ ݂ ାଵ ൫ݔ + ℎ ൯.
We consider that a pixel belongs to a map if we have

|݂ ିଵ ሺݔ + ℎ ሻ -݂ ሺݔሻ| > ߣ and |݂ ାଵ ൫ݔ -ℎ ൯ -݂ ሺݔሻ| > ߣ.
for a chosen ߣ.

Once we have found the domain Σ where the image needs to be restored we solve the complex Ginzburg-Landau equation

ݑ߲ ݐ߲ -ߙΔݑ + 1 ߝ ଶ ሺ||ݑ ଶ -1ሻݑ + ሺݑ -݂ሻ = 0
on Σ to do image inpainting on this region. The complex function ݂ is given by ݂ = ݂ + ݅ඥ1 -݂ ଶ where ݂ represents the initial damaged picture.

The weak formulation of this problem states: find ݑ ∈ ܪ ଵ ሺΣሻ such that for all ݒ ∈ ܪ ଵ ሺΣሻ we have

න ݑ݀ ݐ݀ ݒ -ݑ∇ߙ • ݒ∇ + 1 ߝ ଶ ሺ||ݑ ଶ -1ሻݑ • ݒ + ሺݑ -݂ሻ • ݒ = 0. ஊ B.

Numerical Results

To present our result we use the sequence frame10-frame11-frame10 of the Venus test case of the site of Middleburry where we have manually degraded the frame 11 (Fig. 10). In this particular case we know the exact flow field linking the frame 10 and frame 11. So we first have tested the reconstruction in the most ideal case with the exact optical flow and then with our computed optical flow. In Fig. 12 we show masks of damage found in both cases and in Fig. 13 we present results after the complex Ginzburg-Landau resolution [START_REF] Belhachmi | Weighted Harmonic and Ginzburg-Landau equations in image inpainting[END_REF]. We can see that even with the evaluated optical flow, the mask of damage is well found and the reconstruction of the image is not so far of the reconstruction found by using the exact optical flow.

V. CONCLUSION

In this paper we have implemented a variational method to estimate the optical flow field. We have added an adaptive control of the regularization parameter of Horn and Schunck which is a way to have a good characterization of the geometry. This control is combined with a mesh adaptation which reduces significantly the number of degrees of freedom. Then, in order to improve the computation time we have implemented the parareal algorithm. We have seen that the method is efficient but it could be better on a longer problem in time and with more processors. Finally we have coupled the optical flow estimation with the complex Ginzburg-Landau equation in order to restore an altered movie. The computed optical flow has been very efficient to find the damaged area on the picture.
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 1 Figure 1. Frames 10 and 11 of the RubberWhale sequence.

Figure 2 .

 2 Figure 2. Ground truth solution of the RubberWhale sequence.

Figure 3 .

 3 Figure 3. Color map used to visualize the optical flow.

Figure 4 .

 4 Figure 4. Left: Solution with constant ࢻ = . Right: Solution after 20 iterations of adaptation and ࢻ = .
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 5 Figure 5. Solution with constant ࢻ = .
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 6 Figure 6. Evolution of AAE with respect to iterations of adaptation.

Figure 7 .

 7 Figure 7.a. Adapted meh after 20 iterations of adaptation.Figure 7.b. Evolution of the number of degrees of freedom.

Figure 7 .

 7 Figure 7.a. Adapted meh after 20 iterations of adaptation.Figure 7.b. Evolution of the number of degrees of freedom.

Figure 8 .

 8 Figure 8. Evolution of the error in ܮ ଶ norm between the parallel and the sequential algorithms. From left to right, from up to down, we have the iteration 0 to 3. In red we have the CPU 0, in green the CPU 1, in blue the CPU 2 and in purple the CPU 3.

Figure 9 .

 9 Figure 9. Left: Final result for the parareal code without adaptation, AAE=26.7. Right: Final result for the parareal code with adaptation, AAE=26.3.

Figure 10 .

 10 Figure 10. Frame 11 of the Venus sequence manually altered.

Figure 12 .

 12 Figure 12. Mask of damage obtained using the exact optical flow (left) and our computed optical flow (right).

Figure 13 .

 13 Figure 13. Reconstructed image using the exact optical flow (left) and our computed optical flow (right).

Table 1 .

 1 Speedups ቀ

	௦௨௧ ௧ ௧	ቁ in function of the number of CPU.
	Number of CPU	Speedup
	1	1
	8	1.2
	16	1.3