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Preliminaries

The signals from digital electrical engineering ale modeled by 'nice'discrete time and real time functions, also called signals and their introduction is the purpose of this Chapter. We de…ne the left and the right limits of the real time signals, the initial and the …nal values of the signals, the initial and the …nal time of the signals, the forgetful function and …nally we de…ne the orbits, the omega limit sets and the support sets.

Proof. We have the following possibilities. Case t < t 0 ; we take " 2 (0; t 0 t); for which fkjk 2 N; t k 2 (t "; t + ")g = ?: Case t = t 0 ; for " 2 (0; t 1 t) we have fkjk 2 N; t k 2 (t "; t + ")g = ft 0 g: Case t 2 (t k 0 1 ; t k 0 ); k 0 1; " 2 (0; minft t k 0 1 ; t k 0 tg) gives fkjk 2 N; t k 2 (t "; t + ")g = ?:

We have the following possibilities:

Case t < t 0 ; 8 2 (t "; t); x( ) = ; 8 2 (t; t + "); x( ) = : Case t = t 0 ; 8 2 (t "; t); x( ) = ; 8 2 (t; t + "); x( ) = x(t 0 ): Case t 2 (t k 0 1 ; t k 0 ); k 0 1; 8 2 (t "; t); x( ) = x(t k 0 1 ); 8 2 (t; t + "); x( ) = x(t k 0 1 ): Case t = t k 0 ; k 0 1; 8 2 (t "; t); x( ) = x(t k 0 1 ); 8 2 (t; t + "); x( ) = x(t k 0 ):

Preface

The boolean autonomous deterministic regular asynchronous systems have been de…ned for the …rst time in our work Boolean dynamical systems, ROMAI Journal, Vol. 3, Nr. 2, 2007, pp 277-324 and a deeper study of such systems can be found in [START_REF] Vlad | Asynchronous systems theory[END_REF]. The concept has its origin in switching theory, the theory of modeling the switching circuits from the digital electrical engineering. The attribute boolean vaguely refers to the Boole algebra with two elements; autonomous means that there is no input; determinism means the existence of a unique (state) function; and regular indicates the existence of a function : f0; 1g n ! f0; 1g n ; = ( 1 ; :::; n ) that 'generates' the system. Time is discrete: f 1; 0; 1; :::g or continuous: R. The system, which is analogue to the (real, usual) dynamical systems, iterates (asynchronously) on each coordinate i 2 f1; :::; ng; one of i : we say that is computed, at that time instant, on that coordinate; -f0; 1g n 3 ( 1 ; :::; i ; :::; n ) 7 ! i 2 f0; 1g : we use to say that is not computed, at that time instant, on that coordinate.

The ‡ows are these that result by analogy with the dynamical systems. The 'nice'discrete time and real time functions that the (boolean) asynchronous systems work with are called signals and periodicity is a very important feature in Nature.

In the …rst two Chapters we give the most important concepts concerning the signals and periodicity. The periodicity properties are used to characterize the eventually constant signals in Chapter 3 and the constant signals in Chapter 4. Chapters 5,...,8 are dedicated to the eventually periodic points, eventually periodic signals, periodic points and periodic signals.

Chapter 9 shows constructions that, given an (eventually) periodic point, by changing some values of the signal, change the periodicity properties of the point.

The monograph continues with ‡ows. Chapter 10 is dedicated to the computation functions, i.e. to the functions that show when and how the function is iterated (asynchronously). Chapter 11 introduces the ‡ows and Chapter 12 gives a wider point of view on the ‡ows, which are interpreted as deterministic asynchronous systems. Chapters 13,...,18 restate the topics from Chapters 3,...,8 in the special case when the signals are ‡ows and the main interest is periodicity.

In order to point out our source of inspiration, we give the example of the circuit from Figure 1, where b

x : f 1; 0; 1; :::g ! f0; 1g 2 is the signal representing the state of the system, and the initial state is (0; 0): The function that generates the system is : f0; 1g 2 ! f0; 1g 2 ; 8 2 f0; 1g 2 ;

( ) = ( 1 [ 1 2 ; 1 [ 1 2 ):
The evolution of the system is given by its state diagram from Figure 2, where the arrows indicate the time increase and we have underlined these coordinates i ; i = 1; 2 that, by the computation of ; change their value: i ( ) = i : Let : f0; 1; 2; :::g ! f0; 1g 2 be the computation function whose values k i show that i is computed at the time instant k if k i = 1; respectively that it is not computed at the time instant k if k i = 0; where i = 1; 2 and k 2 f0; 1; 2; :::g: The uncertainty related with the circuit, depending in general on the technology, the temperature, etc. manifests in the fact that the order and the time of computation of each coordinate function i are not known. If the second coordinate is computed at the time instant 0; then 0 = (0; 1) indicates the transfer from (0; 0) to (0; 1); where the system remains inde…nitely long for any values of 1 ; 2 ; 3 ; :::, since (0; 1) = (0; 1): Such a signal b x is called eventually constant and it corresponds to a stable system. The eventually constant discrete time signals are eventually periodic with an arbitrary period p 1:

Another possibility is that the …rst coordinate of is computed at the time instant 0; thus 0 = (1; 0): Figure 2 indicates the transfer from (0; 0) in (1; 0); while 0 = (1; 1) indicates the transfer from (0; 0) to (1; 1); as resulted by the simultaneous computation of 1 (0; 0) and 2 (0; 0): And if k = (1; 1); k 2 f0; 1; 2; :::g; then b

x PREFACE ix is eventually periodic with the period p 2 f2; 4; 6; :::g; as it switches from (1; 1) to (1; 0) and from (1; 0) to (1; 1). This last possibility represents an unstable system. The bibliography consists in works of (real, usual) dynamical systems and we use analogies.

The book ends with a list of notations, an index of notions and an appendix with Lemmas. These Lemmas are frequently used in the exposure and some of them are interesting by themselves.

The book is structured in Chapters, each Chapter consists in several Sections and each Section is structured in paragraphs. The Chapters begin with an abstract. The paragraphs are of the following kinds: De…nitions, Notations, Remarks, Theorems, Corollaries, Lemmas, Examples and Propositions. Each kind of paragraph is numbered separately on the others. Inside the paragraphs, the equations and, more generally, the most important statements are numbered also. When we refer to the statement (x; y) this means the y th statement of the x th Section of the current Chapter.

We refer to a De…nition, Theorem, Example,... by indicating its number and, when necessary, its page. When we refer to the statement (x; y) we indicate sometimes the page where it occurs as an inferior index.

The book addresses to researchers in systems theory and computer science, but it is also interesting to those that study periodicity itself. From this last perspective, the binary signals may be thought of as functions with …nitely many values.

The de…nition of the signals

Notation 1. We denote by B = f0; 1g the binary Boole algebra. Its laws are the usual ones:

0 1 1 0 ; 0 1 0 0 0 1 0 1 ; [ 0 1 0 0 1 1 1 1 
; 0 1 0 0 1 1 1 0 T able 1 and they induce laws that are denoted with the same symbols on B n ; n 1: Definition 1. Both sets B and B n are organized as topological spaces by the discrete topology. Notation 2. N; Z; R denote the sets of the non negative integers, of the integers and of the real numbers. N _ = N [ f 1g is the notation of the discrete time set. Notation 3. We denote d Seq = f(k j )jk j 2 N _ ; j 2 N _ and k 1 < k 0 < k 1 < :::g; Seq = f(t k )jt k 2 R; k 2 N and t 0 < t 1 < t 2 < ::: superiorly unboundedg:

Example 1. A typical example of element of d Seq is the sequence k j = j; j 2 N _ and typical examples of elements of Seq are given by the sequences z; z + 1; z + 2; :::; z 2 Z. Proposition 1. Let (t k ) 2 Seq and t 2 R be arbitrary. Then 9" > 0; fkjk 2 N; t k 2 (t "; t + ")g = fk 0 g; if t = t k 0 ; ?; if 8k 2 N; t 6 = t k :

Case t = t k 0 ; k 0 1; in this situation any " 2 (0; minft t k 0 1 ; t k 0 +1 tg) gives fkjk 2 N; t k 2 (t "; t + ")g = ft k 0 g: Remark 1. The previous " obviously depends on t. We consider for example the sequence t k = 1 0+1 + 1 1+1 + ::: + 1 k+1 ; k 2 N: We have (t k ) 2 Seq and 8" > 0; 9t 2 R; card(fkjk 2 N; t k 2 (t "; t + ")g) > 1 (1. [START_REF]Dynamical systems I[END_REF] x(t) = ( 1;t0) (t) x(t 0 ) [t0;t1) (t) ::: x(t k ) [t k ;t k+1 ) (t) ::: where 2 B n and (t k ) 2 Seq: Their set is denoted by S (n) :

Example 2. The constant functions b

x 2 b S (1) ; x 2 S (1) equal with 2 B :

(1.2) 8k 2 N _ ; b x(k) = ; (1.3) 8t 2 R; x(t) =
are typical examples of signals. Here are some other examples:

(1.4) 8k 2 N _ ; b x(k) = 1; if k is odd; 0; if k is even ;

(1.5) 8t 2 R; x(t) = [0;1) (t);

(1.6) 8t 2 R; x(t) = [0;1) (t) [2;3) (t) ::: [2k;2k+1) (t) ::: The signal from (1.5) is called the (unitary) step function (of Heaviside).

Remark 2. At De…nition 2 a convention of notation has occurred for the …rst time, namely a hat 'b ' is used to show that we have discrete time. The hat will make the di¤ erence between, for example, the notation of the discrete time signals Remark 4. As we shall see in the rest of the book, the study of the periodicity of the signals does not use essentially the fact that they take values in B n ; but the fact that they take …nitely many values. For example, instead of using 0 0 and 0 0 in (1.1), we can write equivalently

x(t) = 8 > > > > < > > > > :
; t < t 0 ; x(t 0 ); t 2 [t 0 ; t 1 ); ::: x(t k ); t 2 [t k ; t k+1 ); :::

Remark 5. The signals model the electrical signals of the circuits from the digital electrical engineering.

Left and right limits

Theorem 1. For any x 2 S (n) and any t 2 R; there exist x(t 0); x(t+0) 2 B n with the property (2.1)

9" > 0; 8 2 (t "; t); x( ) = x(t 0);

(2.2) 9" > 0; 8 2 (t; t + "); x( ) = x(t + 0):

Proof. We presume that x; t are arbitrary and …xed and that x is of the form (2.3) x(t) = ( 1;t0) (t) x(t 0 ) [t0;t1) (t) ::: x(t k ) [t k ;t k+1 ) (t) ::: with 2 B n and (t k ) 2 Seq: We take " > 0 small enough, see Proposition 1, page 1 such that fkjk 2 N; t k 2 (t "; t + ")g = fk 0 g; if t = t k 0 ; ?; if 8k 2 N; t 6 = t k : Definition 3. The functions R 3 t ! x(t 0) 2 B n ; R 3 t ! x(t + 0) 2 B n are called the left limit function of x and the right limit function of x. Remark 6. Theorem 1 states that the signals x 2 S (n) have a left limit function x(t 0) and a right limit function x(t + 0). Moreover, if (2.3) is true; then (2.4) x(t 0) =

( 1;t0] (t) x(t 0 ) (t0;t1] (t) ::: x(t k ) (t k ;t k+1 ] (t) :::;

(2.5)

x(t + 0) = x(t)
hold, meaning in particular that x(t 0) is not a signal and that x(t + 0) coincides with x(t):

Remark 7. The property (2.5) stating in fact that the real time signals x are right continuous will be used later under the form (2.6) 8t 2 R; 9" > 0; 8 2 [t; t + "); x( ) = x(t): x(t) = ( 1;t0) (t) x(t 0 ) [t0;t1) (t) ::: x(t k ) [t k ;t k+1 ) (t) :::; where 2 B n and (t k ) 2 Seq; the initial value is : Notation 5. There is no special notation for the initial value of b

x. The initial value of x has two usual notations, x( 1 + 0) and lim x is k = 1: The initial time (instant) of x is any number t 0 2 R that ful…lls The …nal value from (3.4) is denoted with either of x(1 0) and lim x is unique and the initial time of x is not unique. The …nal value of b

x; x might not exist, but if it exists, it is unique. The …nal time of b

x; x might not exist, but if it exists, it is not unique.

Theorem 2. a) Let b x 2 b S (n) and k 0 2 N _ : The following equivalencies hold:

(3.5) 8k k 0 ; b x(k) = b x(1 0); k 0 0 =) b x(k 0 1) 6 = b x(1 0) () b F b x =
fk 0 ; k 0 + 1; k 0 + 2; :::g;

(3.6) 8k 2 N _ ; b x(k) = b x(1 0) () b F b x = N _ : b) Let x 2 S (n) ; t 0 2 R:
The following equivalencies take place:

(3.7) 8t < t 0 ; x(t) = x( 1 + 0); x(t 0 ) 6 = x( 1 + 0) () I x = ( 1; t 0 );

(3.8) 8t t 0 ; x(t) = x(1 0); x(t 0 0) 6 = x(t 0 ) () F x = [t 0 ; 1);

(3.9) 8t 2 R; x(t) = x( 1 + 0) () I x = R; x(1 0)g = fk 0 ; k 0 + 1; k 0 + 2; :::g: b) The statement (8t < t 0 ; x(t) = x( 1 + 0) and x(t 0 ) 6 = x( 1 + 0)) is equivalent with ft 0 j8t t 0 ; x(t) = x( 1 + 0)g = ( 1; t 0 ): This coincides with (3.7). The statement 8t 2 R; x(t) = x( 1+0) is equivalent with ft 0 j8t t 0 ; x(t) = x( 1 + 0)g = R; giving the truth of (3.9). (3.8) and (3.10) are obvious now.

Remark 9. Versions of Theorem 2 exist, stating that b

x is constant i¤ b F b x = N _ and non constant otherwise, respectively the statements: i) x is not constant; ii) t 0 2 R exists with 8t < t 0 ; x(t) = x( 1 + 0);

x(t 0 ) 6 = x( 1 + 0); iii) t 0 2 R exists with I x = ( 1; t 0 ) are equivalent etc. x(t) exists and in case that the previous limits exist we have lim

k!1 b x(k) = lim t!1 x(t): b) We suppose that lim k!1 b x(k); lim t!1
x(t) exist. Then 1 is …nal time of b x if and only if any t 0 < t 0 is …nal time of x and 8k 0 0; k 0 is …nal time of b x if and only if t k 0 is …nal time of x:

Proof. a) From the hypothesis we infer that for any k 0 2 N we can write (3.11) fb x(k)jk k 0 g = fx(t)jt t k 0 g:

Then lim k!1 b
x(k) exists () 9k 0 2 N; card(fb x(k)jk k 0 g) = 1 () () 9k 0 2 N; card(fx(t)jt t k 0 g) = 1 () lim t!1

x(t) exists and if one of the previous equivalent statements is true, we obtain the existence of 2 B n ; k 0 2 N such that fb x(k)jk k 0 g = f g = fx(t)jt t k 0 g i.e.

(3.12)

lim k!1 b x(k) = = lim t!1
x(t):

b) Let us presume that (3.12) holds: We have

1 2 b F b x () 8k 2 N _ ; b x(k) = () 8t 2 R; x(t) = ()
() 8t 0 < t 0 ; 8t t 0 ; x(t) = () 8t 0 < t 0 ; t 0 2 F x and similarly for any k 0 0; 

k 0 2 b F b x () 8k k 0 ; b x(k) = () 8t t k 0 ; x(t) = () t k 0 2 F x :
: b S (n) ! b S (n) is de…ned for k 0 2 N by 8b x 2 b S (n) ; 8k 2 N _ ; b k 0 (b x)(k) = b x(k + k 0 )
and the real time forgetful function t 0 : S (n) ! S (n) is de…ned for t 0 2 R in the following manner 8x 2 S (n) ; 8t 2 R; t 0 (x)(t) = x(t); t t 0 ; x(t 0 0); t < t 0 : Theorem 4. The signals b

x 2 b S (n) ; x 2 S (n) are given. The following statements hold: a) b 0 (b x) = b x; if I x = R; then 8t 0 2 R; t 0 (x) = x and if 9t 0 2 R; I x = ( 1; t 0 ); then 8t 0 t 0 ; t 0 (x) = x; b) for k 0 ; k 00 2 N we have (b k 0 b k 00 )(b x) = b k 0 +k 00 (b x); for any t 0 ; t 00 2 R we have ( t 0 t 00 )(x) = maxft 0 ;t 00 g (x):

Proof. a) The discrete time statement is obvious. In order to prove the real time statement, we notice that I x = R is true if x is constant, see Theorem 2, page 4, so that we can suppose now that x is not constant and some t 0 exists such that I x = ( 1; t 0 ) : 8t < t 0 ; x(t) = x( 1 + 0);

x(t 0 ) 6 = x( 1 + 0): Let t 0 t 0 arbitrary. We have 8t 2 R;

t 0 (x)(t) =
x(t); t t 0 x(t 0 0); t < t 0 = x(t); t t 0 x( 1 + 0); t < t 0 = x(t): b) We …x arbitrarily k 0 ; k 00 2 N. We can write for any k 2 N that

(b k 0 b k 00 )(b x)(k) = b x(k + k 0 + k 00 ) = b k 0 +k 00 (b x)(k):
Let us take now t 0 ; t 00 2 R arbitrarily. We get the existence of the next possibilities. Case t 00 t 0

For any t 2 R we infer

( t 0 t 00
)(x)(t) = t 0 ( t 00 (x))(t) = t 00 (x)(t); t t 0 t 00 (x)(t 0 0); t < t 0 = x(t); t t 0 x(t 0 0); t < t 0 = t 0 (x)(t):

Case t 00 > t 0

We get for arbitrary t 2 R that

( t 0 t 00
)(x)(t) = t 0 ( t 00 (x))(t) = t 00 (x)(t); t t 0 t 00 (x)(t 0 0); t < t 0 = t 00 (x)(t); t t 0 x(t 00 0); t < t 0 = t 00 (x)(t): Remark 11. t 0 (x) makes x forget its values prior to t 0 : no value if 8t < t 0 ; x(t) = x( 1 + 0) and some values otherwise. (0; 0); k = 1; (0; 1); k = 3k 0 + 1; k 0 0; (1; 0); k = 3k 0 + 2; k 0 0;

(1; 1); k = 3k 0 ; k 0 0 and x 2 S (2) by 1 In a real time construction, in [START_REF] Vlad | Asynchronous systems theory[END_REF], when x represents the state of a (control, nondeterministic, asynchronous) system, the value of x is called (accessible) recurrent if 8t 0 2 R; 9t > t 0 ; x(t) = ; i.e. if 2 !(x): Or( e t (x))

x(t) = b x( 1) ( 1;0) (t) b x ( 
Or(x) [ [ !( e t (x)) = !(x)
Proof. a) Indeed, for any 2 B n ; the fact that 2 b !(b x) is equivalent with any of: a sequence k 1 < k 0 < k 1 < ::: exists such that 8j 2 N _ ; b

x(k j ) = ;

the set fkjk 2 N _ ; b x(k) = g is in…nite and the fact that 2 !(x) is equivalent with any of an unbounded from above sequence t 0 < t 1 < t 2 < ::: exists with 8j 2 N; x(t j ) = ; the set ftjt 2 R; x(t) = g is unbounded from above.

b) The sets b T b x ; 2 B n are either empty, or …nite non-empty, or in…nite. We put B n under the form B n = f 1 ; 2 ; :::; 2 n = R where the right hand set is unbounded from above. We infer that the left hand term contains sets T x i which are unbounded from above and let them be, without loosing the generality, T The previous inclusion is true as equality if …nite non-empty sets b T b

x i do not exist and p = s:

The proof of !(x) Or(x) is similar, we presume that the non-empty, bounded sets T x i are T x p+1 ; :::; T x s ; with p s 2 n : Then !(x) = f 1 ; :::; p g f 1 ; :::; s g = Or(x) and the previous inclusion holds as equality in the situation when all the non-empty sets T x \ f e k 1; e k; e k + 1; :::g are both …nite (the empty sets are in this situation) or in…nite.

!( e t (x)) = !(x) results from the fact that for any 2 B n ; the sets T x and

T e t (x) 
T x \ [ e t; 1) 2 are both superiorly bounded (including the empty sets, that are considered to have this property) or superiorly unbounded.

We prove c

Or(b e k (b x)) c Or(x); Or( e t (x)) Or(x) in the following way:

c Or(b e k (b x)) = fb e k (b x)(k)jk 2 N _ g = fb x(k + e k)jk 2 N _ g = = fb x(k)jk e k 1g fb x(k)jk 2 N _ g = c Or(x)
and on the other hand let " > 0 with 8 2 ( e t "; e t); x( ) = x( e t 0); then

Or( e t (x)) = f e t (x)(t)jt 2 Rg = fx(t)jt > e t "g fx(t)jt 2 Rg = Or(x):

Theorem 6. The signals b

x; x are given and we suppose that the sequence (t k ) 2 Seq exists such that = fx(t)jt 2 Rg = Or(x):

In order to prove the second equality, let some arbitrary 2 b !(b x); thus the sequence (k j ) 2 d

Seq exists with the property that 8j 2 N _ ; b x(k j ) = :

For x given by (5.1), we can de…ne the unbounded from above sequence = Or(x) = Or( e t (x)):

We suppose from this moment that e k 1; e t 2 (t e k 1 ; t e k ] hold. We conclude that c Or(b e k (b x)) = fb x(k)jk e k 1g

(5:1)

= fx(t)jt t e k 1 g = f e t (x)(t)jt 2 Rg = Or( e t (x)):

Theorem 7. For any b x 2 b S (n) ; x 2 S (n) we have 9k 0 2 N _ ; 8k 00 k 0 ; b !(b x) = fb x(k)jk k 00 g; 9t 0 2 R; 8t 00 t 0 ; !(x) = fx(t)jt t 00 g:

Proof. We denote once again the elements of B n with1 ; :::; x p ) \ fk 00 ; k 00 + 1; k 00 + 2; :::gg = fb x(k)jk k 00 g: Similarly, if T x 1 ; :::; T x p are the unbounded from above sets T x i ; i = 1; 2 n then !(x) = f 1 ; :::; p g and, with the notation t 0 = supftjt 2 R; x(t) 2 Or(x) r !(x)g; if Or(x) r !(x) 6 = ? 0; otherwise we have that 8i 2 f1; :::; pg; 8t 00 t 0 ; [t 00 ; 1) \ T x i 6 = ?; thus 8t 00 t 0 ; f 1 ; :::; p g = fx(t)jt 2 T !(b x) only. Similarly for x, if Or(x) 6 = !(x); the time instant t 0 2 R exists that determines two time intervals for x : ( 1; t 0 ) when x can take values in both sets Or(x) r !(x); !(x) and [t 0 ; 1) when x takes values in !(x) only.

CHAPTER 2

The main de…nitions on periodicity

In this Chapter we list the main de…nitions on periodicity, that are necessary in order to understand the rest of the exposure: the eventually periodic points and the eventually periodic signals, the periodic points and the periodic signals.

Eventually periodic points

Definition 12. In case that, for 2 c

Or(b x); p 1; some k 0 2 N _ exists such that we have

(1.1) ( b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g 6 = ? and 8k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g;

fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b x ;
then is said to be eventually periodic (an eventually periodic point of b x; or of c Or(b x)) with the period p and with the limit of periodicity k 0 : Let 2 Or(x) and T > 0 such that t 0 2 R exists with

(1.2) T x \ [t 0 ; 1) 6 = ? and 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x :
Then is said to be eventually periodic (an eventually periodic point of x; or of Or(x)) with the period T and with the limit of periodicity t 0 :

Definition 13. The least p; T that ful…ll (1.1), (1.2) are called prime periods (of ). For any p; T; the least k 0 ; t 0 that ful…ll (1.1), (1.2) are called prime limits of periodicity (of ). Notation 9. We use the notation b P b

x for the set of the periods of 2 c Or(b x) :

b P b x = fpjp 1; 9k 0 2 N _ ; (1:1) holdsg.
The notation P x is used for the analogue set of the periods of 2 Or(x) : 

P x = fT jT > 0; 9t 0 2 R;
L x = ft 0 jt 0 2 R; 9T > 0; (1:2) is trueg:
Remark 14. The eventual periodicity of 2 c Or(b x) with the period p and the limit of periodicity k 0 means a periodic behavior that starts from k 0 : for any k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; we can go upwards and downwards with multiples of p to k + zp; z 2 Z without getting out of the '…nal'time set fk 0 ; k 0 + 1; k 0 + 2; :::g and we still remain in b T b

x : In other words

= b x(k) = b x(k p) = b x(k 2p) = ::: = b x(k k 1 p);
where x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

k 1 2 N; ful…lls k k 1 p k 0 ; k (k 1 + 1)p < k 0 and = b x(k) = b x(k + p) = b x(k + 2p
x :

Remark 18. The eventual periodicity of 2 Or(x) with the period T and the limit of periodicity t 0 means periodicity that starts from t 0 2 R: for any t 2 T x \ [t 0 ; 1) we can go arbitrarily upwards and downwards with multiples of T; to t + zT; z 2 Z without leaving the '…nal' time set [t 0 ; 1) and we still remain in T x : Remark 19. The requirement T x \[t 0 ; 1) 6 = ? in (1.2) is one of non-triviality. An equivalent way of obtaining non-triviality is to ask 2 !(x) and to replace (1.2) with 8t 2

T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x :
Remark 20. The eventual periodicity of 2 Or(x) obviously implies that 2 !(x); because the set T x is superiorly unbounded. x(0): y 2 S (2) is de…ned like this:

y(t) = b x( 1) ( 1;0) (t) b x(0) [0;1) (t) (1; 1) [1;2) (t) b x(2) [2;3) (t) (1; 1) [3;4) (t) b x(4) [4;5) (t) (1; 1) [5;6) (t) :::
The point (1; 1) is an eventually periodic point of y with the period T = 2 and any t 0 2 [0; 1) is a limit of periodicity. The situation b x( 1) = b x(0) generates a special case called periodicity, that will be analyzed later and the situation (1; 1) 2 c

Or(b x) might generate several possibilities, for example y has the period p = 1 or y changes its limit of periodicity.

Eventually periodic signals

Definition 14. For p 1 and k 0 2 N _ ; if (2.1) 8k k 0 ; b x(k) = b x(k + p);
we say that b

x is eventually periodic with the period p and the limit of periodicity k 0 :

Let T > 0: If t 0 2 R exists such that (2.2) 8t t 0 ; x(t) = x(t + T )
is true, we say that x is eventually periodic with the period T and the limit of periodicity t 0 :

Definition 15. The least p; T that ful…ll (2.1), (2.2) are called prime periods (of b

x; x) and the least k 0 ; t 0 that ful…ll (2.1), ( 

L x = ft 0 jt 0 2 R; 9T > 0; (2:2) holdsg:
Remark 22. The eventual periodicity of b x with the period p and the limit of periodicity k 0 means that all the values 2 b !(b x) are eventually periodic with the same period p and with the same limit of periodicity k 0 : Remark 23. The signal x is eventually periodic with the period T and the limit of periodicity t 0 if all the values 2 !(x) are eventually periodic with the same period T and with the same limit of periodicity t 0 : Remark 24. We see that b P b x 6 = ? () b L b x 6 = ? and P x 6 = ? () L x 6 = ?: 1) de…ned by b x = 0; 1; 1; 1; ::: is eventually constant with b F b x = N. It is eventually periodic with the period p = 1 and the limit of periodicity k 0 = 0: Example 8. The real time analogue of the previous example is given by x 2 S (1) ; x(t) = [0;1) (t): The signal x is eventually constant and eventually periodic, with the arbitrary period T > 0: We have I x = ( 1; 0) and F x = L x = [0; 1):

Example 7. The signal b x 2 b S ( 

Periodic points

Definition 16. We consider the signals b

x 2 b S (n) ; x 2 S (n) : Let 2 c
Or(b x) and p 1:

If (3.1) 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b x ;
we say that is periodic (a periodic point of b x, or of c Or(b x)) with the period p.

Let 2 Or(x) and T > 0 such that t 0 2 I x exists with

(3.2) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x .
Then is called periodic (a periodic point of x, or of Or(x)) with the period T:

Remark 25. The periodicity of 2 c Or(b x) with the period p 1 means eventual periodicity that starts at the limit of periodicity k 0 = 1: The property is non-trivial since 2 c

Or(b x)

implies ? 6 = b T b x = b T b
x \ f 1; 0; 1; :::g:

Remark 26. The periodicity of 2 Or(x) with the period T > 0 means eventual periodicity with the property that the limit of periodicity t 0 is an initial time instant of x also. The property is non-trivial as far as T x \ [t 0 ; 1) 6 = ? results from Lemma 2, page 199.

Remark 27. Because the periodicity of is a special case of eventual periodicity, the concepts of prime period, prime limit of periodicity and the notations b P b

x ; P x ; b L b x ; L x are used for the periodic points also, with the remark that b L b x = N _ ; L x \ I x 6 = ?:

Remark 28. The periodic points are omega limit points. On one hand even if there is a periodic point, omega limit points might exist that are not periodic and on the other hand when stating periodicity we must not ask 2 b !(b x); 2 !(x) because triviality is impossible. Remark 29. Mentioning the limit of periodicity in case of periodicity is not necessary: in the discrete time case because k 0 = 1 is always clear and in the real time case because the property of periodicity does not depend on the choice of t 0 ; as we shall see later. We de…ne x 2 S (n) by [START_REF] Devaney | A …rst course in chaotic dynamical systems[END_REF] [ ::: For any t 0 2 [ 1; 0); we infer the truth of ( 1; [START_REF] Devaney | A …rst course in chaotic dynamical systems[END_REF] [ ::: has the period T = 2.

x(t) = b x( 1) ( 1;0) (t) b x(0) [0;1) (t) ::: b x(k) [k;k+1) (t) ::: We have x( 1 + 0) = and T x x( 1+0) = T x = ( 1; 0) [ [1; 2) [ [3;
t 0 ] T x x( 1+0) ; T x \ [t 0 ; 1) = [t 0 ; 0) [ [1; 2) [ [3; 4) [ ::: and 8t 2 [t 0 ; 0) [ [1; 2) [ [3; 4) [ :::; ft + z2jz 2 Zg \ [t 0 ; 1) ( 1; 0) [ [1; 2) [ [3;

Periodic signals

Definition 17. Let b x 2 b S (n) ; x 2 S (n) and p 1; T > 0: If (4.1) 8k 2 N _ ; b x(k) = b x(k + p);
we say that b x is periodic with the period p. In case that 9t 0 2 I x ,

(4.2) 8t t 0 ; x(t) = x(t + T )
holds, we say that x is periodic with the period T: x ; respectively when t 0 2 I x \ L x ; instead of t 0 2 L x : In particular the concepts of prime period, prime limit of periodicity and the notations b

Remark
P b x ; P x ; b L b x ; L x are used for the periodic signals too. We have b L b x = N _ ; L x \ I x 6 = ?:
Remark 33. Mentioning the limit of periodicity k 0 ; t 0 in De…nition 17 is not necessary, since the property itself does not depend on the choice of k 0 ; t 0 : Example 10. The signal b

x 2 b S (1) given by b x = 1; 0; 1; 0; 1; ::: is periodic with the period 2. c

Or(b x) = f0; 1g and both points 0; 1 are periodic with the period 2.

Example 11. The signal x 2 S (1) that is de…ned in the following way:

x(t) = ( 1;0) (t) [1;2) (t)
[3;4) (t) ::: has the period 2 if we take the initial time=limit of periodicity t 0 2 [ 1; 0): If we take t 0 < 1 then (4.2) does not hold, i.e. t 0 is not limit of periodicity; if we take t 0 0; then t 0 is not initial time.

CHAPTER 3

Eventually constant signals

The purpose of the Chapter is that of giving properties that are equivalent with the eventual constancy of the signals, a concept that is anticipated in Chapter 1, De…nition 6, page 4 and the following paragraphs and in Chapter 2, Example 7 and Example 8, page 13. The importance of eventual constancy is that of being related with the stability of the asynchronous systems 1 .

The …rst group of eventual constancy properties of Section 1 does not involve periodicity. The groups 2 and 3 are related with the eventual periodicity of the points and they are introduced in Sections 3, 4 and 5. The group 4 of eventual constancy properties is related with the eventual periodicity of the signals and it is introduced in Section 6. Section 7 shows the connection between discrete time and continuous time as far as eventual constancy is concerned and Section 8 contains a discussion.

The …rst group of eventual constancy properties

Remark 34. The …rst group of eventual constancy properties of the signals contains these properties that are not related with periodicity. (1.2) 9 2 B n ; 9k 0 2 N _ ; fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x ;

(1.3)

9 2 B n ; b !(b x) = f g are equivalent.
b) The statements

(1.4) 9 2 B n ; 9t 0 2 R; 8t t 0 ; x(t) = ; (1.5) 9 2 B n ; 9t 0 2 R; [t 0 ; 1) T x ; (1.6) 9 2 B n ; !(x) = f g are also equivalent. Proof. a) (1.1)=)(1.2) 2 B n and k 0 2 N _ exist with the property 8k k 0 ; b x(k) = : Then (1.7) fk 0 ; k 0 + 1; k 0 + 2; :::g fkjk 2 N _ ; b x(k) = g holds. (1.2)=)(1.
3) 2 B n and k 0 2 N _ exist such that (1.7) holds. We suppose, see Theorem 7, page 10, that k 00 2 N _ ful…lls (1.8) fb x(k)jk k 00 g = b !(b x):

For k 1 = maxfk 0 ; k 00 g we can write that f g

(1:7) = fb x(k)jk k 1 g (1:8) = b !(b x): (1.3)=)(1.1) From (1.
3) and Theorem 7, page 10 we have the existence of

k 0 2 N such that f g = b !(b x) = fb x(k)jk k 0 g;
wherefrom the truth of (1.1). b) (1.4)=)(1.5) We suppose that 2 B n and t 0 2 R exist such that 8t t 0 ; x(t) = : Then [t 0 ; 1) ftjt 2 R; x(t) = g:

(1.5)=)(1.6) Some t 1 2 R exists satisfying fx(t)jt t 1 g = !(x) and, from the hypothesis, 2 B n and t 0 2 R exist such that [t 0 ; 1) ftjt 2 R; x(t) = g: We use the notation t 00 = maxft 1 ; t 0 g and we have f g = fx(t)jt t 00 g = !(x):

(1.6)=)(1.4) The hypothesis (1.6) and Theorem 7 show the existence of 2

B n ; t 0 2 R with f g = !(x) = fx(t)jt t 0 g;
wherefrom the truth of (1.4).

Eventual constancy

Definition 18. If b x 2 b S (n) ful…lls one of (1.1),..., (1.3), it is called eventually constant and if x 2 S (n) ful…lls one of (1.4),..., (1.6), it is called eventually constant. In (1.1), (1.2), k 0 2 N _ is called the limit of constancy, or limit of equilibrium, or …nal time of b

x. Similarly in (1.4), (1.5), t 0 2 R is called the limit of constancy, or limit of equilibrium, or …nal time of x.

Theorem 9. a) If b x is constant, it is eventually constant. b) If x is constant, it is eventually constant.

Proof. a) The constancy of b

x means the eventual constancy of b x with the limit of constancy k 0 = 1:

b) The constancy of x is its eventual constancy with the limit of constancy t 0 2 I x : Remark 35. The eventual constancy of a signal coincides with the existence of the …nal value, De…nition 6, page 4. This is the reason why in De…nition 18 k 0 and t 0 are also called …nal time.

Remark 36. Eventual constancy is important in systems theory since it is associated with stability: if modeling is deterministic and the signal is an asynchronous ‡ow, then stability means exactly the eventual constancy of that ‡ow; and if modeling is non-deterministic and we have a set of deterministic ‡ows, then stability means the eventual constancy of all these ‡ows.

The second group of eventual constancy properties

Remark 37. This group of eventual constancy properties of the signals involves eventual periodicity of all the points of the orbit, i.e. in (3.1),..., (3.4), (3.5),...,(3.12) to follow we ask 8 2 c

Or(b x); 8 2 Or(x):

Remark 38. In order to understand better the way that these properties were written, to be noticed the existence of the following symmetries:

- x :

(3.1)

( 8p 1; 8 2 c Or(b x); 9k 0 2 N _ ; 8k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b x ; (3.2) 
( 8p 1; 8 2 c Or(b x); 9k 00 2 N; 8k 2 b T b k 00 (b x) ; fk + zpjz 2 Zg \ N _ b T b k 00 (b x) ; (3.3) 8p 1; 8 2 c Or(b x); 9k 0 2 N _ ; 8k k 0 ; b x(k) = =) =) (b x(k) = b x(k + p) and k p k 0 =) b x(k) = b x(k p)); (3.4) 8 > < > : 8p 1; 8 2 c Or(b x); 9k 00 2 N; 8k 2 N _ ; b k 00 (b x)(k) = =) =) (b k 00 (b x)(k) = b k 00 (b x)(k + p) and and k p 1 =) b k 00 (b x)(k) = b k 00 (b x)(k p)):
b) The following statements are equivalent with the eventual constancy of x:

(3.5) 8T > 0; 8 2 Or(x); 9t 0 2 I x ; 9t 0 1 t 0 ; 8t 2 T x \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T x ; (3.6) 8T > 0; 8 2 Or(x); 9t 0 1 2 R; 8t 2 T x \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T x ;
(3.7)

( 8T > 0; 8 2 Or(x); 9t 00 2 R; 9t 0 2 I t 00 (x) ; 8t 2 T t 00 (x) \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T t 00 (x) ; (3.8) ( 8T > 0; 8 2 Or(x); 9t 00 2 R; 9t 0 2 R; 8t 2 T t 00 (x) \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T t 00 (x) ; (3.9) 8T > 0; 8 2 Or(x); 9t 0 2 I x ; 9t 0 1 t 0 ; 8t t 0 1 ; x(t) = =) =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T )); (3.10) 8T > 0; 8 2 Or(x); 9t 0 1 2 R; 8t t 0 1 ; x(t) = =) =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T )); (3.11) 8 > < > :
8T > 0; 8 2 Or(x); 9t 00 2 R; 9t 0 2 I t 00 (x) ; 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T ));

(3.12)

< :

8T > 0; 8 2 Or(x); 9t 00 2 R; 9t 0 2 R; 8t t 0 ; t 00 (x)(t) = =) =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T )):

Proof. a) (1.3)=)(3.1) From Theorem 7, page 10, k 0 2 N _ exists such that fb x(k)jk k 0 g = b !(b x
) and, if we take into account (1.3) also, 2 B n exists with

(3.13) fb x(k)jk k 0 g = f g(= b !(b x)):
Let p 1 and 0 2 c Or(b x) arbitrary. We have two possibilities. Case x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x :

We de…ne k 00 = k 0 + 1 and there are two possibilities. 

Case

(3.16) 8k 2 b T b k 00 (b x) ; fk + zpjz 2 Zg \ N _ b T b k 00 (b x) takes place trivially. Case b T b k 00 (b x) 6 = ? In this case 2 c Or(b k 00 (b x)): We take k 2 b T b k 00 (b x) ; z 2 Z arbitrary such that k + zp 1: We conclude b k 00 (b x)(k) = = b x(k + k 00 ) = b x(k + k 0 + 1); in other words k + k 0 + 1 2 b T b x ; k + k 0 + 1 k 0 : Furthermore, k + zp + k 0 + 1 1 + k 0 + 1 = k 0 ; thus we can apply (3.15), wherefrom k + zp + k 0 + 1 2 b T b x : This means that b x(k + zp + k 0 + 1) = = b k 0 +1 (b x)(k + zp) = b k 00 (b x)(k + zp) i.e. k + zp 2 b T b k 00 (b x) : (3.2)=)(3.3) Let p 1; 2 c
Or(b x) arbitrary. From (3.2) we have the existence of k 00 2 N such that

(3.17) 8k 2 b T b k 00 (b x) ; fk + zpjz 2 Zg \ N _ b T b k 00 (b x) :
We de…ne k 0 = k 00 1 and we have two possibilities. Case 8k

k 0 ; b x(k) 6 = Then b T b k 00
(b x) = ? and (3.17) is trivially ful…lled, as well as the statement

8k k 0 ; b x(k) = =) =) (b x(k) = b x(k + p) and k p k 0 =) b x(k) = b x(k p)): Case 9k k 0 ; b x(k) = We take k k 0 arbitrary, such that b x(k) = : Then k k 00 = k k 0 1 1 and b k 00 (b x)(k k 00 ) = b x(k k 00 + k 00 ) = b x(k) = ; thus k k 00 2 b T b k 00 (b x) : Furthermore k k 00 + p 2 fk k 00 + zpjz 2 Zg \ N _ (3:17) b T b k 00 (b x) ; meaning that b k 00 (b x)(k k 00 + p) = = b x(k k 00 + p + k 00 ) = b x(k + p): If k p k 0 ; then k p k 00 = k p k 0 1 1; thus k k 00 p 2 fk k 00 + zpjz 2 Zg \ N _ (3:17) b T b k 00 (b x)
and …nally

b k 00 (b x)(k k 00 p) = = b x(k k 00 p + k 00 ) = b x(k p): (3.3)=)(3.4) We take p 1; 2 c
Or(b x) arbitrarily and we infer from (3.3) that k 0 2 N _ exists with

(3.18) 8k k 0 ; b x(k) = =) b x(k) = b x(k + p); (3.19) 8k k 0 ; (b x(k) = and k p k 0 ) =) b x(k) = b x(k p):
We de…ne k 00 = k 0 + 1 and there are two possibilities. Case 8k 2

N _ ; b k 00 (b x)(k) 6 =
This corresponds to the situation when 2 c 

Or(b x) n c Or(b k 00 (b x)): The statement 8 > < > : 8k 2 N _ ; b k 00 (b x)(k) = =) =) (b k 00 (b x)(k) = b k 00 (b x)(k + p) and and k p 1 =) b k 00 (b x)(k) = b k 00 (b x)(k p)) is true in a trivial manner. Case 9k 2 N _ ; b k 00 (b x)(k) = We take k 2 N _ arbitrarily with b k 00 (b x)(k) = ; thus b x(k + k 00 ) = = b x(k + k 0 + 1): We have k + k 0 + 1 k 0 and then b k 00 (b x)(k) = b x(k + k 00 ) = b x(k + k 0 + 1) (3:18) = b x(k + k 0 + 1 + p) = = b x(k + k 00 + p) = b k 00 (b x)(k + p): If in addition k p 1; as k p + k 0 + 1 k 0 ; we can write that b k 00 (b x)(k) = b x(k + k 00 ) = b x(k + k 0 + 1) (3:19) = b x(k p + k 0 + 1) = = b x(k p + k 00 ) = b k 00 (b x)(k p): (3.4)=)(1.
(3.20) 8k 2 N _ ; b x(k + k 00 ) = =) (b x(k + k 00 ) = b x(k + k 00 + 1) and and k 0 =) b x(k + k 00 ) = b x(k + k 00 1))
and, whichever k 00 might be, some

k 2 N _ exists such that b x(k + k 00 ) = (from the hypothesis that 2 b !(b x)). We get from (3.20) that = b x(k 00 1) = b x(k 00 ) = b x(k 00 + 1) = ::: i.e. (1.1) holds with k 0 = k 00 1. b) (1.6)=)(3.5)
We have the existence of 2 B n and t 1 2 R with fx(t)jt t 1 g = !(x) = f g and let T > 0; 0 2 Or(x) arbitrary 2 . Let t 0 2 I x arbitrary: We take t 0 1 maxft 0 ; t 1 g arbitrarily also and we have two possibilities. We take t 00 > t 0 1 arbitrary and let " > 0 having the property that 8t 2 (t 00 "; t 00 ); x(t) = x(t 00 0):

Case 0 6 = Then T x 0 \ [t 0 1 ; 1) = ? and the statement 8t 2 T x 0 \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T x 0 takes place trivially. Case 0 = We have T x \ [t 0 1 ; 1) = [t 0 1 ; 1) thus let t 2 T x \ [t
We take t 0 2 (t 00 "; t 00 ) \ [t 0 1 ; 1) arbitrary and we notice that

(3.22) t 00 (x)(t) = x(t); t > t 00 ";
x(t 00 0); t < t 00 : x) and we have also

Obviously t 0 2 ( 1; t 00 ) I t 00 ( 
(3.23) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ;
from Lemma 3, page 200, (3.21) and taking into account the fact that t 0 t 0 1 . The truth of (3.24) 8t 2 T t 00

(x) \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T t 00 (x)
results from (3.23) and from the fact that 8t t 0 ; t 00 (x)(t) = x(t); see (3.22).

(3.7)=)(3.8) Obvious. 2 The fact that we can take t 0 2 I x arbitrary shows that we prove at this moment a statement that is stronger than (3.5).

(3.8)=)(3.9) We take arbitrarily T > 0; 2 Or(x): From (3.8) we have the existence of t 00 2 R and t 000 2 R such that

(3.25) 8t 2 T t 00 (x) \ [t 000 ; 1); ft + zT jz 2 Zg \ [t 000 ; 1) T t 00 (x) :
Let t 0 2 I x arbitrary3 and we take t 0 1 maxft 0 ; t 00 ; t 000 g arbitrarily also. From t 0 1 t 000 ; from (3.25) and from Lemma 3 we infer

(3.26) 8t 2 T t 00 (x) \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T t 00 (x) :
Let t t 0 1 arbitrary and we have two possibilities. Case 8t t 0 1 ; x(t) 6 = Then the implication

(3.27) 8t t 0 1 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T )) is trivially true.
Case 9t t 0 1 ; x(t) = We take t t 0 1 arbitrarily such that x(t) = : Because t t 00 ; we have

t 00 (x)(t) = x(t) = ; thus t 2 T t 00 (x) \ [t 0 1 ; 1): We have t + T 2 ft + zT jz 2 Zg \ [t 0 1 ; 1) (3:26) T t 00 (x) ; i.e. t 00 (x)(t + T ) = : On the other hand t 00 (x)(t + T ) = x(t + T ); thus x(t + T ) = = x(t):
We suppose now that we have in addition t T t 0 1 : In a similar way with the previous situation,

t T 2 ft + zT jz 2 Zg \ [t 0 1 ; 1) (3:26) T t 00 (x) ;
i.e. t 00 (x)(t T ) = : As t 00 (x)(t T ) = x(t T ); we have obtained that x(t T ) = = x(t):

(3.9)=)(3.10) Obvious.

(3.10)=)(3.11) Let T > 0; 2 Or(x) arbitrary. From (3.10) we have the existence of t 0 1 2 R such that the property (3.28) 8t t 0 1 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T )) holds. We take t 00 > t 0 1 arbitrary. Some " > 0 exists with 8t 2 (t 00 "; t 00 ); x(t) = x(t 00 0): We take t 0 2 (t 00 "; t 00 ) \ [t 0 1 ; 1) arbitrary, for which obviously (3.29)

t 00 (x)(t) = x(t); t > t 00 ";
x(t 00 0); t < t 00 :

We have t 0 2 ( 1; t 00 ) I t 00

(x) : On the other hand t 0 t 0 1 ; (3.28) and Lemma 3, page 200 imply the truth of (3.30) 8t t 0 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 =) x(t) = x(t T )):

As 8t t 0 ; t 00 (x)(t) = x(t); (3.30) implies that 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T ))
is true.

(3.11)=)(3.12) Obvious.

(3.12)=) (1.6) We suppose against all reason that ; 0 2 !(x) exist, 6 = 0 : We write (3.12) for an arbitrary T > 0; thus t 0 1 ; t 0 2 ; t 00 1 ; t 00 2 2 R exist such that (3.31) 8t t 0 1 ; t 00 1 (x)(t) = =) ( t 00 1 (x)(t) = t 00 1 (x)(t + T ) and and t T t 0 1 =) t 00 1 (x)(t) = t 00 1 (x)(t T ));

(3.32) 8t t 0 2 ; t 00 2 (x)(t) = 0 =) ( 

= x(t 1 + kT ) = x(t 2 + kT T 0 ) (3:38) = x(t 2 + kT T 0 + T 0 ) = x(t 2 + kT ) (3:36) = 0 ;
contradiction. We have obtained that !(x) has a single point , thus (1.6) is true.

The third group of eventual constancy properties

Remark 39. The third group of eventual constancy properties involves eventual periodicity properties of some point of the orbit. These properties result one by one from the properties of the second group, by the replacement of 8 2 c

Or(b x); 8 2 Or(x) with 9 2 c

Or(b x); 9 2 Or(x): We notice that we have avoided each time the trivialities by requests of the kind b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g 6 = ?; T x \ [t 0 1 ; 1) 6 = ?: The possibility of replacing the universal quanti…er with the existential quanti…er when passing from Theorem 10, page 19 to Theorem 11 is given by the fact that the …nal value, if it exists, is unique. x \ fk 0 ; k 0 + 1; k 0 + 2; :::g 6 = ? and 8k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x ; 

(k) = =) =) (b x(k) = b x(k + p) and k p k 0 =) b x(k) = b x(k p)); (4.4) 8 > < > : 8p 1; 9 2 c Or(b x); 9k 00 2 N; 9k 1 2 N _ ; b k 00 (b x)(k 1 ) = and and 8k 2 N _ ; b k 00 (b x)(k) = =) (b k 00 (b x)(k) = b k 00 (b x)(k + p) and and k p 1 =) b k 00 (b x)(k) = b k 00 (b x)(k p)):
b) The following statements are equivalent with the eventual constancy of x: 

(4.
; 9t 0 1 t 0 ; 9t 0 2 t 0 1 ; x(t 0 2 ) = and 8t t 0 1 ; x(t) = =) =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T )); (4.10) 8 < 
:

8T > 0; 9 2 Or(x); 9t 0 1 2 R; 9t 0 2 t 0 1 ; x(t 0 2 ) = and and 8t t 0 1 ; x(t) = =) =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T )); (4.11) 8 > > > < > > > :
8T > 0; 9 2 Or(x); 9t 00 2 R; 9t 0 2 I t 00 (x) ; 9t 000 t 0 ; t 00 (x)(t 000 ) = and 8t t 0 ; t 00 (x)(t) = =) =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T )); (4.12) 8 < : 8T > 0; 9 2 Or(x); 9t 00 2 R; 9t 0 2 R; 9t 000 t 0 ; t 00 (x)(t 000 ) = and and 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T )): x \ fk 0 ; k 0 + 1; k 0 + 2; :::g 6 = ?;

(4.15)

( 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x :

We put k 00 = k 0 +1: The existence from (4.14) of some k 2 b T b x \fk 0 ; k 0 +1; k 0 +2; :::g means that b

x(k) = and k k 0 ; thus k k 00 1; the number

k 1 = k k 00 is 1 and it ful…lls b k 00 (b x)(k 1 ) = b x(k 1 + k 00 ) = b x(k) = ; thus k 1 2 b T b k 00 (b x) and b T b k 00 (b x) 6 = ?: Let now k 2 b T b k 00 (b x) and z 2 Z arbitrary such that k + zp 1: We have = b k 00 (b x)(k) = b x(k + k 00 );
where k 1 means that k + k 00 = k + k 0 + 1 k 0 and on the other hand k + k 00 + zp k 00 1 = k 0 ; thus we can apply (4.15). We have: 

b k 00 (b x)(k + zp) = b x(k + k 00 + zp)
= k + k 00 we have k 1 = k + k 0 + 1 k 0 (because k 1). Let now k k 0 arbitrary such that b x(k) = : The number k k 00 = k k 0 1 1 satis…es b k 00 (b x)(k k 00 ) = b x(k) = ; thus k k 00 2 b T b k 00 (b x) : We infer k k 00 + p 2 fk k 00 + zpjz 2 Zg \ N _ (4:17) b T b k 00 (b x) ; thus = b k 00 (b x)(k k 00 + p) = b x(k + p): Moreover, if k p k 0 ; then k k 00 p = k k 0 1 p 1 and k k 00 p 2 fk k 00 + zpjz 2 Zg \ N _ (4:17) b T b k 00 (b x) ; thus = b k 00 (b x)(k k 00 p) = b x(k p): (4.3)=)(4.
9k 1 k 0 ; b x(k 1 ) = ; (4.19) 8k k 0 ; b x(k) = =) =) (b x(k) = b x(k + p) and k p k 0 =) b x(k) = b x(k p)):
We de…ne k 00 = k 0 +1 and let

k 1 k 0 such that b x(k 1 ) = : The number k 0 1 = k 1 k 00 belongs to N _ and ful…lls b k 00 (b x)(k 0 1 ) = b x(k 0 1 + k 00 ) = b x(k 1 ) = ; in other words (4.20) 9k 0 1 2 N _ ; b k 00 (b x)(k 0 1 ) = :
Let now k 2 N _ arbitrary, with the property that b k 00 (b x)(k) = ; thus b x(k + k 00 ) = : In this situation we have k + k 00 = k + k 0 + 1 k 0 and we can apply (4.19), resulting

b k 00 (b x)(k) = b x(k + k 00 ) (4:19) = b x(k + k 00 + p) = b k 00 (b x)(k + p):
In the case when in addition k p 1; we have k + k 00 p k 00 1 = k 0 ; thus we can apply (4.19) again, with the result

b k 00 (b x)(k) = b x(k + k 00 ) (4:19) = b x(k + k 00 p) = b k 00 (b x)(k p): (4.4)=)(1.1)
We put p = 1 in (4.4); then 2 c Or(b x) and k 00 2 N exist such that (4.21) 

9k 1 2 N _ ; b k 00 (b x)(k 1 ) = ; (4.22) ( 8k 2 N _ ; b k 00 (b x)(k) = =) (b k 00 (b x)(k) = b k 00 (b x)(k + 1) and and k 0 =) b k 00 (b x)(k) = b k 00 (b x)(k 1)); thus (4.23) 9k 1 2 N _ ; b x(k 1 + k 00 ) = ;
9k 2 k 0 ; b x(k 2 ) = ; (4.26) 8k 2 k 0 ; b x(k 2 ) = =) (b x(k 2 ) = b x(k 2 + 1) and and k 2 k 0 + 1 =) b x(k 2 ) = b x(k 2 1)):
From (4.25), (4.26) we infer We take t 00 > t 0 1 arbitrary. Some " > 0 exists with 8 2 (t 00 "; t 00 ); x( ) = x(t 00 0): We take t 0 2 (maxft 0 1 ; t 00 "g; t 00 ) arbitrarily and we have t 00

= b x(k 0 ) = b x(k 0 + 1) = b x(k 0 + 2) = ::: thus (1.1) holds. b) (1.4)=)(4.
(x)(t) = x(t); t t 0 x(t 00 0); t < t 00 :

We infer the truth of t 0 2 ( 1; t 00 ) I t 00 (x) : The fact that T t 00 (x) \ [t 0 ; 1) 6 = ? results from the remark that 2 !(x): Let us take now some t 2 T t 00 (x) \[t 0 ; 1) and z 2 Z arbitrarily such that t+zT t 0 : Obviously T t 00 

(x) \[t 0 ; 1) = T x \[t 0 ;
; x(t) = =) =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T
)): From (4.32), (4.33) we infer ft 0 2 ; t 0 2 + T; t 0 2 + 2T; :::g T x ; thus 2 !(x): Let " > 0 with 8 2 [t 0 1 ; t 0 1 + "); x( ) = x(t 0 1 ) and we take t 0 = t 00 2 (t 0 1 ; t 0 1 + ") arbitrarily. We have (4.34)

t 00 (x)(t) =
x(t); t t 0 ; x(t 0 1 ); t t 0 ; wherefrom

t 00 (x)( 1 + 0) = x(t 0 1 ) = x(t 00 0); meaning that ( 1; t 0 ] T t 00 (x)
x(t 00 0) holds, in other words t 0 2 I t 00 (x) . As 2 !(x);

we obtain the existence of t 000 > t 0 with t 00 (x)(t 000 ) = x(t 000 ) = : The truth of (4.35) 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T ))

results from (4.33), t 0 t 0 1 ; (4.34) and Lemma 3, page 200. (4.11)=)(4.12) Obvious. (4.12)=)(1.6) Let T > 0 arbitrary. Then 2 Or(x); t 00 2 R and t 0 2 R exist such that (4.36) 9t 000 t 0 ; t 00 (x)(t 000 ) = ;

(4.37) 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T )):

From (4.37), Lemma 3, page 200 and from the fact that 8t maxft 0 ; t 00 g; t 00 (x)(t) = x(t); we have (4.38) 8t maxft 0 ; t 00 g; x(t) = =) =) (x(t) = x(t + T ) and t T maxft 0 ; t 00 g =) x(t) = x(t T )):

On the other hand from (4.36), (4.37) we have the existence of t 000 t 0 with ft 000 ; t 000 + T; t 000 + 2T; :::g T t 00 (x) ; meaning that 2 !( t 00 (x)) = !(x) (Theorem 5, page 8). If !(x) = f g then the implication is proved, so let us suppose against all reason that this is not true. Some t 1 ; t 2 2 R exist with the property maxft 0 ; t 00 g < t 1 < t Let us write now (4.12) for T 0 2 (0; t 2 t 1 ): There exist 0 2 Or(x); t 00 1 2 R and t 0 1 2 R with (4.42) 9t 000

1 t 0 1 ; t 00 1 (x)(t 000 1 ) = 0 ; (4.43) 8t t 0 1 ; t 00 1 (x)(t) = 0 =) ( t 00 1 (x)(t) = t 00 1 (x)(t + T 0 ) and and t T 0 t 0 1 =) t 00 1 (x)(t) = t 00 1 (x)(t T 0 )):
We infer like before the existence of t 3 ; t 4 2 R having the property that maxft 0 1 ; t The fact that we have obtained in all these cases a contradiction shows the falsity of (4.39), with x(t 1 0) 6 = ; x(t 2 ) 6 = : These should be replaced by an inclusion of the form [t 1 ; 1) T x : We have proved the truth of (1.5), thus (1.6) holds.

The third group of eventual constancy properties, version

Remark 40. These properties are a version of the properties of the third group from the previous Section. To be noticed that the universal quanti…er x \ fk 0 ; k 0 + 1; k 0 + 2; :::g 6 = ?; 9 2 Or(x); :::; T x \ [t 0 1 ; 1) 6 = ? and the second possibility expressed at (5.1), (5.5) to follow is: 9 2 b !(b x); 9 2 !(x), when the previous non-triviality conditions b T b x \fk 0 ; k 0 +1; k 0 +2; :::g 6 = ?; T x \[t 0 1 ; 1) 6 = ? are ful…lled see also Lemma 1, page 199.

Theorem 12. Let the signals b x 2 b S (n) ; x 2 S (n) : a)
The following statements are equivalent with the eventual constancy of b

x :

(5.1)

( 8p 1; 9 2 b !(b x); 9k 0 2 N _ ; 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x ;

(5.2)

( 8p 1; 9 2 b !(b x); 9k 00 2 N; 8k 2 b T b k 00 (b x) ; fk + zpjz 2 Zg \ N _ b T b k 00 (b x) ; (5.3) 8p 1; 9 2 b !(b x); 9k 0 2 N _ ; 8k k 0 ; b x(k) = =) =) (b x(k) = b x(k + p) and k p k 0 =) b x(k) = b x(k p));
(5.4)

8 > < > : 8p 1; 9 2 b !(b x); 9k 00 2 N; 8k 2 N _ ; b k 00 (b x)(k) = =) =) (b k 00 (b x)(k) = b k 00 (b x)(k + p) and and k p 1 =) b k 00 (b x)(k) = b k 00 (b x)(k p)):
b) The following statements are equivalent with the eventual constancy of x:

(5.5) 8T > 0; 9 2 !(x); 9t 0 2 I x ; 9t 0

1 t 0 ; 8t 2 T x \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T x ); (5.6) 8T > 0; 9 2 !(x); 9t 0 1 2 R; 8t 2 T x \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T x ;
(5.7)

( 8T > 0; 9 2 !(x); 9t 00 2 R; 9t 0 2 I t 00 (x) ; 8t 2 T t 00 (x) \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T t 00 (x) ;
(5.8)

( 8T > 0; 9 2 !(x); 9t 00 2 R; 9t 0 2 R; 8t 2 T t 00 (x) \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T t 00 (x) ;
(5.9) 8T > 0; 9 2 !(x); 9t 0 2 I x ; 9t 0

1 t 0 ; 8t t 0 1 ; x(t) = =) =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T )); (5.10) 8T > 0; 9 2 !(x); 9t 0 1 2 R; 8t t 0 1 ; x(t) = =) =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T )); (5.11) 8 > < 
> :

8T > 0; 9 2 !(x); 9t 00 2 R; 9t 0 2 I t 00 (x) ; 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T ));

(5.12)

< :

8T > 0; 9 2 !(x); 9t 00 2 R; 9t 0 2 R; 8t t 0 ; t 00 (x)(t) = =) =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T )):

The fourth group of eventual constancy properties

Remark 41. This group of eventual constancy properties involves the eventual periodicity of the signals.

Theorem 13. Let the signals b

x 2 b S (n) ; x 2 S (n) : a) The following statements are equivalent with the eventual constancy of b

x :

(6.1) 8p 1; 9k 0 2 N _ ; 8k k 0 ; b x(k) = b x(k + p); (6.2) 8p 1; 9k 00 2 N; 8k 2 N _ ; b k 00 (b x)(k) = b k 00 (b x)(k + p):
b) The following statements are equivalent with the eventual constancy of x :

(6.3) 8T > 0; 9t 0 2 I x ; 9t 0 1 t 0 ; 8t t 0 1 ; x(t) = x(t + T ); (6.4) 8T > 0; 9t 0 1 2 R; 8t t 0 1 ; x(t) = x(t + T );
(6.5) 8T > 0; 9t 00 2 R; 9t 0 2 I t 00 (x) ; 8t t 0 ; t 00 (x)(t) = t 00 (x)(t + T );

(6.6) 8T > 0; 9t 00 2 R; 9t 0 2 R; 8t t 0 ; t 00 (x)(t) = t 00 (x)(t + T ):

Proof. a) (1.1) page 17 =)(6.1) Let p 1 arbitrary. We have from (1.1) the existence of 2 B n and k 0 2 N _ such that

8k k 0 ; b x(k) = :
Then for any k k 0 we have b x(k + p) = ; thus (6.1) holds. (6.1)=)(6.2) Let p 1: From (6.1), some k 0 2 N _ exists with (6.7)

8k k 0 ; b x(k) = b x(k + p):
We de…ne k 00 = k 0 + 1 and let k 2 N _ arbitrary. As k

+ k 00 = k + k 0 + 1 k 0 ; we can write that b k 00 (b x)(k) = b x(k + k 00 ) = b x(k + k 0 + 1) (6:7) = b x(k + k 0 + 1 + p) = = b x(k + k 00 + p) = b k 00 (b x)(k + p): (6.2)=)(1.1)
We write (6.2) for p = 1 under the form: k 00 2 N exists with (6.8)

8k 2 N _ ; b k 00 (b x)(k) = b k 00 (b x)(k + 1);
i.e. b k 00 (b x) is constant. We denote with the value of this constant, for which we have from (6.8):

(6.9) 8k 2 N _ ; b x(k + k 00 ) = : We denote k 0 = k 00 1; k 0 2 N _ : As k + k 00 = k + k 0 + 1 k 0 ; (6.9) shows that 8k k 0 ; b x(k) = : b) (1.4) page 17 =)(6.
3) Let T > 0 arbitrary. Some 2 B n and some t 0 1 2 R exist from (1.4) with (6.10) 8t t 0 1 ; x(t) = : There also exists an initial time instant t 0 2 I x that can be chosen without loss t 0 1 :

We …x in (6.10) an arbitrary t t 0 1 : We have x(t + T ) = ; thus (6.3) holds. (6.3)=)(6.4) Obvious. (6.4)=)(6.5) Let T > 0 arbitrary. Some t 0 1 2 R exists from (6.4) such that (6.11) 8t t 0 1 ; x(t) = x(t + T ): We take t 00 > t 0 1 arbitrary. Some " > 0 exists then with 8t 2 (t 00 "; t 00 ); x(t) = x(t 00 0): We also take t 0 2 (t 00 "; t 00 ) \ [t 0 1 ; 1) arbitrarily and on the other hand we have (6.12)

t 00 (x)(t) =
x(t); t > t 00 "; x(t 00 0); t < t 00 :

The fact that 8t t 0 ; t 00 (x)(t) = x(t 00 0) is obvious, wherefrom t 0 2 I t 00 (x) . For any t t 0 we have

t 00 (x)(t) (6:12) = x(t) (6:11) = x(t + T ) (6:12) = t 00 (x)(t + T ):
(6.5)=)(6.6) Obvious. (6.6)=)(1.6) page 17 We suppose against all reason that (1.6) is false, meaning that 0 ; 00 2 !(x) exist, with 0 6 = 00 : Let T > 0 be arbitrary. From (6.6) we have the existence of t 00 2 R; t 0 2 R such that (6.13) 8t t 0 ; t 00 (x)(t) = t 00 (x)(t + T ); wherefrom (6.14) 8t maxft 0 ; t 00 g; x(t) = x(t + T ):

Then t 0 maxft 0 ; t 00 g and t 1 maxft 0 ; t 00 g exist such that x(t 0 ) = 0 ; x(t 1 ) = 00 thus, from (6.14), (6.15) 8k 2 N; x(t 0 + kT ) = 0 ;

(6.16) 8k 2 N; x(t 1 + kT ) = 00 :

Obviously t 0 6 = t 1 and, in order to make a choice, we suppose that t 0 < t 1 :

We write now (6.6) for T 0 = t 1 t 0 and we get the existence of t 00 1 2 R; t 0 1 2 R with (6.17) 8t t 0 1 ; t 00 1 (x)(t) = t 00 1 (x)(t + t 1 t 0 ):

Let k 1 2 N satisfying t 0 + k 1 T maxft 0 1 ; t 00 1 g: We have t 1 + k 1 T > t 0 + k 1 T maxft 0 
1 ; t 00 1 g; wherefrom:

0 (6:15) = x(t 0 + k 1 T ) = t 00 1 (x)(t 0 + k 1 T ) (6:17) = t 00 1 (x)(t 0 + k 1 T + t 1 t 0 ) = t 00 1 (x)(t 1 + k 1 T ) = x(t 1 + k 1 T ) (6:16) = 00 ;
representing a contradiction with our supposition that 0 6 = 00 : We infer the truth of (1.6).

Discrete time vs real time

Theorem 14. We suppose that (t k ) 2 Seq exists with 

(
; if k 0 0 t 0 "; if k 0 = 1 ;
where " > 0 is arbitrary.

Discussion

Remark 42. The statements of Theorem 8, page 17,..., Theorem 13, page 31, are structured in discrete time -real time analogue properties and we notice that to a discrete time statement there correspond either one or (in Theorems 10, 11, 12, 13) two real time statements. This is principially based on the fact that we may omit in these requirements to state that an initial time exists, since this is contained in the de…nition of the signals.

Remark 43. Theorem 14 is a restatement of Theorem 3, page 5.

Remark 44. The properties (1.1),..., (1.3) and (1.4),..., (1.6) do not involve periodicity. The other properties that are equivalent with eventual constancy are divided into two groups:

-(3.1),..., (3.4) and (3.5),...,(3.12); (4.1),...,(4.4) and (4.5),...,(4.12); (5.1),..., (5.4) and (5.5),...,(5.12) are of eventual periodicity of the points, and -(6.1), (6.2) and (6.3),..., (6.6) are of eventual periodicity of the signals.

Remark 45. The common point, of intersection of the previous groups of periodicity properties is the one that the eventual periodicity of a signal exists if all the points of the orbit are eventually periodic, with the same period and the same limit of periodicity. Remark 47. We ask that, in order that the eventual periodicity be equivalent with the eventual constancy, it should take place with any period p 1; T > 0:

Remark 48. In (1.1),..., (1.3) and (1.4),..., (1.6) the existence of a unique is asked and we have = lim 

k!1 b x(k); = lim

Constant signals

The Chapter presents properties that are equivalent with the constancy of the signals and that are related, most of them, with periodicity. The key aspect is that periodicity must hold with any period in order to be equivalent with constancy.

We have gathered these properties in four groups, in order to analyze them better and make them be better understood. Section 1 presents the …rst group of constancy properties, gathering these properties that are not related with periodicity. Sections 2, respectively 3 present the groups of constancy properties of the signals involving periodicity and eventual periodicity properties of all the points of the orbit, respectively of some point of the orbit. The fourth group of constancy properties, involving the periodicity and the eventual periodicity of the signals, is introduced in Section 4. Section 5 relates the constancy of the discrete time and the real time signals. The last Section contains the interpretation of the constancy properties.

The …rst group of constancy properties

Remark 50. The …rst group of constancy properties of the signals contains these properties that are not related with periodicity. These properties are inspired one by one by the properties of eventual constancy from Theorem 8, page 17.

Theorem 15. We consider the signals b

x 2 b S (n) ; x 2 S (n) : a) The following requirements stating the constancy of b

x are equivalent

(1.1) 9 2 B n ; 8k 2 N _ ; b x(k) = ; (1.2) 9 2 B n ; b T b x = N _ ; (1.3) 9 2 B n ; c Or(b x) = f g: b)
The following requirements stating the constancy of x are also equivalent

(1.4) 9 2 B n ; 8t 2 R; x(t) = ; (1.5) 9 2 B n ; T x = R; (1.6) 9 2 B n ; Or(x) = f g: Proof. a) (1.1)=)(1.2) If 2 B n exists such that 8k 2 N _ ; b x(k) = ; then fkjk 2 N _ ; b x(k) = g = N _ : (1.2)=)(1.3) If 2 B n exists such that fkjk 2 N _ ; b x(k) = g = N _ ; then fb x(k)jk 2 N _ g = f g: (1.3)=)(1.1) The existence of 2 B n such that fb x(k)jk 2 N _ g = f g implies 8k 2 N _ ; b x(k) = : b) (1.4)=)(1.5) If 2 B n exists such that 8t 2 R; x(t) = ; then ftjt 2 R; x(t) = g = R: (1.5)=)(1.6) If 2 B n exists such that ftjt 2 R; x(t) = g = R, then fx(t)jt 2 Rg = f g: (1.6)=)(1.
4) The existence of with fx(t)jt 2 Rg = f g implies that 8t 2 R; x(t) = is true.

The second group of constancy properties

Remark 51. This group of constancy properties of the signals involves periodicity and eventual periodicity properties of all the points of the orbit, i.e. in (2.1),...,(2.6), (2.7),...,(2.12) to follow we ask 8 2 c

Or(b x); 8 2 Or(x):

Remark 52. In order to understand better the way that these properties were written, to be noticed the existence of the couples and triples:

- t 0 and 9t 0 1 2 R); -(2.12) (containing 8t 00 2 R) is inspired by (3.11) page 20 and (3.12) page 20 (containing 9t 00 2 R).

(
Theorem 16. a) Any of the following properties is equivalent with the constancy of b

x 2 b S (n) :

(2.1)

8p 1; 8 2 c Or(b x); 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b x ;
(2.2)

( 8p 1; 8 2 c Or(b x); 8k 0 2 N _ ; 8k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b x ;
(2.3)

( 8p 1; 8 2 c Or(b x); 8k 00 2 N; 8k 2 b T b k 00 (b x) ; fk + zpjz 2 Zg \ N _ b T b k 00 (b x) ; (2.4) 8p 1; 8 2 c Or(b x); 8k 2 N _ ; b x(k) = =) =) (b x(k) = b x(k + p) and k p 1 =) b x(k) = b x(k p)); (2.5) 8p 1; 8 2 c Or(b x); 8k 0 2 N _ ; 8k k 0 ; b x(k) = =) =) (b x(k) = b x(k + p) and k p k 0 =) b x(k) = b x(k p));
(2.6)

8 > < > : 8p 1; 8 2 c Or(b x); 8k 00 2 N; 8k 2 N _ ; b k 00 (b x)(k) = =) =) (b k 00 (b x)(k) = b k 00 (b x)(k + p) and and k p 1 =) b k 00 (b x)(k) = b k 00 (b x)(k p)):
b) Any of the following properties is equivalent with the constancy of x 2 S (n) :

(2.7) 8T > 0; 8 2 Or(x); 9t 0 2 I x ; 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ; (2.8) 8T > 0; 8 2 Or(x); 9t 0 2 I x ; 8t 0 1 t 0 ; 8t 2 T x \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T x ;
(2.9)

( 8T > 0; 8 2 Or(x); 8t 00 2 R; 9t 0 2 I t 00 (x) ; 8t 2 T t 00 (x) \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T t 00 (x) ; (2.10) 8T > 0; 8 2 Or(x); 9t 0 2 I x ; 8t t 0 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 =) x(t) = x(t T )); (2.11) 8T > 0; 8 2 Or(x); 9t 0 2 I x ; 8t 0 1 t 0 ; 8t t 0 1 ; x(t) = =) =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T ));
(2.12)

> < > :

8T > 0; 8 2 Or(x); 8t 00 2 R; 9t 0 2 I t 00 (x) ; 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T )):

Proof. a) (1.3)=)(2.1) We suppose that 2 B n exists with fb x(k)jk 2 N _ g = f g and let p 1; k 2 b T b x ; z 2 Z arbitrary such that k + zp 1: Obviously b x(k + zp) = ; thus k + zp 2 b T b x : (2.1)=)(2.2) We take p 1; 2 c Or(b x); k 0 2 N _ arbitrary. If b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g = ?; then the statement 8k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x holds trivially, thus we can suppose from now that b T b x \ fk 0 ; k 0 + 1; k 0 + 2; ::

:g 6 = ? and let k 2 b T b x ; z 2 Z arbitrary, …xed, such that k k 0 and k + zp k 0 : As k + zp 1; we have from (2.1) that k + zp 2 b T b x : (2.2)=)(2.3) Let p 1; 2 c Or(b x); k 00 2 N arbitrary. If b T b k 00 (b x) = ?; the statement 8k 2 b T b k 00 (b x) ; fk + zpjz 2 Zg \ N _ b T b k 00 (b x)
is trivially ful…lled, so that we can suppose from now that b

T b k 00 (b x) 6 = ?: Let k 2 b T b k 00 (b x) ; z 2 Z arbitrary such that k + zp 1: We have b x(k + k 00 ) = or, if we denote k 0 = k 00 1; then b x(k + k 0 + 1) = ; where k 0 2 N _ : Of course that k + k 0 + 1 k 0 ; thus k + k 0 + 1 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g and, on the other hand, k

+ k 0 + 1 + zp k 0 + 1 1; thus we can apply (2.2), wherefrom b x(k + k 0 + 1 + zp) = : It has resulted that b k 00 (b x)(k + zp) = b x(k + k 00 + zp) = ; in other words k + zp 2 b T b k 00 (b x) : (2.3)=)(2.4) Let p 1; 2 c Or(b x) and k 2 N _ such that b x(k) = : (2.3) written for k 00 = 0 gives fk + zpjz 2 Zg \ N _ b T b x ; thus k + p 2 fk + zpjz 2 Zg \ N _ (2:3) b T b x ; wherefrom b x(k + p) = = b x(k): If in addition k p 1; then k p 2 fk + zpjz 2 Zg \ N _ (2:3) b T b x ; wherefrom b x(k p) = = b x(k): (2.4)=)(2.5) We take p 1; 2 c Or(b x); k 0 2 N _ arbitrary. If 8k k 0 ; b x(k) 6 = , then the statement 8k k 0 ; b x(k) = =) (b x(k) = b x(k + p) and k p k 0 =) b x(k) = b x(k p))
is trivially ful…lled, thus we can take k k 0 arbitrarily with b

x(k) = : From (2.4) we have that b x(k) = b x(k + p):
In the case that in addition k p k 0 ; as k p 1; we can apply (2.4) again in order to infer that b

x(k) = b x(k p): (2.5)=)(2.6) Let p 1; 2 c Or(b x); k 00 2 N arbitrary. If 8k 2 N _ ; b k 00 (b x)(k) 6 = then the statement ( 8k 2 N _ ; b k 00 (b x)(k) = =) (b k 00 (b x)(k) = b k 00 (b x)(k + p) and and k p 1 =) b k 00 (b x)(k) = b k 00 (b x)(k p))
is trivially true, thus we take k 2 N _ arbitrary such that b k 00 (b x)(k) = b x(k+k 00 ) = : We denote k 0 = k 00 1 and we see that b

x(k + k 0 + 1) = ; where k + k 0 + 1 k 0 : We can apply (2.5) and we infer that

b k 00 (b x)(k) = b x(k + k 00 ) = b x(k + k 0 + 1) (2:5) = b x(k + k 0 + 1 + p) = = b x(k + k 00 + p) = b k 00 (b x)(k + p):
We suppose now that in addition k p 1; thus k + k 0 + 1 p k 0 and we can apply again (2.5) in order to obtain

b k 00 (b x)(k) = b x(k + k 00 ) = b x(k + k 0 + 1) (2:5) = b x(k + k 0 + 1 p) = = b x(k + k 00 p) = b k 00 (b x)(k p): (2.6)=)(1.1)
The statement (2.6) written for p = 1 and k 00 = 0 becomes:

(2.13) 8 2 c Or(b x); 8k 2 N _ ; b x(k) = =) =) (b x(k) = b x(k + 1) and k 0 =) b x(k) = b x(k 1)): Let 2 c Or(b x) arbitrary, thus k 1 2 N _ exists with b x(k 1 ) = : From (2.13) we infer: b x(k 1 ) = b x(k 1 1) = b x(k 1 2) = ::: = b x( 1); b x(k 1 ) = b x(k 1 + 1) = b x(k 1 + 2) = ::: We have obtained that (1.1) holds. b) (1.6)=)(2.7)
The hypothesis states the existence of 2 B n such that fx(t)jt 2 Rg = f g: Let us take T > 0 and t 0 2 I x arbitrarily. Let furthermore t 2 T x \ [t 0 ; 1)(=[t 0 ; 1)) and z 2 Z having the property that t + zT t 0 : We have x(t + zT ) = ; thus t + zT 2 T x : These imply the truth of (2.7).

(2.7)=)(2.8) Let T > 0 and 2 Or(x) arbitrary. (2.7) shows the existence of t 0 2 I x with the property

(2.14) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x :
Let us take t 0 true. When writing (2.15) we have taken in (2.8) t 0 1 = t 000 (= t 0 ): Let t 00 2 R arbitrary. We have the following possibilities. Case t 00 t 000 Then, from t 000 2 I x , t 00 (x) = x and (2.15) we have the truth of (2.9) with t 0 = t 000 :

1 t 0 arbitrary. If T x \ [t 0 1 ; 1) = ?; then the statement 8t 2 T x \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T x is trivially true, so we suppose T x \ [t 0 1 ; 1) 6 = ? and let t 2 T x \ [t 0 1 ; 1 
Case t 00 > t 000 Some " > 0 exists with the property that 8t 2 (t 00 "; t 00 ); x(t) = x(t 00 0): We take t 0 2 (t 00 "; t 00 ) \ (t 000 ; t 00 ) arbitrarily. The fact that

( 1; t 0 ] T t 00 (x) x(t 00 0) is obvious. If T t 00 (x) \ [t 0 ; 1) = ?; then the property (2.16) 8t 2 T t 00 (x) \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T t 00 (x)
is true, thus we can suppose that T t 00 (x) \ [t 0 ; 1) 6 = ? and let t 2 T t 00

(x) \ [t 0 ; 1)
arbitrary, …xed. We notice that 8t t 0 ; t 00 (x)(t) = x(t); thus T t 00

(x) \ [t 0 ; 1) = T x \ [t 0 ; 1):
We take z 2 Z arbitrary with t + zT t 0 : Because in this situation t 2 T x \ [t 000 ; 1) and t + zT t 000 ; we can apply (2.15) and we infer t + zT 2 T x ;

i.e. x(t + zT ) = = t 00 (x)(t + zT ) and …nally t + zT 2 T t 00

(x) :

(2.9)=)(2.10) Let T > 0; 2 Or(x) arbitrary, …xed. The existence of x( 1 + 0) shows that in (2.9) we can choose t 00 2 R su¢ ciently small such that t 00 (x) = x (see Theorem 4 a), page 6). For that choice of t 00 ; (2.9) shows the existence of t 0 2 I t 00

(x) with (2.17) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x true. If 8t t 0 ; x(t) 6 = ; then the statement 8t t 0 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 =) x(t) = x(t T ))
is trivially true, so we can suppose that T x \ [t 0 ; 1) 6 = ?: Let t t 0 arbitrary such that x(t) = ; in other words t 2 T x \ [t 0 ; 1): As far as

t + T 2 ft + zT jz 2 Zg \ [t 0 ; 1) (2:17) T x ; we conclude that t + T 2 T x ; i.e. x(t + T ) = = x(t): If in addition t T t 0 ; then t T 2 ft + zT jz 2 Zg \ [t 0 ; 1) (2:17) T x ; wherefrom t T 2 T x ; i.e. x(t T ) = = x(t):
(2.10)=)(2.11) We take T > 0 and 2 Or(x) arbitrary, for which the truth of (2.10) shows the existence of t 0 2 I x such that

(2.18) 8t t 0 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 =) x(t) = x(t T )): Let now t 0 1 t 0 arbitrary. If 8t t 0 1 ; x(t) 6 = ; the statement 8t t 0 1 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T
)) is trivially true, so we suppose that we can take t t 0 1 arbitrarily with x(t) = : As t t 0 ; we conclude from (2.18) that

(2.19) x(t) = x(t + T ) and t T t 0 =) x(t) = x(t T )
holds. If t T t 0 1 ; then t T t 0 and from (2.19) we have that x(t) = x(t T ): (2.11)=)(2.12) Let T > 0; 2 Or(x) arbitrary, …xed. (2.11) shows the existence of t 000 2 I x such that, in the special case when t 0 1 t 000 holds as equality; we have (2.20) 8t t 000 ; x(t) = =) (x(t) = x(t+T ) and t T t 000 =) x(t) = x(t T )):

Let t 00 2 R arbitrary, …xed. We have the following possibilities.

Case t 00 t 000

We have t 00 (x) = x and, from (2.20) we have the truth of (2.12), with t 0 = t 000 : Case t 00 > t 000 Some " > 0 exists with the property that 8t 2 (t 00 "; t 00 ); x(t) = x(t 00 0): We take t 0 2 (t 00 "; t 00 ) \ (t 000 ; t 00 ) arbitrary and, from (2.20) and Lemma 3, page 200, we infer

(2.21) 8t t 0 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 =) x(t) = x(t T )): We notice that ( 1; t 0 ] T t 00 (x)
x(t 00 0) ; thus t 0 2 I t 00

(x) : If 8t t 0 ; t 00 (x)(t) 6 = ; then 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T ))
is trivially true, so let t t 0 arbitrary with t 00 (x)(t) = : As for t t 0 ; t 00 (x)(t) = x(t) (irrespective of the fact that t < t 00 or t t 00 ), we can apply (2.21).

(2.12)=)(1.6) We suppose against all reason that ; 0 2 Or(x) exist, 6 = 0 ; meaning the existence of t 1 ; t 2 2 R with x(t 1 ) = ; x(t 2 ) = 0 : We can suppose without loss that t 1 > t 2 : We write (2.12) for the period T 0 = t 1 t 2 > 0; for 0 and for t 00 2 R su¢ ciently small such that t 00 (x) = x: Some t 0 2 I x exists with

(2.22) 8t t 0 ; x(t) = 0 =) (x(t) = x(t+T 0 ) and t T 0 t 0 =) x(t) = x(t T 0 )):
We use the fact that Or(x) = fx(t)jt t 0 g; thus t 0 t 2 < t 1 and we have

0 = x(t 2 ) (2:22) = x(t 2 + T 0 ) = x(t 2 + t 1 t 2 ) = x(t 1 ) = ;
contradiction with the supposition that 6 = 0 : (1.6) holds.

The third group of constancy properties

Remark 54. The third group of constancy properties involves periodicity and eventual periodicity properties of some point of the orbit. The constancy properties result from (2.1),..., (2.6) and (2.7),...,(2.12) of the second group of properties, by the replacement of 8 2 c

Or(b x); 8 2 Or(x) with 9 2 c Or(b x); 9 2 Or(x): The proofs of the implications are similar, most of them, with the proofs of Theorem 16, page 36.

Remark 55. The properties are also inspired by the eventual constancy properties of Theorem 11, page 24. Note that:

-(3.1), (3.2) (the last contains 8k 0 2 N _ ) are inspired by (4.1) page 24 (containing t 0 ) are inspired by (4.9) page 25 (containing 9t 0 (4.11) page 25 and (4.12) page 25 (containing 9t 00 2 R...9t 000 t 0 ; t 00 (x)(t 000 ) = ).

9k 0 2 N _ ; b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g 6 = ?); -(3.3) (containing 8k 00 2 N) is inspired by (4.2) page 25 (containing 9k 00 2 N; b T b k 00 (b x) 6 = ?); -(3.4), (3.5) (the last contains 8k 0 2 N _ ) are inspired by (4.3) page 25 (con- taining 9k 0 2 N _ ; 9k 1 k 0 ; b x(k 1 ) = ); -(3.6) (containing 8k 00 2 N) is inspired by (4.4) page 25 (containing 9k 00 2 N; 9k 1 2 N _ ; b k 00 (b x)(k 1 ) = ); -(3.
1 t 0 ; 9t 0 2 t 0 1 ; x(t 0 2 ) = ) and (4.10) page 25 (containing 9t 0 1 2 R; 9t 0 2 t 0 1 ; x(t 0 2 ) = ); -(3.12) (containing 8t 00 2 R) is inspired by
Remark 56. We refer also to Theorem 12, page 30 that makes use of the eventual periodicity of some points of the omega limit set. Here are the di¤ erences:

- ) are inspired by (5.9) page 31 (containing 9 2 !(x);...; 9t 0 1 t 0 ) and (5.10) page 31 (containing 9 2 !(x); 9t 0 1 2 R); -(3.12) (containing 9 2 Or(x); 8t 00 2 R) is inspired by (5.11) page 31 and (5.12) page 31 (containing 9 2 !(x); 9t 00 2 R).

Theorem 17. Let the signals b x 2 b S (n) ; x 2 S (n) : a)
The following properties are equivalent with the constancy of b

x 2 b S (n) :

(3.1) 8p 1; 9 2 c Or(b x); 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b x ; (3.2) ( 8p 1; 9 2 c Or(b x); 8k 0 2 N _ ; 8k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b x ; (3.3) ( 8p 1; 9 2 c Or(b x); 8k 00 2 N; 8k 2 b T b k 00 (b x) ; fk + zpjz 2 Zg \ N _ b T b k 00 (b x) ; (3.4) 8p 1; 9 2 c Or(b x); 8k 2 N _ ; b x(k) = =) =) (b x(k) = b x(k + p) and k p 1 =) b x(k) = b x(k p)); (3.5) 8p 1; 9 2 c Or(b x); 8k 0 2 N _ ; 8k k 0 ; b x(k) = =) =) (b x(k) = b x(k + p) and k p k 0 =) b x(k) = b x(k p)); (3.6) 8 > < > : 8p 1; 9 2 c Or(b x); 8k 00 2 N; 8k 2 N _ ; b k 00 (b x)(k) = =) =) (b k 00 (b x)(k) = b k 00 (b x)(k + p) and and k p 1 =) b k 00 (b x)(k) = b k 00 (b x)(k p)):
b) The following properties are equivalent with the constancy of x 2 S (n) :

(3.7) 8T > 0; 9 2 Or(x); 9t 0 2 I x ; 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ; (3.8) 8T > 0; 9 2 Or(x); 9t 0 2 I x ; 8t 0 1 t 0 ; 8t 2 T x \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T x ;
(3.9)

( 8T > 0; 9 2 Or(x); 8t 00 2 R; 9t 0 2 I t 00 (x) ; 8t 2 T t 00 (x) \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T t 00 (x) ; (3.10) 8T > 0; 9 2 Or(x); 9t 0 2 I x ; 8t t 0 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 =) x(t) = x(t T )); (3.11) 8T > 0; 9 2 Or(x); 9t 0 2 I x ; 8t 0 1 t 0 ; 8t t 0 1 ; x(t) = =) =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T ));
(3.12)

> < > :

8T > 0; 9 2 Or(x); 8t 00 2 R; 9t 0 2 I t 00 (x) ; 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T )): Or(b x) with

(3.14) 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b x : Let now k 0 2 N _ arbitrary. If b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g = ?; then 8k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b
x is trivially true, so we suppose b T b x \ fk 0 ; k 0 + 1; k 0 + 2; ::

:g 6 = ? and let k 2 b T b x ; z 2 Z arbitrary, …xed, such that k k 0 and k + zp k 0 : As k + zp 1; we have from (3.14) that k + zp 2 b T b x : (3.2)=)(3.3) Let an arbitrary p 1: We have from (3.2) the existence of 2 c
Or(b x) such that (3.15)

( 8k 0 2 N _ ; 8k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b
x holds and we take

k 00 2 N arbitrary. If b T b k 00 (b x) = ?; then 8k 2 b T b k 00 (b x) ; fk + zpjz 2 Zg \ N _ b T b k 00 (b x)
is trivially true, thus we can suppose b

T b k 00 (b x) 6 = ? and let k 2 b T b k 00 (b x) ; z 2 Z arbitrary such that k +zp 1: We have b x(k +k 00 ) = or, if we denote k 0 = k 00 1; then b x(k + k 0 + 1) = ; where k 0 2 N _ : Of course that k + k 0 + 1 k 0 ; thus k+k 0 +1 2 b T b
x \fk 0 ; k 0 +1; k 0 +2; :::g and, on the other hand, k+k 0 +1+zp k 0 +1 1; resulting that we can apply (3.15), wherefrom b

x(k

+ k 0 + 1 + zp) = : It has resulted that b k 00 (b x)(k + zp) = b x(k + k 00 + zp) = ; in other words k + zp 2 b T b k 00 (b x) : (3.3)=)(3.4) Let p 1 arbitrary. (3.3) shows the existence of 2 c Or(b x) with (3.16) 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b x true (for k 00 = 0 and b k 00 (b x) = b x) and let k 2 N _ such that b x(k) = : We obtain k + p 2 fk + zpjz 2 Zg \ N _ (3:16) b T b x ; wherefrom b x(k + p) = = b x(k): If in addition k p 1; then k p 2 fk + zpjz 2 Zg \ N _ (3:16) b T b x ; wherefrom b x(k p) = = b x(k): (3.4)=)(3.5)
We take an arbitrary p 1 and we have from (3.4) the existence of 2 c

Or(b x); with

(3.17) 8k 2 N _ ; b x(k) = =) =) (b x(k) = b x(k + p) and k p 1 =) b x(k) = b x(k p)) ful…lled. We take k 0 2 N _ arbitrary. If 8k k 0 ; b x(k) 6 = then 8k k 0 ; b x(k) = =) (b x(k) = b x(k + p) and k p k 0 =) b x(k) = b x(k p))
is trivially true, thus we can take k k 0 arbitrarily such that b x(k) = : From (3.17) we have that b

x(k) = b x(k + p): In case that k p k 0 ; as k p 1; we can apply (3.17 Or(b x) with

(3.18) 8k 0 2 N _ ; 8k k 0 ; b x(k) = =) =) (b x(k) = b x(k + p) and k p k 0 =) b x(k) = b x(k p))
true. We take

k 00 2 N arbitrary. If 8k 2 N _ ; b k 00 (b x)(k) 6 = ; then ( 8k 2 N _ ; b k 00 (b x)(k) = =) (b k 00 (b x)(k) = b k 00 (b x)(k + p) and and k p 1 =) b k 00 (b x)(k) = b k 00 (b x)(k p)) is trivially true, thus let k 2 N _ arbitrary with b k 00 (b x)(k) = b x(k + k 00 ) = : We denote k 0 = k 00 1 and we see that b x(k + k 0 + 1) = ;
where k + k 0 + 1 k 0 : We can apply (3.18) and we infer that

b k 00 (b x)(k) = b x(k + k 00 ) = b x(k + k 0 + 1) (3:18) = b x(k + k 0 + 1 + p) = = b x(k + k 00 + p) = b k 00 (b x)(k + p):
We suppose now that in addition we have k p 1; thus k + k 0 + 1 p k 0 and we can apply again (3.18) in order to obtain

b k 00 (b x)(k) = b x(k + k 00 ) = b x(k + k 0 + 1) (3:18) = b x(k + k 0 + 1 p) = = b x(k + k 00 p) = b k 00 (b x)(k p): (3.6)=)(1.1)
The hypothesis written for p = 1 shows the existence of 2 c Or(b x) such that, in the special case when k 00 = 0;

(3.19) 8k 2 N _ ; b x(k) = =) =) (b x(k) = b x(k + 1) and k 0 =) b x(k) = b x(k 1)) is ful…lled. Some k 1 2 N _ exists with b x(k 1 ) = and from (3.19) we get: b x(k 1 ) = b x(k 1 1) = b x(k 1 2) = ::: = b x( 1); b x(k 1 ) = b x(k 1 + 1) = b x(k 1 + 2) = ::: i.e. (1.1) holds. b) (1.5)=)(3.7)
Let T > 0 arbitrary. The hypothesis states the existence of 2 B n such that T x = ftjt 2 R; x(t) = g = R; in particular = x( 1 + 0): We take t 0 2 I x arbitrarily and let t 2 T x \ [t 0 ; 1) = [t 0 ; 1); z 2 Z with t + zT t 0 : We conclude that t + zT 2 T x : These imply the truth of (3.7).

(3.7)=)(3.8) Let T > 0 arbitrary. The hypothesis states the existence of 2 Or(x); t 0 2 I x with the property

(3.20) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x :
Let us take t 0

1 t 0 arbitrary. If T x \ [t 0 1 ; 1) = ?; then the statement 8t 2 T x \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T x is trivially true, thus we can suppose from now that T x \ [t 0 1 ; 1) 6 = ?: We take t 2 T x \[t 0 1 ; 1); z 2 Z arbitrarily such that t+zT t 0 1 : We have t 2 T x \[t 0 ; 1)
; t+ zT t 0 and we can apply (3.20). We infer t + zT 2 T x :

(3.8)=)(3.9) Let T > 0 arbitrary. From (3.8) we get the existence of 2 Or(x) and t 000 2 I x with

(3.21) 8t 2 T x \ [t 000 ; 1); ft + zT jz 2 Zg \ [t 000 ; 1) T x
true. When writing (3.21) we have taken in (3.8) t 0 1 = t 000 (= t 0 ): As Or(x) = fx(t)jt t 000 g; we have T x \ [t 000 ; 1) 6 = ? and (3.21) shows that 2 !(x):

Let t 00 2 R arbitrary. We have the following possibilities. Case t 00 t 000 Then, since t 00 2 I x , we get t 00 (x) = x thus from (3.21) we have the truth of (3.9) with t 0 = t 000 :

Case t 00 > t 000 Some " > 0 exists with the property that 8t 2 (t 00 "; t 00 ); x(t) = x(t 00 0): We take t 0 2 (t 00 "; t 00 ) \ (t 000 ; t 00 ) arbitrarily and we have

t 00 (x)(t) =
x(t); t t 0 x(t 00 0); t < t 00 :

The fact that t 0 2 ( 1; t 00 ) I t 00

(x) is obvious. As far as 2 !(x); we have

T t 00 (x) \ [t 0 ; 1) 6 = ?: Let t 2 T t 00
(x) \ [t 0 ; 1) arbitrary, …xed and we notice that

T t 00 (x) \ [t 0 ; 1) = T x \ [t 0 ; 1):
We take also z 2 Z arbitrary with t + zT t 0 : Because in this situation t 2 T x \ [t 000 ; 1) and t + zT t 000 ; we can apply (3.21) and we infer t+zT 2 T x ; i.e. x(t+zT ) = = t 00 (x)(t+zT ) and …nally t+zT 2 T t 00 (x) :

(3.9)=)(3.10) Let T > 0 arbitrary, …xed. From (3.9), some 2 Or(x) exists such that

(3.22) ( 8t 00 2 R; 9t 0 2 I t 00 (x) ; 8t 2 T t 00 (x) \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T t 00 (x) :
The existence of x( 1 + 0) shows that in (3.22) we can choose t 00 2 R su¢ ciently small such that t 00 (x) = x: For this choice of t 00 ; (3.22) shows the existence of

t 0 2 I x with (3.23) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x
true. We have Or(x) = fx(t)jt t 0 g; wherefrom we get T x \ [t 0 ; 1) 6 = ?: Let t t 0 arbitrary with x(t) = ; in other words t 2 T x \ [t 0 ; 1): As far as

t + T 2 ft + zT jz 2 Zg \ [t 0 ; 1) (3:23) T x ; we conclude that t + T 2 T x ; i.e. x(t + T ) = = x(t): If in addition t T t 0 ; then t T 2 ft + zT jz 2 Zg \ [t 0 ; 1) (3:23) T x ; wherefrom t T 2 T x ; i.e. x(t T ) = = x(t):
(3.10)=)(3.11) We take T > 0 arbitrarily, for which the truth of (3.10) shows the existence of 2 Or(x) and t 0 2 I x such that

(3.24) 8t t 0 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 =) x(t) = x(t T )): Let now t 0 1 t 0 arbitrary. As
2 Or(x) we get the existence of t t 0 with x(t) = ; wherefrom taking into account (3.24) we infer 2 !(x): Let t t 0 1 arbitrarily such that x(t) = (we can take such t 0 s because 2 !(x) and T x is superiorly unbounded). As t t 0 ; we conclude from (3.24) that x(t) = x(t + T ) holds. If in addition t T t 0 1 ; then t T t 0 and from (3.24) we have that x(t) = x(t T ):

(3.11)=)(3.12) Let T > 0 arbitrary, …xed. (3.11) shows the existence of 2 Or(x) and t 000 2 I x such that, in the special case when t 0 1 t 000 is true as equality, we have

(3.25) 8t t 000 ; x(t) = =) (x(t) = x(t + T ) and t T t 000 =) x(t) = x(t T ))
and in particular we notice that 2 !(x) and T x is superiorly unbounded.

Let t 00 2 R arbitrary, …xed. We have the following possibilities. Case t 00 t 000

We have t 00 (x) = x and, from (3.25) we have the truth of (3.12), with t 0 = t 000 : Case t 00 > t 000 Some " > 0 exists with the property that 8t 2 (t 00 "; t 00 ); x(t) = x(t 00 0): We take t 0 2 (t 00 "; t 00 ) \ (t 000 ; t 00 ) arbitrary. We notice that t 00 (x)(t) = x(t); t t 0 ; x(t 00 0); t < t 00 ; t 0 2 ( 1; t 00 ) I t 00 (x) hold and let now t t 0 arbitrary with t 00 (x)(t) = : Such a choice of t is possible since T x is superiorly unbounded. We infer from (3.25) and Lemma 3, page 200 that

(3.26) 8t t 0 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 =) x(t) = x(t T )):
As for t t 0 ; t 00 (x)(t) = x(t), we can apply (3.26) in order to conclude the truth of (3.12).

(3.12)=)(1.4) We suppose against all reason that x is not constant, thus t 0 2 R exists with

(3.27) 8t < t 0 ; x(t) = x( 1 + 0); (3.28) x(t 0 ) 6 = x( 1 + 0):
Let T > 0 arbitrary. Some 2 Or(x) exists from the hypothesis (3.12) such that (3.29)

8 > < > : 8t 00 2 R; 9t 0 2 I t 00
(x) , 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T )):

We take in (3.29) t 00 t 0 ; for which we have t 00 (x) = x and from (3.27), (3.28), (3.29), t 0 < t 0 exists with t 0 2 I x ;

(3.30) 8t t 0 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 =) x(t) = x(t T )):
As 2 Or(x) = fx(t)jt t 0 g; some t 000 t 0 exists with x(t 000 ) = and, from ( 

8t 00 2 R; 9t 0 2 I t 00 (x) , 8t t 0 ; t 00 (x)(t) = 0 =) ( t 00 (x)(t) = t 00 (x)(t + T 0 ) and and t T 0 t 0 =) t 00 (x)(t) = t 00 (x)(t T 0 )):
For t 00 t 0 ; as t 00 (x) = x; (3.27), (3.28), (3.32) imply the existence of t 0 0 < t 0 such that t 0 0 2 I x ;

(3.33) 8t t 0 0 ; x(t) = 0 =) =) (x(t) = x(t + T 0 ) and t T 0 t 0 0 =) x(t) = x(t T 0 )): But 0 2 Or(x) = fx(t)jt t 0 0 g and, like before, t 0 1 ; t 0 2 2 R exist such that t 0 0 t 0 1 < t 0 2 ; [t 0 1 ; t 0 2 ) T x 0 and (3.34) [t 0 1 ; t 0 2 ) [ [t 0 1 + T 0 ; t 0 2 + T 0 ) [ [t 0 1 + 2T 0 ; t 0 2 + 2T 0 ) [ ::: T x 0 :
The fact that T 0 < t 2 t 1 implies however from Lemma 6, page 201 that

? 6 = ([t 1 ; t 2 ) [ [t 1 + T; t 2 + T ) [ [t 1 + 2T; t 2 + 2T ) [ :::)\ \([t 0 1 ; t 0 2 ) [ [t 0 1 + T 0 ; t 0 2 + T 0 ) [ [t 0 1 + 2T 0 ; t 0 2 + 2T 0 ) [ :::) T x \ T x 0 ; thus = 0 :
As we have already mentioned, two possibilities exist.

Case x(t 1 0) 6 = : Let k 2 N with t 1 + kT > t 0 0 : Some " > 0 exists with 8 2 (t 1 + kT "; t 1 + kT ); x( ) = x(t 1 + kT 0) and t 1 + kT " t 0 0 : But then t 2 (t 1 + kT "; t 1 + kT ) exists such that t + T 0 2 [t 1 + kT; t 2 + kT ) 1 and we have Lemma 5

=

x(t 1 + kT 0) = x(t);

(3:31) = x(t + T 0 ) (3:33) with = 0 = x(t); contradiction. Case x(t 2 ) 6 = : Let k 2 N such that t 1 + kT > t 0 0 and t 2 [t 1 + kT; t 2 + kT ) such that t + T 0 = t 2 + kT 2 : We have (3:31) = x(t) (3:33) with = 0 = x(t + T 0 ) = x(t 2 + kT ) (3:30) = x(t 2 )
Lemma 5

= ;

1 Proving that maxft 1 + kT "; t 1 + kT T 0 g < minft 1 + kT; t 2 + kT T 0 g is easy and we take t 2 (maxft 1 + kT "; t 1 + kT T 0 g < minft 1 + kT; t 2 + kT T 0 g) arbitrarily.

2 Such a t exists since t 1 + kT t 2 + kT T 0 < t 2 + kT holds.

contradiction. We have obtained that x is constant.

The fourth group of constancy properties

Remark 57. The constancy properties to follow have their origin in the eventual constancy properties from Theorem 13, page 31 and they use the periodicity and the eventual periodicity of the signals. We see that:

-(4.1) and (4.2) (the last contains 8k 0 2 N _ ) have their origin in (6.1) page 31 (containing 9k 0 2 N _ ); -(4.3) (containing 8k 00 2 N) has its origin in (6.2) page 31 (containing 9k 00 2 N); -(4.4) and (4.5) (the last contains 8t 0 1 t 0 ) have their origin in (6.3) page 31 (containing 9t 0 1 t 0 ) and (6.4) page 31 (containing 9t 0 1 2 R); -(4.6) (containing 8t 00 2 R) has its origin in (6.5) page 31 and (6.6) page 31 (containing both 9t 00 2 R).

Theorem 18. a) The following properties are equivalent with the constancy of the signal b

x 2 b S (n) :

(4.1) 8p 1; 8k 2 N _ ; b x(k) = b x(k + p); (4.2) 8p 1; 8k 0 2 N _ ; 8k k 0 ; b x(k) = b x(k + p); (4.3) 8p 1; 8k 00 2 N; 8k 2 N _ ; b k 00 (b x)(k) = b k 00 (b x)(k + p):
b) The following properties are equivalent with the constancy of x 2 S (n) :

(4.4) 8T > 0; 9t 0 2 I x ; 8t t 0 ; x(t) = x(t + T );

(4.5) 8T > 0; 9t 0 2 I x ; 8t 0 1 t 0 ; 8t t 0 1 ; x(t) = x(t + T ); (4.6) 8T > 0; 8t 00 2 R; 9t 0 2 I t 00 (x) ; 8t t 0 ; t 00 (x)(t) = t 00 (x)(t + T ): Proof. a) (1.1)=)(4.1) We suppose that 2 B n exists with 8k 2 N _ ; b x(k) = and let p 1; k 2 N _ arbitrary. We have b x(k) = = b x(k + p); making (4.1) true. (4.1)=)(4.2) Let p 1; k 0 2 N _ ,k k 0 arbitrary: From (4.1) we infer that b x(k) = b x(k + p): (4.2)=)(4.
3) We take p 1; k 00 2 N; k 2 N _ arbitrarily. We denote k 0 = k 00 1 and we notice that k + k 00 = k + k 0 + 1 k 0 ; thus we can apply (4.2) and we obtain 

b k 00 (b x)(k) = b x(k + k 00 ) = b x(k + k 0 + 1) (4:2) = b x(k + k 0 + 1 + p) = = b x(k + k 00 + p) = b k 00 (b x)(k + p):
8t t 0 ; x(t) = ; 8t t 0 ; x(t) = x(t + T ) =
hold. We have that t 0 2 I x and (4.4) is true.

(4.4)=)(4.5) Let T > 0 arbitrary. (4.4) shows that t 0 2 I x exists such that (4.7) 8t t 0 ; x(t) = x(t + T ):

We take t 0 1 t 0 and t t 0 1 arbitrarily. From the fact that t t 0 ; the statement (4.7) gives x(t) = x(t + T ); i.e. (4.5) is true.

(4.5)=)(4.6) Let T > 0 arbitrary. (4.5) shows the existence of t 000 2 I x such that, in the special case when t 0 1 t 000 holds as equality; the statement

(4.8) 8t t 000 ; x(t) = x(t + T )
is ful…lled. We suppose that an arbitrary t 00 2 R is given and we have the following possibilities.

Case t 00 t 000 From 8t t 000 ; x(t) = x( 1 + 0) we infer that t 00 (x) = x and, taking into account (4.8) also; we get that (4.6) is true with t 0 = t 000 :

Case t 00 > t 000 Some " > 0 exists with the property that 8t 2 (t 00 "; t 00 ); x(t) = x(t 00 0): We take arbitrarily a t 0 2 (t 00 "; t 00 ) \ (t 000 ; t 00 ) and we get that 8t t 0 ; t 00 (x)(t) = x(t 00 0) is true. We notice that for any t t 0 we have t 00 (x)(t) = x(t); irrespective of the fact that t < t 00 or t t 00 and let us …x an arbitrary t t 0 : We have

t 00 (x)(t) = x(t) (4:8) = x(t + T ) = t 00 (x)(t + T ):
(4.6)=)(1.4) Let us suppose against all reason that (1.4) is false, meaning that t 0 < t 1 exist with the property (4.9) 8t < t 0 ; x(t) = x( 1 + 0);

(4.10) 8t 2 [t 0 ; t 1 ); x(t) 6 = x( 1 + 0):
We write (4.6) for T 2 (0; t 1 t 0 ) and t 00 su¢ ciently small such that t 00 (x) = x and we obtain the existence of t 0 2 I x with (4.11) 8t t 0 ; x(t) = x(t + T ):

From (4.9), (4.10) we infer t 0 < t 0 :

Let now t 2 [t 0 ; t 0 ) \ [t 0 T; t 0 ) …xed. We have t + T 2 [t 0 ; t 0 + T ) [t 0 ; t 1 ); thus x( 1 + 0) = x(t) (4:11) = x(t + T ) (4:10) 6 = x( 1 + 0);
contradiction. We conclude that (1.4) holds.

Discrete time vs real time

Theorem 19. Let us suppose that the sequence (t k ) 2 Seq exists such that

(5.1) x(t) = b x( 1) ( 1;t0) (t) b x(0) [t0;t1) (t) ::: b x(k) [t k ;t k+1 ) (t) :::
Then the constancy of b x is equivalent with the constancy of x.

Proof. Obvious, but let us take a look at Theorem 6 a) also, page 9, stating that the hypothesis implies c

Or Remark 59. A common point, of intersection of the three groups 2,3,4 of properties of periodicity exists, in the sense that the periodicity of a signal is present i.e. all the points of its orbit are periodic, with the same period.

Remark 60. The key request in all these periodicity properties in order to be equivalent with constancy is that they hold for any period p 1; T > 0:

Remark 61. a) In (1.1),..., (1.3) the existence of a unique 2 B n is stated. Similarly, in (1.4),..., (1.6) 9 2 B n must be understood as 9! 2 B n :

Remark 62. The statement 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b x from (2.1
) is one of periodicity of with the period p and the statement

9t 0 2 I x ; 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x from (2.7
) is one of periodicity of with the period T: Both these requirements are related with an initial time=limit of periodicity, which is 1 and t 0 : Their demand is that if b x(k) = ; x(t) = ; then right translations along the time axis are allowed giving the same value of b

x; x : b x(k + zp) = ; z 0; x(t + zT ) = ; z 0 and left translations along the time axis are also allowed as long as the argument still exceeds the limit of periodicity-and they give the same value of b

x; x : b x(k + zp) = ; z < 0; x(t + zT ) = ; z < 0: And this should happen for all the periods p 1; T > 0 and all the points of the orbit 2 c

Or(b x); 2 Or(x):

Remark 63. The properties

( 8k 0 2 N _ ; 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x ;

9t 0 2 I x ; 8t 0 1 t 0 ; 8t 2 T x \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T x from (2.
2), (2.8) are of eventual periodicity of with the period p; T: Here the periodicity of starts not from the very beginning 1; t 0 like previously, but from a time instant k 0 2 N _ ; t 0 1 t 0 : In order to have periodicity, we ask that such properties hold for any k 0 ; t 0 

(b x) = ?; when 8k 2 b T b k 00 (b x) ; fk + zpjz 2 Zg \ N _ b T b k 00 (b x)
is trivially ful…lled. This is not the case if the previous property takes place for any k 00 2 N; including the case k 00 = 0; when c

Or(b k 00 (b x)) = c
Or(b x): This discussion is in principle the same for (2.9).

Remark 65. The requests

8k 2 b T b k 00 (b x) ; fk + zpjz 2 Zg \ N _ b T b k 00 (b x) ; ( 8k 2 N _ ; b k 00 (b x)(k) = =) (b k 00 (b x)(k) = b k 00 (b x)(k + p) and and k p 1 =) b k 00 (b x)(k) = b k 00 (b x)(k p))
derived from (2.3), (2.6) and the requests

9t 0 2 I t 00 (x) ; 8t 2 T t 00 (x) \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T t 00 (x) ; ( 9t 0 2 I t 00
(x) ; 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T ))

derived from (2.9), (2.12) are of eventual periodicity of with the period p; T: In such requests, the fact that periodicity might not start from the very beginning is indicated by working with the signals b k 00 (b x); t 00 (x) that have forgotten their …rst values. Note that all these properties are of periodicity of -related to b k 00 (b x); t 00 (x) instead of b x; x-and that they must hold, for constancy, for all p; T; all 2 c

Or(b x); 2 Or(x) and all k 00 2 N; t 00 2 R:

Remark 66. The statements 8k 2 N _ ; b x(k) = =) =) (b x(k) = b x(k + p) and k p 1 =) b x(k) = b x(k p)); 9t 0 2 I x ; 8t t 0 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 =) x(t) = x(t T )) from (2.4
), (2.10) refer also to the periodicity of with the period p; T: The di¤ erence from the previous property consists in the fact that the translations along the time axis are with one period only, and the general case is rediscovered by iterating these translations. We must have periodicity with any period p; T , of all the points 2 c Or(b x); 2 Or(x) for constancy.

Remark 67. The case of (2.5) is similar with that of (2.3) (see Remark 64). Points 2 c

Or(b x) might exist for which b x(k) = is false if k k 0 and then

(6.1) 8k k 0 ; b x(k) = =) =) (b x(k) = b x(k + p) and k p k 0 =) b x(k) = b x(k p))
is trivially true. This is not the case, because the truth of (6.1) includes the value k 0 = 1: The remark holds also for

(6.2) 8t t 0 1 ; x(t) = =) =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T )) and (2.11).
Remark 68. The requests (6.1), (6.2) derived from (2.5), (2.11) are also of eventual periodicity of ; i.e. periodicity starting at k 0 2 N _ and t 0 1 t 0 2 I x : The di¤ erence with the previous situation is given by the translations along the time axis with one period. The requests must be ful…lled for all k 0 ; t 0 1 t 0 ; all p; T and all :

Remark 69. In (2.6), (2.12) we have

( 8k 2 N _ ; b k 00 (b x)(k) = =) (b k 00 (b x)(k) = b k 00 (b x)(k + p) and and k p 1 =) b k 00 (b x)(k) = b k 00 (b x)(k p)); ( 9t 0 2 I t 00
(x) ; 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T )) i.e. the periodicity of b

x; x after having forgotten some …rst values.

Remark 70. The third group of constancy properties repeats the statements of the second group, by replacing x; x with the period p; T: In order to get constancy, these properties must hold for any period p; T:

Remark 72. The next properties 8k k 0 ; b x(k) = b x(k + p); 9t 0 2 I x ; 8t t 0 1 ; x(t) = x(t + T ) that occur in (4.
2), (4.5) are of eventual periodicity of the signals b

x; x with the periods p; T: It is asked that periodicity starts at any limit of periodicity k 0 ; t 0 1 t 0 (we have periodicity so far) and that it holds for any period p; T for constancy.

Remark 73. The properties

8k 2 N _ ; b k 00 (b x)(k) = b k 00 (b x)(k + p); 9t 0 2 I t 00 (x) ; 8t t 0 ; t 00 (x)(t) = t 00 (x)(t + T ) from (4.
3), (4.6) are of eventual periodicity of b

x; x: The properties are asked to hold for any k 00 2 N; t 00 2 R for periodicity and any p 1; T > 0 for constancy.

CHAPTER 5

Eventually periodic points

We give …rst some statements that are equivalent with the eventual periodicity of the points and a discussion on their properties.

Section 3 shows that an eventually periodic point is accessed for time instants greater than the limit of periodicity at least once in a time interval with the length of a period. This fundamental result will be used frequently later.

The bound of the limit of periodicity and the independence of eventual periodicity on the choice of the limit of periodicity are treated in Section 4.

The property of eventual constancy that follows in Section 5 is used in Section 6 to establish the relation between the discrete time and the continuous time eventual periodicity of the points.

Section 7 highlights the relation between the support sets b T b x ; T x and the sets of the periods b P b

x ; P x . The fact that the sum, the di¤erence and the multiples of the periods are periods is treated in Section 8.

In Section 9 we show which is the form of b P b

x ; P x and in particular we address the issue of the existence of the prime period.

Sections 10 and 11 give necessary and su¢ cient conditions of eventual periodicity and a special case of eventually periodic point is treated in Section 12, where the prime period is known.

Section 13 gives a result relating the eventually periodic points with the eventually constant signals.

Equivalent properties with the eventual periodicity of a point

Remark 74. The properties that are equivalent with the eventual periodicity of the points were already used in Chapter 3 dedicated to the eventually constant signals at Theorem 10, page 19 (see also Theorem 11, page 24, and Theorem 12, page 30). To be compared (1.1),..., (1.4) (1.1)

( 9k 0 2 N _ ; 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x ;

(1.2)

9k 00 2 N; 8k 2 b T b k 00 (b x) ; fk + zpjz 2 Zg \ N _ b T b k 00 (b x) ; 53 (1.3) 9k 0 2 N _ ; 8k k 0 ; b x(k) = =) =) (b x(k) = b x(k + p) and k p k 0 =) b x(k) = b x(k p));
(1.4)

8 > < > : 9k 00 2 N; 8k 2 N _ ; b k 00 (b x)(k) = =) =) (b k 00 (b x)(k) = b k 00 (b x)(k + p) and and k p 1 =) b k 00 (b x)(k) = b k 00 (b x)(k p)):
b) The following statements are also equivalent for any T > 0 and 2 !(x):

(1.5) 9t 0 2 I x ; 9t 0 1 t 0 ; 8t 2 T x \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T x ; (1.6) 9t 0 1 2 R; 8t 2 T x \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T x ;
(1.7)

( 9t 00 2 R; 9t 0 2 I t 00 (x) ; 8t 2 T t 00 (x) \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T t 00 (x) ; (1.8) 9t 00 2 R; 9t 0 2 R; 8t 2 T t 00 (x) \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T t 00 (x) ;
(1.9)

9t 0 2 I x ; 9t 0 1 t 0 ; 8t t 0 1 ; x(t) = =) =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T )); (1.10) 9t 0 1 2 R; 8t t 0 1 ; x(t) = =) =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T ));
(1.11)

8 > < > : 9t 00 2 R; 9t 0 2 I t 00
(x) ; 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T ));

(1.12)

8 < : 9t 00 2 R; 9t 0 2 R; 8t t 0 ; t 00 (x)(t) = =) =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T )):

Proof. a) The proof of the implications

(1:1) =) (1:2) =) (1:3) =) (1:4)
follows from the proof of Theorem 10, page 19.

(

1.4)=)(1.1) From (1.4), k 00 2 N exists making (1.13) ( 8k 2 N _ ; b k 00 (b x)(k) = =) (b k 00 (b x)(k) = b k 00 (b x)(k + p) and and k p 1 =) b k 00 (b x)(k) = b k 00 (b x)(k p))
true. We de…ne

k 0 = k 00 1: The fact that 2 b !(b x) implies that b T b x is in…nite, thus b T b x \fk 0 ; k 0 +1; k 0 +2; :::g 6 = ?: Let k 2 b T b x \fk 0 ; k 0 +1; k 0 +2; :::g; z 2 Z arbitrary such that k+zp k 0 : The number k k 00 satis…es k k 00 = k k 0 1 1; b x(k k 00 +k 00 ) = b k 00 (b x)(k k 00
) and the number k k 00 +zp satis…es k k 00 +zp = k k 0 1+zp 1; thus we can apply (1.13). We have the following possibilities:

Case z > 0; = b x(k) = b k 00 (b x)(k k 00 ) (1:13) = b k 00 (b x)(k k 00 + p) (1:13) = (1:13) = b k 00 (b x)(k k 00 + 2p)
(1:13) = :::

(1:13) = b k 00 (b x)(k k 00 + zp) = b x(k + zp); Case z = 0; = b x(k) = b x(k + zp); Case z < 0; = b x(k) = b k 00 (b x)(k k 00 ) (1:13) = b k 00 (b x)(k k 00 p) (1:13) = (1:13) = b k 00 (b x)(k k 00 2p)
(1:13) = :::

(1:13) = b k 00 (b x)(k k 00 + zp) = b x(k + zp):
It has resulted that, in all the three situations, k + zp 2 b T b

x ; thus (1.1) holds. b) The proof of the implications

(1:5) =) (1:6) =) (1:7) =) (1:8) =) (1:9) =) (1:10) =) (1:11) =) (1:12)
follows from the proof of Theorem 10, page 19.

(1.12)=)(1.5) From (1.12) we get the existence of t 00 2 R and t 0 2 R with

(1.14) 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T ))
and on the other hand we take arbitrarily some t 000 2 I x1 : Let t 0 1 maxft 0 ; t 00 ; t 000 g arbitrary also. We have

(1.15) 8t t 0 1 ; t 00 (x)(t) = x(t)
and, taking into account (1.14), (1.15) and Lemma 3, page 200 we infer = :::

(1.16) 8t t 0 1 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T )): As 2 !(x); T x is superiorly unbounded thus T x \ [t 0 
(1:16) = x(t + zT ); Case z = 0; = x(t) = x(t + zT ); Case z < 0; = x(t) (1:16) = x(t T ) (1:16) = x(t 2T )
(1:16)

= :::

(1:16) = x(t + zT ):
It has resulted that in all these situations x(t + zT ) = ; thus t + zT 2 T x :

Example 12. For the signal x 2 S (1) ; 8t 2 R;

x(t) = ( 1;0) (t) [3;4) (t) [5;6) (t)
[7;8) (t) ::: neither of 0; 1 2 Or(x) is periodic, but for any t 0 2 [2; 1) we get

8t 2 T x 0 \ [t 0 ; 1); ft + z2jz 2 Zg \ [t 0 ; 1) T x 0 ; 8t 2 T x 1 \ [t 0 ; 1); ft + z2jz 2 Zg \ [t 0 ; 1) T x 1 ;
thus 0; 1 are eventually periodic with P x 0 = P x 1 = f2; 4; 6; :::g:

1 From this moment we prove the truth of a statement which is stronger than (1.5).

Discussion

Remark 75. The properties (1.1), (1.3) are of eventual periodicity of , meaning that the periodicity starts at a limit of periodicity k 0 which is in general bigger than the initial time 1. Equivalently, the properties (1.2), (1.4) are of periodicity of (starting at the initial time 1), however not the periodicity referring to b

x; but the periodicity referring to b k 00 (b x); k 00 0; meaning that b x might have forgotten some of its …rst values. The real time equivalent statements are interpreted similarly.

Remark 76. Note that in the statement of Theorem 20 we have asked

2 b !(b x); 2 !(x) instead of 2 c
Or(b x); 2 Or(x); the usual demand of periodicity of : This avoids stating further requests of non-triviality b T b x \fk 0 ; k 0 +1; k 0 +2; :::g 6 = ? and T x \ [t 0 1 ; 1) 6 = ? that are necessary in eventual periodicity, see also Lemma 1, page 199.

Remark 77. The prime period of the eventually periodic point 2 b !(b x) always exists, but the prime period of the eventually periodic point 2 !(x) might not exist, for example if x is eventually constant and equal with (i.e. if lim t!1

x(t) = ), when P x = (0; 1): We shall prove in Theorem 28, page 66 that this is the only situation when the eventually periodic point 2 !(x) has no prime period.

The accessibility of the eventually periodic points

Theorem 21. a) Let b

x and 2 b !(b x) that is eventually periodic, with the period p 1 and the limit of periodicity k 0 2 N _ : For any k k 0 we have b T b x \ fk; k + 1; :::; k + p 1g 6 = ?: b) Let x and 2 !(x) that is eventually periodic with the period T > 0 and the limit of periodicity t 0 2 R: For any t t 0 ; we have T x \ [t; t + T ) 6 = ?:

Proof. a) The hypothesis implies the truth of (3.1) b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g 6 = ?;

(3.2) 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x :

The truth of (3.1) allows us to de…ne k 00 = min b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g and we prove that k 00 2 b T b x \ fk 0 ; k 0 + 1; :::; k 0 + p 1g: If, against all reason, this would not be true, then we would have k 00 k 0 + p and k 00 p 2 fk 00 + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g

(3:2) b T b x ;
representing a contradiction with the de…nition of k 00 : From (3.2) we infer that fk 00 ; k 00 + p; k 00 + 2p; :::g b T b

x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; 

meaning that 8k k 0 ; b T b x \ fk; k
T x ;
contradiction with the de…nition of t 00 : By using (3.4) we get ft 00 ; t 00 + T; t 00 + 2T; :::g T x \ [t 0 ; 1): The statement of the Theorem holds.

The limit of periodicity

Theorem 22. a) b x 2 b S (n) ; 2 b !(b x); p 1; p 0 1; k 0 2 N _ ; k 00 2 N _ are given. If (4.1) ( 8k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b x ; (4.2) 
( 8k 2 b T b
x \ fk 00 ; k 00 + 1; k 00 + 2; :::g; fk + zp 0 jz 2 Zg \ fk 00 ; k 00 + 1; k 00 + 2; ::

:g b T b x hold, then (4.3) 
( 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zp 0 jz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x is true. b) Let x 2 S (n) ; 2 !(x); T > 0; T 0 > 0; t 0 2 R; t 00 2 R. Then

(4.4) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ; (4.5) 8t 2 T x \ [t 00 ; 1); ft + zT 0 jz 2 Zg \ [t 00 ; 1) T x imply (4.6) 8t 2 T x \ [t 0 ; 1); ft + zT 0 jz 2 Zg \ [t 0 ; 1) T x :
Proof. b) Let t 2 T x ; z 2 Z arbitrary such that t t 0 and t + zT 0 t 0 : We have the following possibilities.

Case t 0 t 00 Then t t 00 and t + zT 0 t 00 ; thus t + zT 0 (4:5) 2 T x : Case t 0 < t 00 k 2 N exists with t + kT t 00 ; t + zT 0 + kT t 00 : Obviously t + kT t 0 and we can write

= x(t) (4:4) = x(t + kT ) (4:5) = x(t + zT 0 + kT ) (4:4) = x(t + zT 0 ); in other words t + zT 0 2 T x :
Remark 78. The previous Theorem states that the set of the limits of periodicity does not depend on the period. In particular, this justi…es the notations b L b

x ; L x where the period is missing.

Example 13. Let the signal x 2 S (1) ;

x(t) = [0;1) (t) [4;5) (t) [6;7) (t) [8;9) (t)
[10;11) (t) ::: where 2; 4 2 P x 1 : We might be tempted to think that the eventual periodicity of 1 with the period T = 4 has the prime limit of periodicity t 0 di¤ erent from its eventual periodicity with T 0 = 2 that has the prime limit of periodicity t 00 = 3: This is not the case, the fact that [2; 3) T x 1 is false shows that both prime limits of periodicity are t 0 = 3: The hypothesis t 0 T 2 L x implies, as far as

Theorem 23. a) Let b x 2 b S (n)
t 0 T 2 T x ; = x(t 0 T ) = x(t 0 );
representing a contradiction with the fact that t 0 = 2 I x : Case 6 = x( 1 + 0) We infer from Theorem 21, page 56 that T x \ [t 0 T; t 0 ) 6 = ?; wherefrom = x( 1 + 0); representing a contradiction. b.ii) From b.i) and from Lemma 3, we draw the conclusion that L x has one of the forms L x = (t 0 ; 1); L x = [t 0 ; 1); where t 0 > t 0 T: We show that the …rst possibility cannot take place, thus we suppose against all reason that t 0 exists with L x = (t 0 ; 1): We have the existence of " 0 > 0; " 00 > 0 such that (4.7) 8t 2 (t 0 ; t 0 + " 0 ); x(t) = x(t 0 );

(4.8) 8t 2 (t 0 + T; t 0 + T + " 00 ); x(t) = x(t 0 + T )
and let " 2 (0; minf" 0 ; " 00 g): Two possibilities exist. Case x(t 0 ) = We have t 0 = 2 L x ; thus x(t 0 + T ) 6 = and (t 0 ; t 0 + ") L x means that (4.9) 8t 2 (t 0 ; t 0 + "); x(t) = =) x(t) = x(t + T ):

Let t 2 (t 0 ; t 0 + ") arbitrary. We can write

= x(t 0 ) (4:7) = x(t) (4:9) = x(t + T ) (4:8) = x(t 0 + T ); contradiction. Case x(t 0 ) 6 =
In this case two possibilities exist. The case x(t 0 + T ) = when (t 0 ; t 0 + ") L x means the truth of (4.9). Let t 2 (t 0 ; t 0 + ") arbitrary. We conclude

= x(t 0 + T ) (4:8) = x(t + T ) (4:9) = x(t) (4:7)
= x(t 0 ); representing a contradiction. And the case x(t 0 + T ) 6 = when 8k 2 N; x(t + kT ) 6 = : As for any t 2 T x \ (t 0 ; 1) = T x \ [t 0 ; 1); we have ft + zT jz 2 Zg \ (t 0 ; 1) = ft + zT jz 2 Zg \ [t 0 ; 1); the conclusion is t 0 2 L x ; contradiction.

It has resulted that the existence of t 0 > t 0 T with L x = [t 0 ; 1) is the only possibility.

A property of eventual constancy

Theorem 24. We consider the signals b

x; x:

a) Let 2 b !(b x): If k 0 2 N _ exists making (5.1) 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x true for p = 1; then

(5.2) 8k k 0 ; b x(k) =
and (5.1) holds for any p 1: b) Let 2 !(x) and we suppose that t 0 2 R; h > 0 exist such that x is of the form 

(5.3) x(t) = x( 1 + 0) ( 1;t0) (t) x(t 0 ) [t0;t0+h) (t) ::: ::: x(t 0 + kh) [t0+kh;t0+(k+1)h) (t) ::: If t 0 2 R; T 2 (0; h) [ (h; 2h) [ ::: [ (qh; (q + 1)h) [ ::: exist making (5.4) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x true, then ( 
+ z k 0 ) =) k + z 2 b T b x holds. 2 b !(b x) implies that b T b x is in…nite, thus some k 2 b T b
x ; k k 0 exists indeed. We infer fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x :

We have obtained the truth of (5.2). In these circumstances (5.1) holds for any p 1.

and we remake the reasoning (5.34),...,(5.41) starting from x(t 0 + (k 0 + 2)h)

(5:42) = instead of x(t 0 + k 0 h) (5:8) 
= : We obtain:

(5.44)

8j 2 N; 8t 2 [t 0 + (k 0 + 3j + 2)h; t 0 + (k 0 + 3j + 3)h); x(t) =
and we also have

(5.45) t 0 + (k 0 + 1)h < t 0 + (k 0 + 5)h T < t 0 + (k 0 + 2)h;
(5.46)

(5:44) = x(t 0 + (k 0 + 5)h) (5:4) = x(t 0 + (k 0 + 5)h T ) (5:45) = x(t 0 + (k 0 + 1)h)
:::

We remake the reasoning (5.34),...,(5.41) starting from x(t 0 + (k 0 + 1)h)

(5:46) = instead of x(t 0 + k 0 h) (5:8) 
= : We get:

(5.47)

8j 2 N; 8t 2 [t 0 + (k 0 + 3j + 1)h; t 0 + (k 0 + 3j + 2)h); x(t) = :
From (5.41), (5.44), (5.47) we have the truth of (5.7) for t = t 0 + k 0 h: In the general case T 2 (qh; (q + 1)h); q 2 we prove in succession the truth of

8j 2 N; 8t 2 [t 0 + (k 0 + qj)h; t 0 + (k 0 + qj + 1)h); x(t) = ; 8j 2 N; 8t 2 [t 0 + (k 0 + qj + q 1)h; t 0 + (k 0 + qj + q)h); x(t) = ; ::: 8j 2 N; 8t 2 [t 0 + (k 0 + qj + 1)h; t 0 + (k 0 + qj + 2)h); x(t) = ;
wherefrom the truth of (5.7) follows for t = t 0 + k 0 h:

We prove now that in (5.5) we can take t = t 0 : Let us suppose, against all reason, that this is not true, i.e. t > t 03 and some t 00 2 [t 0 ; t) exists with x(t 00 ) 6 = : Let q 1 with the property that t 00 + qT t; in other words t 00 + qT 2 T x \ [t 0 ; 1): Then t 00 + qT qT 2 ft 00 + qT + zT jz 2 Zg \ [t 0 ; 1) T x and we infer that x(t 00 ) = ; contradiction. (5.5) is proved and obviously (5.4) holds for any T > 0: c) This is a consequence of a) and b).

Discrete time vs real time

Theorem 25. We consider the signals b

x 2 b S (n) ; x 2 S (n) which are not eventually constant and we suppose that (6.1)

x(t) = b x( 1) ( 1;t0) (t) b x(0) [t0;t0+h) (t) ::: ::: b x(k) [t0+kh;t0+(k+1)h) (t) ::: is true, where t 0 2 R; h > 0: Let 2 b !(b x) = !(x): a) If p 1 and k 0 2 N _ exist such that (6.2) 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x ; then t 0 2 R exists with

(6.3) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x true for T = ph:
b) If T > 0 and t 0 2 R exist for which (6.3) is true, then T h 2 f1; 2; 3; :::g and k 0 2 N _ exists such that (6.2) is true for p = T h : Proof. a) The hypothesis states the existence of t 0 2 R; h > 0 such that (6.1) is true and also that, given 2 b !(b x) = !(x); p 1 and k 0 2 N _ exist with (6.2) ful…lled.

We de…ne T = ph; t 0 = t 0 + k 0 h: Let t 2 T x ; z 2 Z be arbitrary with the property that t t 0 ; t + zT t 0 ( 2 !(x) implies that T x \ [t 0 ; 1) 6 = ?). Some k k 0 exists then such that t 2 [t 0 + kh; t 0 + (k + 1)h) and we can write

t + zT 2 [t 0 + kh + zT; t 0 + (k + 1)h + zT ) = [t 0 + (k + zp)h; t 0 + (k + 1 + zp)h): Obviously t 0 + (k + zp)h t 0 + k 0 h = t 0 implies k + zp k 0 : We infer = x(t) = b x(k) (6:2) = b x(k + zp) = x(t + zT );
in other words (6.3) holds. b) Some t 0 2 R and h > 0 exist from the hypothesis such that (6.1) is true and, given ; some T > 0; t 0 2 R exist also such that (6.3) holds. If T 2 (0; h) [ (h; 2h) [ ::: [ (qh; (q + 1)h) [ ::: then from Theorem 24 b), page 59, we have that lim

t!1 x(t) = lim k!1 b
x(k) = ; contradiction with the hypothesis, thus T 2 fh; 2h; 3h; :::g for which we de…ne p = T h ; p 1: As 2 !(x); T x is unbounded from above and T x \[t 0 ; 1) 6 = ? is true for any t 0 : We can suppose, by making use of Lemma 3, page 200 that in (6.3) we have t 0 t 0 h and we denote by k 0 2 N _ the number for which x is in…nite). Then (6.4)

t 0 2 [t 0 + k 0 h; t 0 + (k 0 + 1)h): Let now k
t 0 + (k k 0 )h t 0 ; (6.5) t 0 + (k k 0 + zp)h t 0
and on the other hand (6.6) T x = T y =) P x = P y ;

t 0 + kh t 0 + (k k 0 )h < t 0 + (k + 1)h; (6.7) t 0 + (k + zp)h t 0 + (k k 0 + zp)h < t 0 + (k + zp + 1)h are true. We conclude = b x(k) (6:6) = x(t 0 + (k k 0 )h) (6:3);(6:4);(6:5) = = x(t 0 + (k k 0 )h + zT ) = x(t 0 + (k k 0 + zp)h)
(7.2)

P x = P y =) T x = T y
hold and the purpose of this Section is that of understanding them better. We give real time examples, keeping in mind that the same statements hold in discrete time too.

Example 15. We suppose that Or(x) = Or(y) = f ; 0 ; 00 g and let ; 10) [ :::, P x = P y = f3; 6; 9; :::g and L x = L y = [1; 1): The fact that is a periodic point of x is expressed by the non-empty intersection I x \ L x = [1; 2) and the fact that is an eventually periodic point of y only follows from I y \ L y = ?: The interpretation of (7.1) according to this Example is: the implication T x = T y =) P x = P y takes place, however may be a periodic point of x and an eventually periodic point of y.

x(t) = 0 ( 1;2) (t)
I x = ( 1; 2); I y = ( 1; 0); T x = T y = [3; 4) [ [6; 7) [ [9
Example 16. We take is an eventually periodic point of both x; y with P x = P y = f5; 10; 15; :::g and L x = [2; 1); L y = [1; 1): The di¤ erence between the two signals x; y consists in the fact that in T x the interval [4; 5) repeats within a period and in T y the intervals [2; 3); [4; 5) repeat within a period. The periods T coincide for x and y and (7.2) is false. x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

T x = ( 1; 2) [ [4;

Sums, di¤erences and multiples of periods

x ;

(8.2) 8k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zp 0 jz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x hold. We have p + p 0 1;

(8.3) ( 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + z(p + p 0 )jz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x and if p > p 0 ; then p p 0 1;

(8.4) ( 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + z(p p 0 )jz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x hold. b) Let T; T 0 > 0; t 0 2 R; 2 !(x) be arbitrary with

(8.5) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ; (8.6) 8t 2 T x \ [t 0 ; 1); ft + zT 0 jz 2 Zg \ [t 0 ; 1) T x
ful…lled. We have on one hand that T + T 0 > 0 and

(8.7) 8t 2 T x \ [t 0 ; 1); ft + z(T + T 0 )jz 2 Zg \ [t 0 ; 1) T x
are true and on the other hand that T > T 0 implies T T 0 > 0 and

(8.8) 8t 2 T x \ [t 0 ; 1); ft + z(T T 0 )jz 2 Zg \ [t 0 ; 1) T x :
Proof. a) We prove the second implication. We take some arbitrary, …xed

k 2 b T b x ; z 2 Z such that k k 0 ; k + z(p p 0 )
k 0 and we have the following possibilities:

Case z < 0

We obtain in succession

k zp 0 k 0 ; k zp 0 (8:2) 2 b T b x ; k zp 0 + zp hyp k 0 ; k + z(p p 0 ) (8:1) 2 b T b x : Case z = 0 k = k + z(p p 0 ) 2 b T b x trivially. Case z > 0
We have k + zp k 0 ; k + zp x : b) We prove the …rst implication and let t 2 T x \ [t 0 ; 1); z 2 Z be arbitrary, …xed such that t + z(T + T 0 ) t 0 :

Case z < 0

We have in succession t + zT t + z(T + T 0 ) hyp t 0 ; t + zT

(8:5) 2 T x ; t + z(T + T 0 ) (8:6) 2 T x : Case z = 0 We infer t = t + z(T + T 0 ) 2 T x : Case z > 0
We have t + zT t t 0 ; t + zT b) Let T > 0; t 0 2 R; k 1 1 and 2 !(x) be arbitrary. Then T 0 = k 1 T ful…lls T 0 > 0 and

(8.11) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x implies (8.12) 8t 2 T x \ [t 0 ; 1); ft + zT 0 jz 2 Zg \ [t 0 ; 1) T x :
Proof. This is a consequence of Theorem 26. x ; b) for any x; 2 !(x) and T > 0; T 2 P x implies fT; 2T; 3T; :::g P x :

Proof. The Corollary is a direct consequence of Theorem 27. x : b) The proof is made in two steps. b.1) We show …rst that min P x exists. We suppose against all reason that this is not true, namely that a strictly decreasing sequence T k 2 P x ; k 2 N exists that is convergent to T = inf P x : As x is not eventually constant, the following property is true: (9.1) 8t 2 R; 9t 00 > t; x(t 00 0) 6 = x(t 00 ) = ; see Lemma 7, page 202. The hypothesis states the existence 8k 2 N;

of t 0 k 2 R with (9.2) 8t 2 T x \ [t 0 k ; 1); ft + zT k jz 2 Zg \ [t 0 k ; 1) T x :
We can suppose, as t 0 k do not depend on T k ; that they have a common value t 0 : From (9.1) we infer that we can take some t 00 > t 0 with x(t 00 0) 6 = x(t 00 ) = and, since 2 !(x); we can apply Lemma 8, page 202 stating

(9.3) 8k 2 N; x(t 00 + T k 0) 6 = x(t 00 + T k ) = :
We infer from Lemma 9, page 202 that N 2 N exists with 8k N;

x(t 00 + T k 0) = x(t 00 + T k ) = x(t 00 + T ); contradiction with (9.3). It has resulted that such a sequence T k ; k 2 N does not exist, thus P x has a minimum that we denote by e T :

b.

2) The inclusion f e T ; 2 e T ; 3 e T ; :::g P x results from Corollary 1, we prove the inclusion P x f e T ; 2 e T ; 3 e T ; :::g: We suppose against all reason that some T 0 2 P x n f e T ; 2 e T ; 3 e T ; :::g exists and let k 1 1 with the property T 0 2 (k 1 e T ; (k 1 + 1) e T ): We infer that 0 < T 0 k 1 e

T < e T and, from Theorems 26, 27, we get T 0 k 1 e T 2 P x : We have obtained a contradiction, since e

T was de…ned to be the minimum of P x : P x = f e T ; 2 e T ; 3 e T ; :::g holds.

Theorem 29. We suppose that the relation between b

x and x is given by Proof. We see that b x; x are simultaneously eventually constant or not. We suppose that they are not eventually constant and we prove b). From Theorem 25, page 62 we know that p 2 b P b x =) T = ph 2 P x and conversely, T 2 P x =) p = x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x(t) = b x( 1) ( 1;t0) (t) b x(0) [t0;t0+h) (t) b x ( 
x holds. Then n 1 ; n 2 ; :::; n k1 2 fk 0 ; k 0 + 1; :::; k 0 + p 1g; k 1 1 exist such that

(10.2) b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g = [ k2N fn 1 + kp; n 2 + kp; :::; n k1 + kpg:

Proof. We apply Theorem 21, page 56 written for k = k 0 and we obtain that b T b x \ fk 0 ; k 0 + 1; :::; k 0 + p 1g 6 = ?; wherefrom we have the existence of n 1 ; n 2 ; :::; n k1 ; k 1 1 with

(10.3) b T b
x \ fk 0 ; k 0 + 1; :::; k 0 + p 1g = fn 1 ; n 2 ; :::; n k1 g:

We prove b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g [ x \ fk 00 ; k 00 + 1; k 00 + 2; :::g;

where k 00 k 0 is arbitrary.

Theorem 31. The signal x 2 S (n) is not eventually constant and let the point 2 !(x); as well as T > 0; t 0 2 R with

(10.4) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x :
Then a 1 ; b 1 ; a 2 ; b 2 ; :::; a k1 ; b k1 2 R; k 1 1 exist such that (10.5) t 0 a 1 < b 1 < a 2 < b 2 < ::: < a k1 < b k1 t 0 + T;

(10.6) T x \ [t 0 ; 1) = [ k2N ([a 1 + kT; b 1 + kT ) [ [a 2 + kT; b 2 + kT ) [ ::: [ [a k1 + kT; b k1 + kT )) hold.
Proof. We de…ne the intervals [a 1 ; b 1 ); [a 2 ; b 2 ); :::; [a k1 ; b k1 ) such that (10.5) and (10.7)

T x \ [t 0 ; t 0 + T ) = [a 1 ; b 1 ) [ [a 2 ; b 2 ) [ ::: [ [a k1 ; b k1 )
are ful…lled, by taking into account (10.4) and Theorem 21, page 56, written for t = t 0 . We prove 

T x \ [t 0 ; 1) [ k2N ([a 1 + kT; b 1 + kT ) [ [a 2 + kT; b 2 + kT ) [ ::: [ [a k1 + kT; b k1 + kT ))
(x) = f g; k 1 = 1; [a 1 ; b 1 ) = [t 0 ; t 0 + T ) and (10.6) becomes T x \ [t 0 ; 1) = [t 0 ; 1):
Remark 83. Let t 00 t 0 arbitrary. We get from Lemma 10, page 203 that we can replace (10.7) and (10.6) with x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

T x \ [t 00 ; t 00 + T ) = [a 0 1 ; b 0 1 ) [ [a 0 2 ; b 0 2 ) [ ::: [ [a 0 p1 ; b 0 p1 ) and T x \ [t 0 ; 1) = [ k2N ([a 1 + kT; b 1 + kT ) [ [a 2 + kT; b 2 + kT ) [ ::: [ [a k1 + kT; b k1 + kT )) = [ z2Z ([a 0 1 + zT; b 0 1 + zT ) [ [a 0 2 + zT; b 0 2 + zT ) [ ::: [ [a 0 p1 + zT; b 0 p1 + zT )) \ [t 0 ; 1) [ k2N ([a 0 1 +kT; b 0 1 +kT )[[a 0 2 +kT; b 0 2 +kT )[:::[[a 0 p1 +kT; b 0 p1 +kT )) = T x \[t 00 ; 1 
x :

Proof. Let k 00 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g and z 1 2 Z arbitrary such that k 00 + z 1 p k 0 : Then j 2 f1; :::; k 1 g and k 2 N exist with k 00 = n j + kp and we have k 00 + z 1 p = n j + (z 1 + k)p k 0 : This means the existence of z 0 2 Z with n j + z 0 p k 0 and, as n j p k 0 1; we get z 0 0: In this situation

n j + z 0 p (11:1) 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; thus (11.2) holds.

Theorem 33. Let x; 2 !(x); T > 0; t 0 2 R and the numbers a 1 ; b 1 ; a 2 ; b 2 ; :::; a k1 ; b k1 2 R; k 1 1 such that

(11.3) t 0 a 1 < b 1 < a 2 < b 2 < ::: < a k1 < b k1 t 0 + T; (11.4) T x \ [t 0 ; 1) = [ k2N ([a 1 + kT; b 1 + kT ) [ [a 2 + kT; b 2 + kT ) [ ::: [ [a k1 + kT; b k1 + kT ))
hold. We infer

(11.5) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x :
Proof. Let t 00 2 T x \ [t 0 ; 1) and z 1 2 Z arbitrary with t 00 + z 1 T t 0 : From (11.4) we have the existence of j 2 f1; :::; k 1 g and k 2 N with t 00 2 [a j +kT; b j +kT ):

We obtain that t 00 + z 1 T 2 [a j + (z 1 + k)T; b j + (z 1 + k)T ) [t 0 ; 1): We get the existence of z 0 2 Z with t 00 + z 1 T 2 [a j + z 0 T; b j + z 0 T ) [t 0 ; 1) and, since b j T < t 0 ; we infer z 0 0: We have obtained that t 00 + z 1 T (11:4)

T

x \ [t 0 ; 1); thus (11.5) holds. holds. We have a) is an eventually periodic point of x with the period T :

(12.5) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ;
b) if x is not eventually constant, then T is the prime period of x :

(12.6) P x = fT; 2T; 3T; :::g:

Proof. a) This is a special case of Theorem 33, page 69, written for k 1 = 1: b) We notice …rst of all that b < a + T; otherwise T x \ [t 0 ; 1) = [a; 1) and x is eventually constant, representing a contradiction with the hypothesis.

Let us suppose now against all reason that T is not the prime period of ; i.e. T 0 2 P x exists with T 0 < T: We see that maxfa; b T 0 g < minfb; a + T T 0 g holds, because a < b; a < a + T T 0 ; b T 0 < b; b T 0 < a + T T 0 are all true. We take t 2 [maxfa; b T 0 g; minfb; a + T T 0 g) and we have a maxfa; b T 0 g t < minfb; a + T T 0 g b; b maxfa + T 0 ; bg t + T 0 < minfb + T 0 ; a + T g a + T:

We have obtained = x(t) = x(t + T 0 ) (12:4)

=

; contradiction. We conclude that any T 0 2 P x ful…lls T 0 T: We apply Theorem 28, page 66. 

0 ; k 1 ; k 2 2 N _ exist such that (13.1) k 0 k 1 < k 2 ;
(13.2) 8k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x ;

(13.3)

fk 1 ; k 1 + 1; :::; k 2 g b T b x ;
(13.4)

k 1 + p k 2
are true. Then fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x holds:

b) The signal x 2 S (n) and the point 2 !(x) are given. We suppose that T > 0 and t 0 ; t 1 ; t 2 2 R exist such that (13.5) t 0 t 1 < t 2 ;

(13. T x : As t was arbitrary, we get the statement of the Theorem.

CHAPTER 6

Eventually periodic signals

In the …rst two Sections we give properties that are equivalent with the eventual periodicity of the signals.

In Section 3 we show the property that, for time instants greater than the limit of periodicity, each omega limit point is accessed in a time interval with the length of at most a period.

The bound of the limit of periodicity issue is addressed in Section 4. Sections 5 and 6 refer to a property of eventual constancy that is used in Section 7 to relate the discrete time with the real time eventually periodic signals.

The fact that the sums, the di¤erences and the multiples of periods are periods is shown in Section 8.

Section 9 draws conclusions concerning the form of the sets b P b

x ; P x and in particular the existence of the prime period is proved.

Sections 10, 11, 12 give necessity and su¢ ciency properties of eventual periodicity and a special case, when the prime period is known.

The issue of changing the order of the quanti…ers in stating eventual periodicity properties is addressed in Section 13. Since the problem is not solved so far, we state in Section 14 the hypothesis P stating basically that if all the points of the omega limit set are eventually periodic, then the signal is eventually periodic.

The …rst group of eventual periodicity properties

Remark 84. These properties involve the eventual periodicity request of all the omega limit points 2 b !(b x); 2 !(x); with a common period p 1; T > 0 and a common limit of periodicity k 0 2 N; t 0 2 R. This way, we notice the associations (1.1)-(3.1) page 19 ,..., (1.4)-(3.4) page 19 , (1.5)-(3.5) page 19 ,..., (1.12)-(3.12) page 20 with the statements of Theorem 10, page 19, where eventual periodicity was used to characterize eventual constancy. We make also the associations (1.1)-(1.1) page 53 ,...,(1.4)-(1.4) page 54 and (1.5)-(1.5) page 54 , ...,(1.12)-(1.12) page 54 with the statements of Theorem 20, page 53, referring to the eventual periodicity of the points.

Remark 85. The statements (1.1),..., (1.4), (1.5),..., (1.12) from Theorem 37 are called of eventual periodicity of b

x; x due to their equivalence with De…nition 14, page 13 that will be proved in the following Section, in Theorem 38.

Theorem 37. The signals b

x 2 b S (n) ; x 2 S (n) are given. a) The following statements are equivalent for any p 1 :

(1.1) ( 8 2 b !(b x); 9k 0 2 N _ ; 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x ;

(1.2)

( 8 2 b !(b x); 9k 00 2 N; 8k 2 b T b k 00 (b x) ; fk + zpjz 2 Zg \ N _ b T b k 00 (b x) ; (1.3) 8 2 b !(b x); 9k 0 2 N _ ; 8k k 0 ; b x(k) = =) =) (b x(k) = b x(k + p) and k p k 0 =) b x(k) = b x(k p));
(1.4)

8 > < > : 8 2 b !(b x); 9k 00 2 N; 8k 2 N _ ; b k 00 (b x)(k) = =) =) (b k 00 (b x)(k) = b k 00 (b x)(k + p) and and k p 1 =) b k 00 (b x)(k) = b k 00 (b x)(k p)):
b) The following statements are also equivalent for any T > 0 :

(1.5) 8 2 !(x); 9t 0 2 I x ; 9t 0 1 t 0 ; 8t 2 T x \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T x ; (1.6) 8 2 !(x); 9t 0 1 2 R; 8t 2 T x \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T x ;
(1.7)

( 8 2 !(x); 9t 00 2 R; 9t 0 2 I t 00 (x) ; 8t 2 T t 00 (x) \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T t 00 (x) ; 
(1.8)

( 8 2 !(x); 9t 00 2 R; 9t 0 2 R; 8t 2 T t 00
(x) \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T t 00 (x) ;

(1.9) 8 2 !(x); 9t 0 2 I x ; 9t 0 1 t 0 ; 8t t 0 1 ; x(t) = =) =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T ));

(1.10)

8 2 !(x); 9t 0 1 2 R; 8t t 0 1 ; x(t) = =) =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T )); (1.11) 8 > < > :
8 2 !(x); 9t 00 2 R; 9t 0 2 I t 00 (x) ; 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T ));

(1.12)

<

:

8 2 !(x); 9t 00 2 R; 9t 0 2 R; 8t t 0 ; t 00 (x)(t) = =) =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T )):
Proof. a) The proof of the implications 

( 8k 2 N _ ; b k 00 (b x)(k) = =) (b k 00 (b x)(k) = b k 00 (b x)(k + p) and and k p 1 =) b k 00 (b x)(k) = b k 00 (b x)(k p)):
We denote k 0 = k 00 1; where k 0 1: We also denote k 000 = k + k 0 + 1; where k 000 k 0 : With these notations, (1.13) becomes

(1.14) 8k 000 k 0 ; b x(k 000 ) = =) (b x(k 000 ) = b
x(k 000 + p) and and k 000 p k 0 =) b

x(k 000 ) = b x(k 000 p)):

Let now k 2 b T b
x and z 2 Z arbitrary such that k k 0 and k + zp k 0 : We have the following possibilities.

Case z > 0;

= b x(k)

(1:14) = b x(k + p) (1:14) = b x(k + 2p) (1:14) 
= :::

(1:14) = b x(k + zp); Case z = 0; = b x(k) = b x(k + zp); Case z < 0; = b x(k) (1:14) = b x(k p) (1:14) = b x(k 2p) (1:14) 
= :::

(1:14) = b x(k + zp):
We have obtained in all these situations that k + zp 2 b T b

x holds, i.e. (1.1) is true.

b) The proof of the implications

(1:5) =) (1:6) =) (1:7) =) (1:8) =) (1:9) =) (1:10) =) (1:11) =) (1:12)
follows from Theorem 10, page 19. We prove (1.12)=)(1.5). Let 2 !(x) arbitrary. From (1.12) we get the existence of t 00 2 R and t 0 2 R such that (1.15) 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T )):

Let t 0 1 = maxft 0 ; t 00 g: On one hand (1.15) is still true if we replace t 0 with t 0 1 ; from Lemma 3, page 200. On the other hand, in this case t 00 (x) = x; thus (1.15) becomes (1.16) 8t t 0 1 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T )): We take arbitrarily some t 000 2 I x \ ( 1; t 0 1 ]: Let t 2 T x and z 2 Z arbitrary with t t 0 1 and t + zT t 0 1 : We prove in all the three cases z > 0; z = 0; z < 0 that (1.16) implies t + zT 2 T x :

Example 17. Let x 2 S (2) ; x(t) = (0; 1) ( 1; 1 2 ) (t) (0; 1) [0;1) (t) (1; 0) [1;2) (t) (1; 1) [2;3) (t) (0; 1) [3;4) (t) (1; 0) [4;5) (t) (1; 1) [5;6) (t) (0; 1) [6;7) (t) :::
x is eventually periodic and it ful…lls (1.17) 8t 0; x(t) = x(t + 3); since all of (0; 1); (1; 0); (1; 1) 2 !(x) are eventually periodic with the period T = 3 and the limit of periodicity t 0 = 0: ; :::

is not eventually periodic, because none of 0; 1 is eventually periodic.

The second group of eventual periodicity properties

Remark 86. This group of properties refers to signals, not to their values, and they were presented previously in Theorem 13, page 31, as useful in characterizing the eventual constancy. We notice the associations (2.1)-( 6 (2.1)

9k 0 2 N _ ; 8k k 0 ; b x(k) = b x(k + p); (2.2) 9k 00 2 N; 8k 2 N _ ; b k 00 (b x)(k) = b k 00 (b x)(k + p):
b) For any T > 0; the following statements are also equivalent with the eventual periodicity of x:

(2.3) 9t 0 2 I x ; 9t 0 1 t 0 ; 8t t 0 1 ; x(t) = x(t + T ); (2.4) 9t 0 1 2 R; 8t t 0 1 ; x(t) = x(t + T ); (2.5) 9t 00 2 R; 9t 0 2 I t 00 (x) ; 8t t 0 ; t 00 (x)(t) = t 00 (x)(t + T ); (2.6) 9t 00 2 R; 9t 0 2 R; 8t t 0 ; t 00 (x)(t) = t 00 (x)(t + T ):
Proof. a) The implication (2.1)=)(2.2) results from Theorem 13. We prove (1.1)=)(2.1).

We suppose that b !(b x) = f 1 ; :::; s g: For any i 2 f1; :::; sg; some k 0 i 2 N _ exists with the property x i \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x i ; and this statement is true for all i 2 f1; :::; sg:

Let now k k 0 arbitrary, for which i exists with b x(k) = i : We infer (2.9) k + p 2 fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g

(2:8) b T b x i ; thus b x(k + p) = i = b x(k): (2.2)=)(1.1) Let 2 b
!(b x) arbitrary. Some k 00 2 N exists with the property that (2.10)

8k 2 N _ ; b x(k + k 00 ) = b x(k + k 00 + p):
We denote k 0 = k 00 1; where k 0 2 N _ : We also denote k 000 = k + k 0 + 1; where k 000 k 0 : With these notations (2.10) becomes = :::

(2:11) = b x(k + zp); Case z = 0; = b x(k) = b x(k + zp); Case z < 0; b x(k + zp) (2:11) = b x(k + (z + 1)p) (2:11) = b x(k + (z + 2)p) (2:11) 
= :::

:::

(2:11) = b x(k p) (2:11) = b x(k) = :
In all these cases b x(k

+ zp) = ; thus k + zp 2 b T b x : (1.1) is proved. b) The implications (2:3) =) (2:4) =) (2:5) =) (2:6)
result from Theorem 13, page 31.

(1.5)=)(2.3) We suppose that !(x) = f 1 ; :::; s g and let i 2 f1; :::; sg arbitrary. From (1.5) we have the existence of t i 2 I x and t i 1

t i with (2.12) 8t 2 T x i \ [t i 1 ; 1); ft + zT jz 2 Zg \ [t i 1 ; 1) T x i ful…lled.
We denote t 0 = maxft 1 ; :::; t s g and we notice that t 0 2 I x holds, since t 0 coincides with one of t 1 ; :::; t s : We put e t 2 R for the time instant that ful…lls (2.13) !(x) = fx(t)jt e tg:

Let i 2 f1; :::; sg arbitrary and …xed. The fact that for t 0 1 = maxf e t; t 0 ; t 

T x i ; wherefrom x(t + T ) = i = x(t):
(2.6)=)(1.5) We denote with e t 2 R the time instant that ful…lls (2.13). The hypothesis shows the existence of t 00 2 R and t 0 2 R such that (2.15) 8t t 0 ; t 00 (x)(t) = t 00 (x)(t + T ) and let t 0 1 = maxf e t; t 00 ; t 0 g arbitrary. We have from (2.15): (2.16) 8t t 0 1 ; x(t) = x(t + T ): Let now 2 !(x) arbitrary and t 000 2 I x . We suppose that t 000 t 0 1 ; as this is always possible. Let t 2 T x \ [t 0 1 ; 1) arbitrary and let us take z 2 Z arbitrary itself with t + zT t 0 1 : We have: Case z > 0; = x(t) (2.18)

8k k 0 ; b x(k) = b x(k + p):
None of e k; k 0 is unique, in the sense that (2.17), (2.18) may be rewritten for any e k 1 e k; k 0 1 k 0 but if e k; k 0 are chosen to be the least such that (2.17), (2.18) hold, then e k k 0 :

The situation is also true in the real time case, with the remark that if Or(x) = !(x); then the least e t such that !(x) = fx(t)jt e tg holds does not exist.

Remark 88. The statements (1.1),..., (1.4) and (1.5),..., (1.12) refer to leftand-right time shifts, while the statements (2.1), (2.2) and (2.3),..., (2.6) refer to right time shifts only.

The accessibility of the omega limit set

Theorem 39. a) If b

x 2 b S (n) ; then n) ; we have the truth of ). We show that !(x) fx(t)jt t 0 g: From Theorem 7, page 10 we know that some e t 2 R exists with !(x) = fx(t)jt e tg: There are two possibilities.

(3.1) \ 2b !(b x) b P b x 6 = ? =) 8k 0 2 \ 2b !(b x) b L b x ; b !(b x) = fb x(k)jk k 0 g; (3.2) b P b x 6 = ? =) 8k 0 2 b L b x ; b !(b x) = fb x(k)jk k 0 g hold. b) For x 2 S (
(3.3) \ 2!(x) P x 6 = ? =) 8t 0 2 \ 2!(x) L x ; !(x) = fx(t)jt t 0 g; (3.4) P x 6 = ? =) 8t 0 2 L x ; !(x) = fx(t)jt t 0 g:
Case t 0 < e t If so, then !(x) fx(t)jt t 0 g: Case t 0 e t In this case, see Theorem 7, !(x) = fx(t)jt t 0 g:

We show now that fx(t)jt t 0 g !(x) holds and let t t 0 ; T 2 P x arbitrary. The hypothesis shows that x(t) = x(t + T ) = x(t + 2T ) = :::; i.e. T x x(t) is superiorly unbounded. This means that x(t) 2 !(x):

Theorem 40. a) If b
x is eventually periodic with the period p 1 and the limit of periodicity k 0 2 N _ :

(3.5) 8k k 0 ; b x(k) = b x(k + p); then (3.6) 8k k 0 ; b !(b x) = fb x(i)ji 2 fk; k + 1; :::; k + p 1gg: b) If
x is eventually periodic with the period T > 0 and the limit of periodicity t 0 2 R : fb x(i)ji 2 fk; k + 1; :::; k + p 1gg: The inverse inclusion is obvious, since any eventually periodic value of b

x is an omega limit point. b) Theorem 39 shows that !(x) = fx(t)jt t 0 g: Let us …x arbitrarily t t 0 and 2 !(x): As is eventually periodic with the period T; we infer fromTheorem 21 that T x \ [t; t + T ) 6 = ? and let 2 T x \ [t; t + T ) thus = x( ): We have shown the inclusion !(x) fx( )j 2 [t; t + T )g: The inclusion fx( )j 2 [t; t + T )g !(x) is obvious, since any point of the left hand set is eventually periodic and omega limit.

Remark 89. The previous Theorem states the property that, in the case of the eventually periodic signals, all the omega limit points are accessible in a time interval with the length of a period.

The limit of periodicity

Theorem 41. a) b

x 2 b S (n) ; p 1; p 0 1; k 0 2 N _ ; k 00 2 N _ are given such that

(4.1) 8k k 0 ; b x(k) = b x(k + p); (4.2) 8k k 00 ; b x(k) = b x(k + p 0 )
hold. We have

(4.3) 8k k 0 ; b x(k) = b x(k + p 0 ): b)
We consider the signal x 2 S (n) ; together with T > 0; T 0 > 0; t 0 2 R; t 00 2 R and we ask that (4.4) 8t t 0 ; x(t) = x(t + T );

(4.5) 8t t 00 ; x(t) = x(t + T 0 ) are ful…lled. Then 

L b x = \ 2b !(b x) b L b x ;
b) if x is eventually periodic, we have and let 2 b !(b x) = !(x) be an arbitrary point. c.1) If k 0 2 N _ exists such that (5.1) is true for p = 1; then (5.2) is ful…lled and t 0 2 R exists also such that (5.5) is true. In this case (5.1) holds for any p 1 and (5.4) holds for any T > 0: c.2) If t 0 2 R; T 2 (0; h) [ (h; 2h) [ ::: [ (qh; (q + 1)h) [ ::: exist making (5.4) true, then k 0 2 N _ exists such that (5.2) holds and (5.5) holds too. Moreover, in this situation (5.1) is true for any p 1 and (5.4) is true for any T > 0:

L x = \ 2!(x)
(5.3) x(t) = x( 1 + 0) ( 1;t0) (t)
Proof. a) Let k 0 2 N _ be with the property that (5.1) holds for p = 1; i.e.

(5.7)

8k k 0 ; b x(k) = b x(k 0 ):
We denote b x(k 0 ) with and this obviously implies that 2 b !(b x): Equation (5.7) may be rewritten under the form (5.2) and

8k k 0 ; b x(k) = = b x(k + p)
holds for any p 1:

b) The hypothesis states the existence of t 0 2 R; h > 0 such that (5.3) holds and also the existence of t 0 2 R and T 2 (0; h) [ (h; 2h) [ ::: [ (qh; (q + 1)h) [ ::: such that (5.4) holds. We denote x(t 0 ) with :

Let T 2 (0; h) be arbitrary. If, against all reason, x does not ful…ll (5.5), the time instant t 0 0 > t 0 exists such that (5.8)

8t 2 [t 0 ; t 0 0 ); x(t) = ;

(5.9)

x(t 0 0 ) 6 = : Since obviously t 0 0 t 0 ; we have the existence of k 0 2 N such that t 0 0 2 [t 0 + k 0 h; t 0 + (k 0 + 1)h): As 8t 2 [t 0 + k 0 h; t 0 + (k 0 + 1)h); x(t) = x(t 0 + k 0 h); we get t 0 0 = t 0 + k 0 h: With the notation e t = maxft 0 0 T; t 0 g; we infer e t < t 0 0 and for any t 00 2 ( e t; t 0 0 ); we have (5.10) t 0 < t 00 < t 0 0 < t 00 + T < t 0 0 + T < t 0 0 + h: We deduce (5.11) x(t 00 + T ) = x(t 0 0 + T ); as far as both previous terms are equal with x(t 0 0 ); and contradiction showing that a t 0 0 that makes true (5.8), (5.9) does not exist. The case when for q 1; we have that T 2 (qh; (q + 1)h) is similar with the previous one. (5.4) continues to be true for some t 0 2 R and if, against all reason, x does not ful…ll (5.5), we get that t 0 q > t 0 exists with (5.12) 8t 2 [t 0 ; t 0 q ); x(t) = ;

(5.13) x(t 0 q ) 6 = : Thus k q 2 N exists such that t 0 q 2 [t 0 + k q h; t 0 + (k q + 1)h) and, from the fact that 8t 2 [t 0 + k q h; t 0 + (k q + 1)h); we get x(t) = x(t 0 + k q h); the conclusion is t 0 q = t 0 + k q h: With the notation e t = maxft 0 q + qh T; t 0 g; we obtain e t < t 0 q and for any t 00 2 ( e t; t 0 q ) we have (5.14) t 0 < t 00 < t 0 q < t 0 q + qh < t 00 + T < t 0 q + T < t 0 q + (q + 1)h: We infer (5.15)

x(t 00 + T ) = x(t 0 q + T );

because both previous terms are equal with x(t 0 q + qh) and = x(t 0 q + T )

(5:4);(5:14) = x(t 0 q )

(5:13) 6 = contradiction, in other words a t 0 q 2 R that makes (5.12), (5.13) true does not exist. Thus x ful…lls (5.5) and in such circumstances (5.4) is true for any T > 0:

Discussion on eventual constancy

Remark 91. The point is that Theorem 24, page 59 and Theorem 44, page 81 express the same idea, meaning that in the situation when b

x; x are related by x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x(t) = b x( 1) ( 1;t0) (t) b x(0) [t0;t0+h) (
x ;

or (6.2) 8k k 0 ; b x(k) = b x(k + p)
true for p = 1 and some k 0 2 N _ ; b)

(6.3) 8 2 !(x); 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ;
or (6.4) 8t t 0 ; x(t) = x(t + T ) true for T 2 (0; h) [ (h; 2h) [ ::: [ (qh; (q + 1)h) [ ::: and some t 0 2 R implies the truth of (6.5) 8k k 0 ; b x(k) = ;

(6.6) 8t t 0 ; x(t) = meaning in particular that b x; x are eventually equal with the same constant . However Theorem 38, page 76 states the equivalence, for any p 1; k 0 2 N _ between (6.1) and (6.2) and also the equivalence, for any T > 0; t 0 2 R between (6.3) and (6.4), thus the fact that Theorems 24 and 44 give the same conclusion is natural.

Discrete time vs real time

Theorem 45. We suppose that b

x; x are related by

(7.1) x(t) = b x( 1) ( 1;t0) (t) b x(0) [t0;t0+h) (t) ::: ::: b x(k) [t0+kh;t0+(k+1)h) (t) :::
where t 0 2 R; h > 0: The existence of p 1 and k 0 2 N _ such that

(7.2) 8k k 0 ; b x(k) = b x(k + p);
implies the existence of t 0 2 R such that

(7.3) 8t t 0 ; x(t) = x(t + T )
is true for T = ph:

Proof. The equation (7.1) is true for some t 0 2 R; h > 0 and p 1; k 0 2 N _ exist having the property that (7.2) holds. We use the notations T = ph; t 0 = t 0 + k 0 h and let t t 0 be arbitrary, …xed. Some k k 0 exists with the property t 2 [t 0 + kh; t 0 + (k + 1)h); wherefrom t + T 2 [t 0 + (k + p)h; t 0 + (k + 1 + p)h) and we …nally infer that

x(t) = b x(k) (7:2) = b x(k + p) = x(t + T ):
Because t t 0 was arbitrarily chosen, we have inferred the truth of (7.3).

Theorem 46. If b x; x are not eventually constant, (7.1) holds for t 0 2 R; h > 0 and T > 0; t 0 2 R exist such that x ful…lls (7.3), then T h 2 f1; 2; 3; :::g and k 0 2 N _ exists such that (7.2) is true for p = T h : Proof. Some t 0 2 R; h > 0 exist with (7.1) ful…lled and T > 0; t 0 2 R exist also with (7.3) 

x(t) = b x( 1) ( 1; 4) (t) b x(0) [ 4; 2) (t) b x(1) [ 2;0) (t) b x(2) [0;
2) (t) :::

We have 8t 2; x(t) = x(t + 4);

8k 1; b x(k) = b x(k + 2) thus (7.
3) is ful…lled with T = 4; t 0 = 2 and (7.2) is true with p = 2; k 0 = 1: Furthermore, in this example h = 2:

Sums, di¤erences and multiples of periods

Theorem 47. Let the signals b

x; x: a) We suppose that b

x has the periods p; p 0 1 and the limit of periodicity k 0 2 N _ :

(8.1) 8k k 0 ; b x(k) = b x(k + p); (8.2) 8k k 0 ; b x(k) = b x(k + p 0 ): Then p + p 0 1, b
x has the period p + p 0 and the limit of periodicity k 0

(8.3) 8k k 0 ; b x(k) = b x(k + p + p 0 )
and if p > p 0 ; then p p 0 1; b x has the period p p 0 and the limit of periodicity k 0

(8.4) 8k k 0 ; b x(k) = b x(k + p p 0 ): b) Let T; T 0 > 0; t 0 2 R be arbitrary with (8.5) 8t t 0 ; x(t) = x(t + T ); (8.6) 8t t 0 ; x(t) = x(t + T 0 )
ful…lled. We have on one hand that T + T 0 > 0 and

(8.7) 8t t 0 ; x(t) = x(t + T + T 0 );
and on the other hand that T > T 0 implies T T 0 > 0 and 

(8.9) 8k k 0 ; b x(k) = b x(k + p) implies (8.10) 8k k 0 ; b x(k) = b x(k + p 0 ): b) Let T > 0; k 1 1 and t 0 2 R: Then T 0 = k 1 T ful…lls T 0 > 0 and (8.11) 8t t 0 ; x(t) = x(t + T ) implies (8.12) 8t t 0 ; x(t) = x(t + T 0 ):
Proof. This is a consequence of Theorem 47. Proof. This follows from Theorem 48. x exists with the property that p 0 = 2 fe p; 2e p; 3e p; :::g and consequently k 1 exists such that ke p < p 0 < (k + 1)e p: We infer that 1 p 0 ke p < e p and, from Theorem 47, page 85 and 48, page 85 that p 0 ke p 2 b P b

x : This fact is in contradiction however with the supposition that e p = min b P b x : b) We proceed in two steps. At b.i) we prove that min P x exists and at b.ii) we prove that the only elements of P x are the multiples of min P x : b.i) We suppose against all reason that min P x does not exist, namely that a strictly decreasing sequence T k 2 P x ; k 2 N exists that is convergent to T = inf P x : As x is not eventually constant, the following property

(9.3) 8t 2 R; 9t 00 > t; x(t 00 0) 6 = x(t 00 )
is true, from Lemma 7, page 202. The hypothesis states the existence 8k 2 N; of t 0 k 2 R with (9.4) 8t t 0 k ; x(t) = x(t + T k ): As t 0 k do not depend on T k ; see Theorem 41, page 80, we can suppose that they are all equal with some t 0 2 R: Property (9.3) implies that we can take a t 00 > t 0 such that x(t 00 0) 6 = x(t 00 ) and we can apply now Lemma 8, page 202 giving (9.5) 8k 2 N; x(t 00 + T k 0) 6 = x(t 00 + T k ):

We infer from Lemma 9, page 202 that N 2 N exists with 8k N;

x(t 00 + T k 0) = x(t 00 + T k ) = x(t 00 + T ); contradiction with (9.5). It has resulted that such a sequence T k ; k 2 N does not exist, thus P x ; which is non-empty, has a minimum e T > 0: b.ii) We have from Corollary 2 that f e T ; 2 e T ; 3 e T ; :::g P x : We prove that 8k 1; 8T 0 2 (k e T ; (k + 1) e T ); T 0 = 2 P x : We suppose against all reason that k 1 and T 0 2 (k e T ; (k + 1) e T ) exist such that T 0 2 P x : This means, from Theorem 47, page 85 and Theorem 48, page 85, that T 0 k e T 2 P x and since T 0 k e T < e T ; we have obtained a contradiction with the fact that e T = min P x :

Theorem 50. We suppose that the relation between b

x and x is given by x is eventually periodic with the period p 1 and the limit of periodicity k 0 2 N _ : Then n i 1 ; n i 2 ; :::; n i ki 2 fk 0 ; k 0 + 1; :::; k 0 + p 1g exist; k i 1; such that x is eventually periodic with the period p and the limit of periodicity k 0 ; then every i 2 b !(b x) is eventually periodic with the period p and the limit of periodicity k 0 ; i 2 f1; :::; sg and we apply Theorem 30, page 67.

x(t) = b x( 1) ( 1;t0) (t) b x(0) [t0;t0+h) (t) b x ( 
9k 0 i 2 N _ ; 8k 2 b T b x i \ fk 0 i ; k 0 i + 1; k 0 i + 2; :::g; fk + zpjz 2 Zg \ fk 0 i ; k 0 i + 1; k 0 i +
Theorem 53. We consider the non eventually constant signal x 2 S (n) and we put the omega limit set under the form !(x) = f 1 ; :::; s g; s 2: We suppose that x is eventually periodic with the period T > 0 and the limit of periodicity t 0 2 R: Then a i 1 ; b i 1 ; a i 2 ; b i 2 ; :::; a i ki ; b i ki 2 R exist, (10.2)

t 0 a i 1 < b i 1 < a i 2 < b i 2 < ::: < a i ki < b i ki t 0 + T;
with k i 1; i 2 f1; :::; sg; such that

(10.3) [a i 1 ; b i 1 ) [ [a i 2 ; b i 2 ) [ ::: [ [a i ki ; b i ki ) = T x i \ [t 0 ; t 0 + T );
(10.4)

T x i \ [t 0 ; 1) = [ k2N ([a i 1 + kT; b i 1 + kT ) [ [a i 2 + kT; b i 2 + kT ) [ ::: [ [a i ki + kT; b i ki + kT ))
hold for i 2 f1; :::; sg:

Proof. a) x is eventually periodic, with the period T and the limit of periodicity t 0 ; thus 8i 2 f1; :::; sg; i is eventually periodic with the period T and the limit of periodicity t 0 : We apply Theorem 31, page 68.

Example 20. The eventually periodic signal x 2 S (1) ;

x(t) = ( 1;0) (t) [1;5) (t) [6;7) (t) [8;10) (t) [11;12) (t)
[13;15) (t) :::

ful…lls 1 = 1; 2 = 0; k 1 = k 2 = 2; T = 5; t 0 = 3; a 1 1 = 3; b 1 1 = 5; a 1 2 = 6; b 1 2 = 7; a 2 1 = 5; b 2 1 = 6; a 2 2 = 7; b 2 2 = 8:
11. Su¢ ciency conditions of eventual periodicity

Theorem 54. Let b x 2 b S (n) , b
!(b x) = f 1 ; :::; s g and p 1; k 0 2 N _ : We ask that for any i 2 f1; :::; sg; the numbers n i 1 ; n i 2 ; :::; n i ki 2 fk 0 ; k 0 + 1; :::; k 0 + p 1g exist, k i 1; making

(11.1) b T b x i \ fk 0 ; k 0 + 1; k 0 + 2; :::g = [ k2N fn i 1 + kp; n i 2 + kp; :::; n i ki + kpg true. Then b
x is eventually periodic with the period p 1 and the limit of periodicity k 0 2 N _ : 8i 2 f1; :::; sg; x i :

Proof. We suppose that 8i 2 f1; :::; sg; k i 1 and n i 1 ; n i 2 ; :::; n i ki 2 fk 0 ; k 0 + 1; :::; k 0 +p 1g exist such that (11.1) holds. We infer from Theorem 32, page 69 that 1 ; :::; s are all eventually periodic with the period p and the limit of periodicity k 0 ; i.e. b

x is eventually periodic with the period p and the limit of periodicity k 0 , the equivalence between (2.1) page 76 and (1.1) page 73 was proved at Theorem 38, page 76.

Theorem 55. Let the signal x 2 S (n) ; !(x) = f 1 ; :::; s g; s 2 and T > 0; t 0 2 R: For all i 2 f1; :::; sg; the numbers a i 1 ; b i 1 ; a i 2 ; b i 2 ; :::; a i ki ; b i ki 2 R; k i 1 are given with the property that

(11.3) t 0 a i 1 < b i 1 < a i 2 < b i 2 < ::: < a i ki < b i ki t 0 + T;
(11.4)

T x i \ [t 0 ; 1) = [ k2N ([a i 1 + kT; b i 1 + kT ) [ [a i 2 + kT; b i 2 + kT ) [ ::: [ [a i ki + kT; b i ki + kT ))
hold. Then x is eventually periodic with the period T and the limit of periodicity t 0 : 8i 2 f1; :::; sg;

(11.5) 8t 2 T x i \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x i :
Proof. This is a consequence of Theorem 33, page 69. x i \ fk 0 ; k 0 + 1; k 0 + 2; :::g = fn i ; n i + p; n i + 2p; :::g: a) We have: 8i 2 f1; :::; sg; x i : b) p is the prime period of b

x : for any p 0 and k 00 with 8i 2 f1; :::; sg;

(12.3) 8k 2 b T b
x i \ fk 00 ; k 00 + 1; k 00 + 2; :::g; fk + zp 0 jz 2 Zg \ fk 00 ; k 00 + 1; k 00 + 2; :::g b T b

x i ; we have p 0 2 fp; 2p; 3p; :::g: Proof. This follows from Theorem 34, page 70.

Theorem 57. We consider the signal x with !(x) = f1 ; :::; s g and T > 0; t 0 2 R: For all i 2 f1; :::; sg; the intervals [a i ; b i ) [t 0 ; t 0 + T ) are given with

(12.4) T x i \ [t 0 ; 1) = [a i ; b i ) [ [a i + T; b i + T ) [ [a i + 2T; b i + 2T ) [ :::: true. Then a)
x is eventually periodic with the period T and the limit of periodicity t 0 : 8i 2 f1; :::; sg;

(12.5) 8t 2 T x i \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x i : b) if
x is not eventually constant, T is the prime period of x; i.e. for any T 0 and t 00 with 8i 2 f1; :::; sg;

(12.6) 8t 2 T x i \ [t 00 ; 1); ft + zT 0 jz 2 Zg \ [t 00 ; 1) T x i ; we infer T 0 2 fT; 2T; 3T; :::g: Proof. This follows from Theorem 35, page 70.

Changing the order of the quanti…ers

Theorem 58. 1 a) The statements (13.1)

( 9p 1; 9k 0 2 N _ ; 8 2 b !(b x); 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x ;

(13.2)

( 9p 1; 8 2 b !(b x); 9k 0 2 N _ ; 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x ;

(13.3)

( 9k 0 2 N _ ; 8 2 b !(b x); 9p 1; 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x ;

(13.4)

( 8 2 b !(b x); 9p 1; 9k 0 2 N _ ; 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x are equivalent.

b) The real time statements

(13.5) 9T > 0; 9t 0 2 R; 8 2 !(x); 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ); (13.6) 9T > 0; 8 2 !(x); 9t 0 2 R; 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ; (13.7) 9t 0 2 R; 8 2 !(x); 9T > 0; 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ; (13.8) 8 2 !(x); 9T > 0; 9t 0 2 R; 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x are equivalent.
Proof. a) The implications (13.1) =) (13.2) =) (13.4), (13.1) =) (13.3) =) (13.4) are obvious, thus we give the proof of (13.4)=)(13.1). Let b !(b x) = f 1 ; :::; s g: (13.4) states that for an arbitrary i 2 f1; :::; sg; some p i 1 and

k 0 i 2 N _ exist such that (13.9) 8k 2 b T b x i \fk 0 i ; k 0 i +1; k 0 i +2; :::g; fk+zp i jz 2 Zg\fk 0 i ; k 0 i +1; k 0 i +2; :::g b T b
x i : We denote p = p 1 ::: p s 1 and k 0 = maxfk 0 1 ; :::; k 0 s g: From (13.9) and from Lemma 3, page 200 we infer that x i \ fk 0 ; k 0 + 1; k 0 + 2; :::g arbitrary. We have: fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g fk + zp i jz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g (13:10) b T b

x i : b) The implications (13.5)=)(13.6)=)(13.8), (13.5)=)(13.7)=)(13.8) are obvious.

Remark 92. Stating periodicity properties may depend in general on the order of the quanti…ers. This issue is trivial when quanti…ers of the same kind occur (9; 9 or 8; 8) and it is not trivial when quanti…ers of di¤ erent kinds occur (9; 8 or 8; 9). Our aim in the previous Theorem is to show that the eventual periodicity properties are independent on the order of the quanti…ers. However the fact that any of (13.6), (13.7), (13.8) implies (13.5) could not be proved so far. Such a proof would be important, since we are tempted to de…ne the eventual periodicity of the signals by (13.4), (13.8) (each point of the omega limit set is eventually periodic) and to use (13.1) or (13.5) instead (a common period exists for all the points of the orbit). x s 6 = ?) are equivalent. We could not prove that this is true in the real time case, even if, for !(x) = f 1 ; :::; s g;

P x = P x
1 \ ::: \ P x s is true too, see Theorem 51, page 87.

Remark 94. From the previous Remark we infer that we have, in particular, the property x 0 6 = ?; while the truth of the implication 8 2 !(x); 8 0 2 !(x); (P x 6 = ? and P x 0 6 = ?) =) P x \ P x 0 6 = ? was not proved so far.

The hypothesis P

Definition 19. We consider the signal x: If where n 1 1; :::; n s 1 are relatively prime (e p is the least common multiple of e p 1 ; :::; e p s ). b) We suppose that the signal x 2 S (n) is not eventually constant and that it ful…lls the hypothesis P . We denote !(x) = f 1 ; :::; s g and we ask that 8i 2 f1; :::; sg; the set P x i is not empty. We denote with e T i > 0; e T > 0 the numbers that satisfy (14.4) We replace the equations (14.8) in (14.7) and we get (14.9) p = n 1 e p 1 = ::: = n s e p s ;

P x i = f e T i ;
where n 1 = n 0 1 n 00 1 ; :::; n s = n 0 s n 00 s : When n 1 ; :::; n s are relatively prime, p = min b P b

x : b) As x ful…lls the hypothesis P and P x 1 6 = ?; :::; P x s 6 = ?; we have that in the equation P x = P x 1 \ ::: \ P x s both terms are non-empty. From this moment the reasoning is the same like at a).

CHAPTER 7

Periodic points

First we give in Section 1 several properties that are equivalent with the periodicity of a point. These properties were previously used to characterize the constancy of the signals. A discussion of these properties is made in Section 2.

Section 3 shows that the periodic points are accessed at least once in a time interval with the length of a period.

The independence of the real time periodicity of on the initial time t 0 of x = limit of periodicity of and also the bounds of t 0 are the topics of Section 4.

The property of constancy from Section 5 is interesting by itself, but it is also useful in treating the discrete time vs the real time periodic points, representing the topic of Section 6.

One might be tempted to think that the relation between b T b x ; T x and b P b

x ; P x is closer than it really is. Some examples and comments on this relation are given in Section 7.

The fact that the sums, the di¤erences and the multiples of the periods are periods is formalized in Section 8.

The important topic of existence of the prime period is treated in Section 9, together with the form of b P b

x ; P x : Necessary conditions, respectively su¢ cient conditions of periodicity of ; related with the form of b T b x ; T x are given in Sections 10, respectively 11. Section 12 deals with a special case of periodicity, applying results from Section 10 and Section 11. The point is that in this special case we know the precise value of the prime period.

In Section 13 we show that by forgetting some …rst values of b x; x we get the same sets of periods b P b

x ; P x : This natural observation connects the periodicity of with its eventual periodicity.

Some ideas concerning further research on the periodic points are presented in Section 14.

Equivalent properties with the periodicity of a point

Remark 95. The properties of periodicity of the points were present in the second group of constancy properties of the signals from Theorem 16, page 36 (and the third group, Theorem 17, page 42), thus (1.1),...,(1.6) will be compared with (2.1) page 36 ; :::;(2.6) page 37 and (1.7),...,(1.12) will be compared with (2.7) page 37 ,..., (2.12) page 37 : We make also the associations (1.4)-( 4 

(1.1) 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b x ;
(1.2)

( 8k 0 2 N _ ; 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x ;

(1.3)

8k 00 2 N; 8k 2 b T b k 00 (b x) ; fk + zpjz 2 Zg \ N _ b T b k 00 (b x) ; (1.4) 8k 2 N _ ; b x(k) = =) =) (b x(k) = b x(k + p) and k p 1 =) b x(k) = b x(k p)); (1.5) 8k 0 2 N _ ; 8k k 0 ; b x(k) = =) =) (b x(k) = b x(k + p) and k p k 0 =) b x(k) = b x(k p));
(1.6)

> <

> :

8k 00 2 N; 8k 2 N _ ; b k 00 (b x)(k) = =) =) (b k 00 (b x)(k) = b k 00 (b x)(k + p) and and k p 1 =) b k 00 (b x)(k) = b k 00 (b x)(k p)):
b) The following statements are also equivalent for any T > 0 and 2 Or(x):

(1.7) 9t 0 2 I x ; 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ; (1.8) 9t 0 2 I x ; 8t 0 1 t 0 ; 8t 2 T x \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T x ;
(1.9) x) ;

( 8t 00 2 R; 9t 0 2 I t 00 (x) ; 8t 2 T t 00 (x) \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T t 00 ( 
(1.10) 9t 0 2 I x ; 8t t 0 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 =) x(t) = x(t T ));

(1.11) 9t 0 2 I x ; 8t 0 1 t 0 ; 8t t 0 1 ; x(t) = =) =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T ));
(1.12)

8 > < > : 8t 00 2 R; 9t 0 2 I t 00 (x) ; 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T )):
Proof. The proof of the implications

(1:1) =) (1:2) =) (1:3) =) (1:4) =) (1:5) =) (1:6)
follows from Theorem 16, page 36. x(k)

(1:4) = b x(k + p) (1:4) = b x(k + 2p) (1:4)
= :::

(1:4) = b x(k + zp); Case z = 0; = b x(k) = b x(k + zp); Case z < 0; = b x(k) (1:4) = b x(k p) (1:4) = b x(k 2p)
(1:4)

= :::

(1:4) = b x(k + zp):
In all these cases k + zp 2 b T b

x : b) The proof of the implications

(1:7) =) (1:8) =) (1:9) =) (1:10) =) (1:11) =) (1:12)
follows from Theorem 16, page 36.

(1.12)=)(1.7) We write (1.12) in the special case when t 00 ful…lls 8t t 00 ; x(t) = x( 1 + 0) and consequently t 00 (x) = x; t 0 2 I x and (1.13) 8t t 0 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 =) x(t) = x(t T )) hold. We have T x \ [t 0 ; 1) 6 = ?; so let t 2 T x \ [t 0 ; 1) and z 2 Z arbitrary with t + zT t 0 : We get the following possibilities.

Case z > 0;

= x(t)

(1:13) = x(t + T ) (1:13) = x(t + 2T )
(1:13) = :::

(1:13) = x(t + zT ); Case z = 0; = x(t) = x(t + zT ); Case z < 0; = x(t) (1:13) = x(t T ) (1:13) = x(t 2T ) (1:13) 
= :::

(1:13) = x(t + zT )
and consequently in all these situations t + zT 2 T x : (1.7) is true.

Example 21. We give the following example of signal b x 2 b S (1) where none of 0; 6); ::: are all equal with 1 then 3 is the prime period of 0 and if they are all equal with 0 then 1 is the prime period of 0.

Example 23. The signal x 2 S (1) ; Remark 97. The prime period of the periodic point 2 c

x(t) = ( 1;0) (t) [1;3) (t
Or(b x) always exists, but the prime period of the periodic point 2 Or(x) may not exist, for example if x is constant and equal with , see Theorem 16, page 36 where P x = (0; 1): We shall prove later (Theorem 66, page 104) that this is the only situation when the periodic point 2 Or(x) has no prime period.

Remark 98. Two more compact forms of writing (1.4) and (1.10) are

(2.1) 9p 2 Z ; 8k 2 N _ ; (b x(k) = and k + p 1) =) b x(k) = b x(k + p); (2.2) 9T 2 R ; 9t 0 2 I x ; 8t t 0 ; (x(t) = and t + T t 0 ) =) x(t) = x(t + T );
where we have denoted Z = Z r f0g and R = R r f0g: Such statements accept the existence of negative periods. We shall suppose in the rest of our presentation that p 1; T > 0:

Remark 99. A temptation exists to write (1.4) and (1.10) in a wrong way, recalling the periodicity (4.1) page 15 , (4.2) page 15 of the signals, under the form

(2.3) 9p 1; 8k 2 N _ ; b x(k) = =) b x(k) = b x(k + p);
(2.4) 9T > 0; 9t 0 2 I x ; 8t t 0 ; x(t) = =) x(t) = x(t + T );

that accepts only right time shifts in the de…nition of periodicity. We give the discrete time example of b x = 0; 0; 1; 0; 1; 0; 1; 0; 1; ::: that ful…lls (2.3) with = 1; p = 2: For this signal is not periodic and the left time

shift requirement b x(1) = 1 =) b x(1 2) = 1
shows where the problem is. In fact, if 2 c

Or(b x); 2 Or(x) then (2.3), (2.4) are requirements of eventual periodicity, not of periodicity. 

x ; fk + zpjz 2 Zg \ N _ b T b x ;
then we deduce from Theorem 21, page 56 that for any k 2 N _ we have b T b

x \fk; k + 1; :::; k + p 1g 6 = ?: Similarly, x; 2 Or(x); T > 0; t 0 2 I x are given. If

8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ;
as far as T x \ [t 0 ; 1) 6 = ? (from Lemma 2, page 199); we can use Theorem 21 again and get 8t t 0 ; T x \ [t; t + T ) 6 = ?:

The accessibility of the periodic points

Remark 101. From Theorem 21, page 56 we get that if. 2 c Or(b x) is a periodic point of b

x with the period p 1; then b T b x \ fk; k + 1; :::; k + p 1g 6 = ? holds for any k 2 N _ From the same Theorem we similarly get that if 2 Or(x) is a periodic point of x with the period T > 0, then t 0 2 I x exists such that for any t t 0 ; we have T x \ [t; t + T ) 6 = ?:

The limit of periodicity

Example 24. We consider x; = x( 1 + 0); T > 0; t 0 ; t 1 ; t 2 ; t 3 2 R and we suppose that t 0 < t 1 < t 2 < t 3 < t 0 + T;

T x = ( 1; t 0 ) [ [t 1 ; t 2 ) [ [t 3 ; t 0 + T ) [ [t 1 + T; t 2 + T ) [ [t 3 + T; t 0 + 2T )[ [[t 1 + 2T; t 2 + 2T ) [ [t 3 + 2T; t 0 + 3T ) [ ::: hold. For t 0 2 [t 3 T; t 0 ) we have t 0 2 I x and (4.1) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x
ful…lled, thus the property of periodicity of with the period T is true. For t 0 < t 3 T; let us take an arbitrary t 2 [maxft 0 ; t 2 T g; t 3 T ): On one hand t 2 T x \[t 0 ; 1) and on the other hand the truth of

t + T 2 ft + zT jz 2 Zg \ [t 0 ; 1) (4:1) 
T x should indicate that x(t + T ) = . But this is false, since t + T 2 [t 2 ; t 3 ): We have shown that L x = [t 3 T; 1): We notice also that choosing t 0 t 0 is not possible, since I x = ( 1; t 0 ). We conclude that the exact bounds of the initial time=limit of periodicity t 0 are given by t 0 2 I x \ L x = [t 3 T; t 0 ):

Theorem 61. Let the non constant signal x be given, together with 2 Or(x); T > 0 and t 0 2 I x having the property that

(4.2) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x :
Then t 0 0 ; t 0 2 R exist, t 0 0 < t 0 such that 8t 00 2 [t 0 0 ; t 0 ); we have that t 00 2 I x ; (4.3) 8t 2 T x \ [t 00 ; 1); ft + zT jz 2 Zg \ [t 00 ; 1) T x hold and for any t 00 = 2 [t 0 0 ; t 0 ); at least one of t 00 2 I x ; (4.3) is false. In other words [t 0 0 ; t 0 ) = I x \ L x : Remark 102. We give two proofs of the previous Theorem for reasons that will become clear later.

Proof. The …rst proof of Theorem 61. From the fact that x is not constant we get the existence of t 0 2 R with I x = ( 1; t 0 ): From 2 Or(x) and t 0 2 I x we have that T x \ [t 0 ; 1) 6 = ? and this, taking into account (4.2) also, implies 2 !(x): The existence of t 0 2 R such that (4.2) holds shows the fact that L x 6 = ?; thus we can apply Theorem 23, page 58. The existence of t 0 0 2 R has resulted with L x = [t 0 0 ; 1): The existence of t 0 2 I x making (4.2) true shows furthermore that t 0 0 < t 0 and

[t 0 0 ; t 0 ) = I x \ L x :
Proof. The second proof of Theorem 61. The fact that x is not constant shows the existence of t 0 that is de…ned by

(4.4) 8t < t 0 ; x(t) = x( 1 + 0); (4.5) 
x(t 0 ) 6 = x( 1 + 0):

From (4.4), (4.5), t 0 2 I x we infer that I x = ( 1; t 0 ); t 0 < t 0 hold: We have the following possibilities. a) Case = x( 1 + 0)

We show …rst that [t 0 + T; t 0 + T ) T x and let for this an arbitrary t 2 [t 0 + T; t 0 + T ): We have t T t 0 ; t t 0 and t T 2 [t 0 ; t 0 ) T x ; so that we can apply (4.2):

t 2 ft T + zT jz 2 Zg \ [t 0 ; 1) T x : The inclusion [t 0 + T; t 0 + T ) T x is proved.
We get the existence of t 1 t 0 + T with

(4.6) [t 1 ; t 0 + T ) T x ; (4.7) 
x(t 1 0) 6 = :

We have t 1 > t 0 ; because the other possibility t 0 t 1 is in contradiction with (4.4). The conclusion is that

(4.8) t 1 T t 0 < t 0 < t 1 < t 0 + T:
From Lemma 4, page 200 and (4.4) we infer (4.9)

( 1; t 0 ) [ [t 1 ; t 0 + T ) [ [t 1 + T; t 0 + 2T ) [ [t 1 + 2T; t 0 + 3T ) [ ::: T x :
We claim that t 0 0 = t 1 T ful…lls the statement of the Theorem, in particular that (4.10)

( 1;

t 1 T ] T x x( 1+0) ; (4.11) 8t 2 T x \ [t 1 T; 1); ft + zT jz 2 Zg \ [t 1 T; 1) T x
hold. We notice that the truth of (4.10) is trivial (from (4.4) and (4.8)) and, in order to prove the satisfaction of (4.11), let t 2 T x \ [t 1 T; 1) arbitrary. We have the following sub-cases. a.1) Case

t 2 [t 1 T; t 0 ) [ [t 1 ; t 0 + T ) [ [t 1 + T; t 0 + 2T ) [ ::: Some k 2 N _ exists with t 2 [t 1 + kT; t 0 + (k + 1)T ): Then ft + zT jz 2 Zg \ [t 1 T; 1) = ft + ( k 1)T; t + ( k)T; t + ( k + 1)T; :::g [t 1 T; t 0 ) [ [t 1 ; t 0 + T ) [ [t 1 + T; t 0 + 2T ) [ [t 1 + 2T; t 0 + 3T ) [ ::: (4:9) T x : a.2) Case t 2 T x \ ([t 0 ; t 1 ) [ [t 0 + T; t 1 + T ) [ [t 0 + 2T; t 1 + 2T ) [ :::) Then t 2 T x \ [t 0 ; 1) and k 2 N exists such that t 2 [t 0 + kT; t 1 + kT ): We have, since t + ( k 1)T < t 1 T; that ft + zT jz 2 Zg \ [t 1 T; 1) = ft + ( k)T; t + ( k + 1)T; t + ( k + 2)T; :::g = ft + zT jz 2 Zg \ [t 0 ; 1) (4:2)
T x : This ends proving the truth of (4.11). For any t 00 2 [t 0 0 ; t 0 ); we have that t 00 2 I x ; (4.3) are ful…lled, see also Lemma 3, page 200 (the statement 2 !(x) from the hypothesis of the Lemma results from t 0 2 I x , giving T x \ [t 0 ; 1) 6 = ?; and from (4.2)).

In order to prove the last statement of the Theorem, let t 00 2 I x ; (4.3) be true with arbitrary, …xed t 00 . We suppose against all reason that t 00 < t 1 T and let " > 0 with the property that (4.12) 8 2 (t 1 "; t 1 ); x( ) = x(t 1 0):

We take an arbitrary t 2 (maxft 00 ; t 1 T "g; t 1 T ) for which we can write that x(t) = and, on the other hand,

t + T 2 ft + zT jz 2 Zg \ [t 00 ; 1) (4:3) 
T x ;

thus x(t + T ) = : But t + T 2 (t 1 "; t 1 ); wherefrom x(t + T ) (4:12) 
= x(t 1 0) and …nally x(t 1 0) = ; contradiction with (4.7). We have obtained that L x = [t 1 T; 1): The supposition that t 00 t 0 is in contradiction with the hypothesis t 00 2 I x ; since

I x = ( 1; t 0 ): b) Case 6 = x( 1 + 0)
We show that [t 0 + T; t 0 + T ) \ T x = ? and we suppose against all reason that t 2 [t 0 + T; t 0 + T ) \ T x exists, thus t T 2 [t 0 ; t 0 ) and t t 0 hold: We infer

(4.13) t T 2 ft + zT jz 2 Zg \ [t 0 ; 1) (4:2) 
T x wherefrom the contradiction

x( 1 + 0) (4:4) = x(t T ) (4:13) 
= 6 = x( 1 + 0):
We infer from here, taking into account Theorem 21, page 56 also (the statement 2 !(x) from the hypothesis of the Theorem follows, like previously, from t 0 2 I x , implying that T x \ [t 0 ; 1) 6 = ?; and from (4.2)), written for t = t 0 ; stating that T x \ [t 0 ; t 0 + T ) 6 = ?; the existence of t 1 ; t 2 2 R with (4.14) t 2 T t 0 < t 0 t 1 < t 2 t 0 + T < t 0 + T;

(4.15) x(t 1 0) 6 = ; (4.16) [t 1 ; t 2 ) T x ;
(4.17) [t 2 ; t 0 + T ) \ T x = ?:

We claim that the statement of the Theorem is ful…lled by t 0 0 = t 2 T and in particular that (4.18)

( 1;

t 2 T ] T x x( 1+0) ; (4.19) 8t 2 T x \ [t 2 T; 1); ft + zT jz 2 Zg \ [t 2 T; 1) T x
hold. We notice that (4.18) results from (4.4) and (4.14). Let t 2 T x \ [t 2 T; 1) arbitrary. We easily see that (( 

1; t 0 ) [ [t 2 ; t 0 + T ) [ [t 2 + T; t 0 + 2T ) [ [t 2 + 2T; t 0 + 3T ) [ :::) \ T x = ?
= ft + zT jz 2 Zg \ [t 0 ; 1) (4:2) 
T x :

This ends proving (4.19). For any t 00 2 [t 0 0 ; t 0 ); we have that t 00 2 I x ; (4.3) are true, see also Lemma 3,page 200.

The supposition that t 00 < t 2 T makes, from (4.16), that (4.3) is false, thus L x = [t 2 T; 1): The supposition that t 00 t 0 makes t 00 2 I x be false.

Remark 103. We use to think that the property of periodicity of 2 Or(x) is independent on the choice of the initial time=limit of periodicity in the terms given by Theorem 61.

Corollary 3. We suppose that is a periodic point of the non constant signal x; that T > 0 is its period and that t 0 is the initial time of x and the limit of periodicity of at the same time.

a) If = x( 1 + 0) and t 0 < t 1 are de…ned by

(4.20) 8t < t 0 ; x(t) = x( 1 + 0); (4.21) x(t 0 ) 6 = x( 1 + 0); (4.22) [t 1 ; t 0 + T ) T x ; (4.23) x(t 1 0) 6 = ; then t 0 2 [t 1 T; t 0 ); b) if 6 = x( 1 + 0) and t 0 < t 2 are de…ned by (4.20), (4.21), (4.24) 
x(t 2 0) = ;

(4.25) [t 2 ; t 0 + T ) \ T x = ?; then t 0 2 [t 2 T; t 0 ):

Proof. These are consequences of the second proof of Theorem 61, page 97.

A property of constancy

Theorem 62. The signals b x 2 b S (n) ; x 2 S (n) are considered. a) If 2 c
Or(b x) and the statement

(5.1) 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b
x is true for p = 1; then we have

(5.2) 8k 2 N _ ; b x(k) =
and (5.1) is true for any p 1. b) Let 2 Or(x) be some point and we suppose that t 0 2 R; h > 0 exist such that x has the form

(5.3) x(t) = x( 1 + 0) ( 1;t0) (t)
x(t 0 ) [t0;t0+h) (t) ::: ::: x(t 0 + kh) [t0+kh;t0+(k+1)h) (t) :::

If the statement (5.4) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x
is true for some t 0 2 I x , T 2 (0; h) [ (h; 2h) [ ::: [ (qh; (q + 1)h) [ :::; then

(5.5) 8t 2 R; x(t) =
holds and (5.4) is true for any t 0 2 R and any T > 0. c) If (5.3) is true under the form

(5.6) x(t) = b x( 1) ( 1;t0) (t) b x(0) [t0;t0+h) (t) ::: ::: b x(k) [t0+kh;t0+(k+1)h) (t) ::: and 2 c
Or(b x) = Or(x)1 is arbitrary, then c.1) the satisfaction of (5.1) for p = 1 implies that (5.2), (5.5) are true, (5.1) holds for any p 1 and (5.4) holds for any t 0 2 R and any T > 0; c.2) the satisfaction of (5.4) for some t 0 2 I x , T 2 (0; h) [ (h; 2h) [ ::: [ (qh; (q + 1)h) [ ::: implies also that (5.2), (5.5) are true, (5.1) holds for any p 1 and (5.4) holds for any t 0 2 R and any T > 0:

Proof. a) The statement (5.1) written for p = 1;

(5.7) 8k; 8z; (k 2 b T b x and z 2 Z and k + z 1) =) k + z 2 b T b x together with b T b x 6 = ? (since 2 c Or(b x)) implies that b T b x = N _ ;
meaning the truth of (5.2). In these circumstances (5.1) is true for any p 1: b) If 2 Or(x) and t 0 2 I x ; then T x \ [t 0 ; 1) 6 = ?; and from (5.4) we have 2 !(x): The hypothesis asks furthermore that T 2 (0; h)[(h; 2h)[:::[(qh; (q+1)h)[::: and t 0 2 R; h > 0 exist making (5.3) true. In this situation, Theorem 24, page 59 states that (5.8) 8t t 0 ; x(t) = ;

and on the other hand we have (5.9) 8t t 0 ; x(t) = :

The statement (5.5) is true. In these conditions I x = R; P x = (0; 1); thus (5.4) holds for any t 0 2 R and any T > 0: c) This is a consequence of a) and b).

Discrete time vs real time

Theorem 63. Let the non constant signals b

x 2 b S (n) ; x 2 S (n) be related by

(6.1) x(t) = b x( 1) ( 1;t0) (t) b x(0) [t0;t0+h) (t) ::: ::: b x(k) [t0+kh;t0+(k+1)h) (t) ::: where t 0 2 R; h > 0 and let 2 c Or(b x) = Or(x): a) If p 1 exists such that (6.2) 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b
x is true, then

(6.3) 9t 0 2 I x ; 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x
holds for T = ph: b) We presume that (6.3) is true for some T > 0. Then T h 2 f1; 2; 3; :::g and k 0 2 N _ exists such that (6.4) b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g 6 = ?;

(6.5)

( 8k 2 b T b
x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x hold for p = T h : Proof. a) The existence of p 1 such that (6.2) is true shows that 2 b !(b x); thus, as far as b !(b x) = !(x); we infer 2 !(x): The fact that 2 b !(b x) is eventually periodic with the period p implies, from Theorem 25, page 62, that is eventually periodic with the period T = ph: As x is not constant and L x 6 = ?; we have, see Theorem 23, page 58 the existence of t 0 0 2 R with L x = [t 0 0 ; 1): We claim that t 0 h t 0 0 : Let us suppose against all reason that this is not the case, i.e. that (6.6)

8t 2 T x \ [t 0 h; 1); ft + zT jz 2 Zg \ [t 0 h; 1) T x is false. This means the existence of t 1 2 T x ; z 1 2 Z with t 1 t 0 h; t 1 + z 1 ph t 0 h and t 1 +z 1 ph = 2 T x : Then k 1 2 N _ exists such that t 1 2 [t 0 +k 1 h; t 0 +(k 1 +1)h); t 1 + z 1 ph 2 [t 0 + (k 1 + z 1 p)h; t 0 + (k 1 + z 1 p + 1)h): We have, as far as k 1 + z 1 p 1 : = x(t 1 ) = b x(k 1 ) (6:2) 
= b x(k 1 + z 1 p) = x(t 1 + z 1 ph) = x(t 1 + z 1 T );
contradiction with the way that t 1 was de…ned. As t 0 h t 0 0 we get the truth of a), since ( 1; t 0 )

I x ; [t 0 h; 1) L x and ? 6 = [t 0 h; t 0 ) I x \ L x : b) If 2 Or(x) satis…es (6.3), then 2 !(x) = b !(b x):
The fact that T h 2 f1; 2; 3; :::g and the existence of k 0 2 N _ such that (6.4), (6.5) are ful…lled for p = T h result from Theorem 25, page 62. Remark 104. Theorem 63 states, in a manner that updates Theorem 25 to periodic points, that the discrete time and the real time periodicity of the points are not equivalent when (6.1) is true: if 2 c

Or(b x) is periodic with the period p, then 2 Or(x) is periodic with the period ph; while the converse implication takes place under the form: if 2 Or(x) is periodic with the period T , then T h 2 f1; 2; 3; :::g and 2 c

Or(b x) is eventually periodic with the period T h : Remark 106. Similarly, the implications

(7.3) b P b x = b P b y =) b T b x = b T b y ;
(7.4)

P x = P y =) T x = T y
are not true. For this, we take x; y 2 S (1) ;

x(t) = [4;5) (t) [9;10) (t) [14;15) (t) ::: y(t) = [2;3) (t) [4;5) (t) [7;8) (t) [9;10) (t)
[12;13) (t) ::: = 1 is a periodic point of both x; y with I x = ( 1; 4); I y = ( 1; 2); P x = P y = f5; 10; 15; :::g and L x = L y = [0; 1): In T x the interval [4; 5) repeats within a period and in T y the intervals [2; 3); [4; 5) repeat within a period. The periods T coincide for x and y and (7.3), (7.4) are false in general.

Sums, di¤erences and multiples of periods

Theorem 64. The signals b

x; x are considered. a) Let p; p 0 1; 2 c

Or(b x) and we ask that

(8.1) 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b x ; (8.2) 8k 2 b T b x ; fk + zp 0 jz 2 Zg \ N _ b T b
x hold. We have p + p 0 1;

(8.3) 8k 2 b T b x ; fk + z(p + p 0 )jz 2 Zg \ N _ b T b
x and if p > p 0 ; then p p 0 1;

(8.4) 8k 2 b T b x ; fk + z(p p 0 )jz 2 Zg \ N _ b T b x :
b) Let T; T 0 > 0; t 0 2 I x ; 2 Or(x) be arbitrary with

(8.5) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ; (8.6) 8t 2 T x \ [t 0 ; 1); ft + zT 0 jz 2 Zg \ [t 0 ; 1) T x
ful…lled. We have on one hand that T + T 0 > 0 and

(8.7) 8t 2 T x \ [t 0 ; 1); ft + z(T + T 0 )jz 2 Zg \ [t 0 ; 1) T x
and on the other hand that T > T 0 implies T T 0 > 0 and

(8.8) 8t 2 T x \ [t 0 ; 1); ft + z(T T 0 )jz 2 Zg \ [t 0 ; 1) T x :
Proof. This is the special case of Theorem 26, page 64 when the eventually periodic points are periodic.

Theorem 65. We consider the signals b

x; x: a) Let p; k 0 1 and 2 c

Or(b x): Then p 0 = k 0 p ful…lls p 0 1 and

(8.9) 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b x implies (8.10) 8k 2 b T b x ; fk + zp 0 jz 2 Zg \ N _ b T b x :
b) Let T > 0; t 0 2 I x ; k 0 1 and 2 Or(x) be arbitrary. Then

T 0 = k 0 T ful…lls T 0 > 0 and 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x implies 8t 2 T x \ [t 0 ; 1); ft + zT 0 jz 2 Zg \ [t 0 ; 1) T x :
Proof. This is a direct consequence of Theorem 64.

Remark 107. Another way of expressing the statements of Theorem 65 is: if p 2 b P b x ; then fp; 2p; 3p; :::g b P b

x and if T 2 P x ; then fT; 2T; 3T; :::g P x :

9 We suppose that the signal x 2 S (n) is not constant and we take some 2 Or(x): We ask that is a periodic point of x. Then there is e T > 0 such that P x = f e T ; 2 e T ; 3 e T ; :::g:

Proof. This is a special case of Theorem 28, page 66.

Remark 108. An asymmetry occurs here, we have not asked in the hypothesis of Theorem 66, item a) that b

x is not constant; when b x is constant and equal with we have e p = 1 and b P b x = f1; 2; 3; :::g; thus the Theorem is still true. Like in the case of the eventually periodic points, item b) of the Theorem does not hold if x is constant and equal with , since in that case P x = (0; 1): Theorem 67. We suppose that the relation between b

x and x is given by (9.1) 

x(t) = b x( 1) ( 1;t0) (t) b x(0) [t0;t0+h) (t) b x (1) 
b x = [ k2N f 1 + kg = N _ :
Theorem 69. The non constant signal x 2 S (n) is considered and let the point = x( 1 + 0) be given, together with T > 0; t 0 2 I x such that

(10.3) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x
holds. Then t 0 ; a 1 ; b 1 ; a 2 ; b 2 ; :::; a k1 ; b k1 2 R; k 1 1 exist such that (10.4) 8t < t 0 ; x(t) = ;

(10.5) x(t 0 ) 6 = ;

(10.6)

t 0 < a 1 < b 1 < a 2 < b 2 < ::: < a k1 < b k1 = t 0 + T; (10.7) [a 1 ; b 1 ) [ [a 2 ; b 2 ) [ ::: [ [a k1 ; b k1 ) = T x \ [t 0 ; t 0 + T ); (10.8) 
T x = ( 1; t 0 ) [ [ k2N ([a 1 + kT; b 1 + kT ) [ [a 2 + kT; b 2 + kT ) [ ::: ::: [ [a k1 + kT; b k1 + kT ))
hold.

Proof. A t 0 like at (10.4), (10.5) exists because x is not constant and we infer I x = ( 1; t 0 ); t 0 < t 0 : We have from Lemma 2, page 199 that T x \ [t 0 ; 1) 6 = ?; thus 2 !(x) from (10.3) and the fact that T x \ [t 0 ; t 0 + T ) 6 = ? follows from Theorem 21, page 56.

We have on one hand the existence of " > 0 with (10.9) 8t 2 [t 0 ; t 0 + "); x(t) = x(t 0 ) (10:5)

= ;

showing that a 1 = min T x \ [t 0 ; t 0 + T ) > t 0 : On the other hand we must show the existence of b k1 like at (10.6), (10.7). Indeed, we suppose against all reason that such a b k1 does not exist and consequently that a k1 < b k1 < t 0 + T; [a k1 ; b k1 ) T x and [b k1 ; t 0 + T ) \ T x = ?: Let then t 2 [maxfb k1 ; t 0 + T g; t 0 + T ) arbitrary. We get b k1 maxfb k1 ; t 0 + T g t < t 0 + T i.e. t = 2 T x : We have also t > t T t 0 and t T 2 [t 0 ; t 0 ) T x ; thus

t 2 ft T + zT jz 2 Zg \ [t 0 ; 1) (10:3) 
T x ; contradiction. The existence of t 0 ; a 1 ; b 1 ; a 2 ; b 2 ; :::; a k1 ; b k1 like at (10.4),...,(10.7) is proved. We prove

T x ( 1; t 0 ) [ [ k2N ([a 1 + kT; b 1 + kT ) [ [a 2 + kT; b 2 + kT ) [ ::: [ [a k1 + kT; b k1 + kT ))
and let t 2 T x arbitrary. If t < t 0 the inclusion is obvious (from (10.4)), so we can suppose now that t t 0 : We get from (10.3) the existence of a …nite sequence t; t T; :::; t kT 2 T x ; k 0 with the property that t kT 2 [t 0 ; t 0 + T ): We infer from (10.7) the existence of j 2 f1; :::; k 1 g with t kT 2 [a j ; b j ) and we conclude that t 2 [a j + kT; b

j + kT ) 2 ( 1; t 0 ) [ [ k2N ([a 1 + kT; b 1 + kT ) [ [a 2 + kT; b 2 + kT ) [ ::: [ [a k1 + kT; b k1 + kT )): We prove ( 1; t 0 )[ [ k2N ([a 1 +kT; b 1 +kT )[[a 2 +kT; b 2 +kT )[:::[[a k1 +kT; b k1 + kT )) T x .
The fact that ( 1; t 0 ) T x coincides with (10.4) and we take an

arbitrary t 2 [ k2N ([a 1 + kT; b 1 + kT ) [ [a 2 + kT; b 2 + kT ) [ ::: [ [a k1 + kT; b k1 + kT )):
Some k 2 N and some j 2 f1; ::

:; k 1 g exist with t 2 [a j + kT; b j + kT ); thus t kT 2 [a j ; b j ) T x \ [t 0 ; t 0 + T ) T x \ [t 0 ; 1):
In particular we can see that t t kT t 0 : We have

t 2 ft kT + zT jz 2 Zg \ [t 0 ; 1) (10:3) 
T x ; wherefrom we get t 2 T x : (10.8) is proved.

Theorem 70. The signal x 2 S (n) is not constant and let the point 2 Or(x); 6 = x( 1 + 0), as well as T > 0; t 0 2 I x with (10.10)

8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x
ful…lled. Then t 0 ; a 1 ; b 1 ; a 2 ; b 2 ; :::; a k1 ; b k1 2 R; k 1 1 exist such that

(10.11) 8t < t 0 ; x(t) = x( 1 + 0); (10.12) 
x(t 0 ) 6 = x( 1 + 0); Proof. As x is not constant we get the existence of t 0 like in (10.11), (10.12) and if we take in consideration that I x = ( 1; t 0 ), we get t 0 < t 0 :

We have from Lemma 2, page 199 that T x \ [t 0 ; 1) 6 = ? and, as 2 !(x) (from (10.10)), the fact that T x \ [t 0 ; t 0 + T ) 6 = ? results from Theorem 21, page 56. We show that b k1 < t 0 + T and for this we suppose against all reason that b k1 = t 0 + T: Let t 2 [maxfa k1 ; t 0 + T g; t 0 + T ) arbitrary, …xed. We have t > t T t 0 and t 2 [a k1 ; t 0 + T ) T x ; thus we can apply (10.10):

t T 2 ft + zT jz 2 Zg \ [t 0 ; 1) T x : Since t T 2 [t 0 ; t 0 ); we have reached the contradiction = x(t) = x(t T ) = x( 1 + 0):
The fact that a 1 ; b 1 ; a 2 ; b 2 ; :::; a k1 ; b k1 exist making (10.13), (10.14) Remark 111. Theorem 69 and Theorem 70 are not special cases, written for periodicity, of Theorem 31, but rather versions of that Theorem. To be compared (10.5) page 68 with (10.6) page 105 and (10.13) page 106 .

Example 25. We take x 2 S (1) ;

x(t) = ( 1;0) (t) [1;2) (t) [3;5) (t) [6;7) (t) [8;10) (t)
[11;12) (t) ::: In this example, see Theorem 69, = 1; t 0 = 0; k 1 = 2; T = 5 and t 0 2 [ 2; 0):

Su¢ ciency conditions of periodicity

Theorem 71. Let b x 2 b S (n) , 2 c
Or(b x); p 1 and n 1 ; n 2 ; :::; n k1 2 f 1; 0; :::; p 2g; k 1 1; such that We have

(11.2) 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b x :
Proof. This is a special case of Theorem 32, page 69 written for k 0 = 1:

Theorem 72. The signal x 2 S (n) is given with = x( 1 + 0); T > 0 and the numbers t 0 ; a 1 ; b 1 ; a 2 ; b 2 ; :::; a k1 ; b k1 2 R, k 1 1 that ful…ll

(11.3) t 0 < a 1 < b 1 < a 2 < b 2 < ::: < a k1 < b k1 = t 0 + T; (11.4) T x = ( 1; t 0 ) [ [ k2N ([a 1 + kT; b 1 + kT ) [ [a 2 + kT; b 2 + kT ) [ ::: ::: [ [a k1 + kT; b k1 + kT )):
For any t 0 2 [a k1 T; t 0 ); the properties t 0 2 I x ;

(11.5) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x hold.

Proof. Let t 0 2 [a k1 T; t 0 ) arbitrary. From (11.3), (11.4) we get I x = ( 1; t 0 ); thus t 0 2 I x :

We infer

T x \ [t 0 ; 1) = [t 0 ; t 0 ) [ [a 1 ; b 1 ) [ ::: [ [a k1 ; b k1 ) [ [a 1 + T; b 1 + T ) [ :::
and we take an arbitrary t 2 T x \ [t 0 ; 1): We have several possibilities. a) Case t 2 [t 0 ; t 0 ); when ft + zT jz 2 Zg \ [t 0 ; 1) = ft; t + T; t + 2T; :::g

[t 0 ; t 0 ) [ [t 0 + T; b k1 ) [ [t 0 + 2T; b k1 + T ) [ ::: ( 1; t 0 ) [ [a k1 ; b k1 ) [ [a k1 + T; b k1 + T ) [ ::: T x :
We have used the fact that t T < t 0 T < a k1 T t 0 t < t 0 : b) Case t 2 [a j + kT; b j + kT ); k 0; j 2 f1; 2; :::; k 1 1g;

ft + zT jz 2 Zg \ [t 0 ; 1) = ft + ( k)T; t + ( k + 1)T; t + ( k + 2)T; :::g [a j ; b j ) [ [a j + T; b j + T ) [ [a j + 2T; b j + 2T ) [ ::: T x
and we have used For any t 0 2 [b k1 T; t 0 ); we have t 0 2 I x ;

t + ( k 1)T < t 0 < t 0 < a j t + ( k)T < b j < t 0 + T: c) Case
(11.10) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x :

Proof. Let t 0 2 [b k1 T; t 0 ) be arbitrary. From (11.6), (11.7) we infer I x = ( 1; t 0 ); thus t 0 2 I x :

We get T x \ [t 0 ; 1) = T x and we take an arbitrary t 2 T x \ [t 0 ; 1): Then k 0 and j 2 f1; 2; :::; k 1 g exist such that t 2 [a j + kT; b j + kT ): We have: x with the period p :

ft + zT jz 2 Zg \ [t 0 ; 1) = ft + ( k)T; t + ( k + 1)T; t + ( k + 2
(12.2) 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b x ;
b) p is the prime period of : for any p 0 with

(12.3) 8k 2 b T b x ; fk + zp 0 jz 2 Zg \ N _ b T b x ;
we infer p 0 2 fp; 2p; 3p; :::g: x ful…lls p 0 p: We apply Theorem 66, page 104.

Theorem 75. Let x 2 S (n) ; = x( 1+0); T > 0 and the points t 0 ; a 1 ; b 1 2 R having the property that (12.4) t 0 < a 1 < b 1 = t 0 + T;

(12.5) Proof. a) This is a special case of Theorem 72, page 107, written for k 1 = 1: b) We suppose against all reason that T 0 < T: Let us note in the beginning that

T x = ( 1; t 0 ) [ [a 1 ; b 1 ) [ [a 1 + T; b 1 + T ) [ [a 1 + 2T; b 1 + 2T
maxfa 1 ; b 1 T 0 g < minfb 1 ; a 1 + T T 0 g is true, since all of a 1 < b 1 ; a 1 < a 1 + T T 0 ; b 1 T 0 < b 1 ; b 1 T 0 < a 1 + T T 0 hold. We infer that any t 2 [maxfa 1 ; b 1 T 0 g; minfb 1 ; a 1 + T T 0 g) ful…lls t 2 [a 1 ; b 1 ) T x \ [t 00 ; 1) and t + T 0 2 ft + zT 0 jz 2 Zg \ [t 00 ; 1) (12:7) T x ;
and on the other hand we have b 1 maxfa 1 + T 0 ; b 1 g t + T 0 < minfb 1 + T 0 ; a 1 + T g a 1 + T; meaning that t + T 0 = 2 T x ; contradiction. We conclude that T 0 T: We get T = min P x and, as P x = fT; 2T; 3T; :::g from Theorem 66, page 104, we have that T 0 2 fT; 2T; 3T; :::g: Theorem 76. Let x 2 S (n) ; 2 Or(x); 6 = x( 1 + 0); T > 0 and the points t 0 ; a 1 ; b 1 2 R with the property that (12.8) 8t < t 0 ; x(t) = x( 1 + 0);

(12.9)

x(t 0 ) 6 = x( 1 + 0);

(12.10) b 1 T < t 0 a 1 < b 1 ;
(12.11) 

T x = [a 1 ; b 1 ) [ [a 1 + T; b 1 + T ) [ [a 1 + 2T; b 1 + 2T
T x ;
thus t + T 0 2 T x ; on the other hand b 1 maxfa 1 + T 0 ; b 1 g t + T 0 < minfb 1 + T 0 ; a 1 + T g a 1 + T;

wherefrom t + T 0 = 2 T x ; contradiction. We have proved that T 0 T: We get that T = min P x : Theorem 66, page 104 shows that P x = fT; 2T; 3T; :::g; wherefrom T 0 2 fT; 2T; 3T; :::g: Remark 113. Theorems 75, 76 represent the same phenomenon and their proof is formally the same: when T x has one of the forms (12.5), (12.11), the prime period of is T . The di¤ erence between the Theorems is given by the fact that = x( 1 + 0) in the …rst case and 6 = x( 1 + 0) in the second case. The statements (13.4), (13.5) are contradictory. b) We suppose that P x 6 = ? and let e t 2 R arbitrary, …xed.

We From 2 Or(x); t 0 2 I x and Lemma 2, page 199 we have that T x \[t 0 ; 1) 6 = ?; from (13.6) we infer that T x is superiorly unbounded, wherefrom we have that 2 !(x): Theorem 5, page 8 shows that !(x) = !( e t (x)) and we infer 2 !( e t (x))

Or( e t (x)): In particular T e t (x) is superiorly unbounded and T e t (x) \ [t 00 ; 1) 6 = ?

is true for any t 00 2 R: If x is constant, then e t (x) = x and t 00 2 I e t (x) , (13.7) take place trivially for any t 00 ; thus we shall suppose from now that x is not constant and consequently some t 0 2 R exists with (13.8) 8t < t 0 ; x(t) = x( 1 + 0);

(13.9) x(t 0 ) 6 = x( 1 + 0):

From (13.8), (13.9) we have I x = ( 1; t 0 ) and since t 0 2 I x ; we get t 0 < t 0 : Two possibilities exist. Case e t t 0 In this situation e t (x) = x and t 00 2 I e t (x) , (13.7) take place with t 00 = t 0 :

Case e t > t 0 Some " > 0 exists with 8t 2 ( e t "; e t); x(t) = x( e t 0) and we infer from here that e t " t 0 > t 0 : We take t 00 2 ( e t "; e t) arbitrary, …xed. We have e t (x)(t) =

x( e t 0); t < e t x(t); t t 00 :

The statement t 00 2 I e t (x) is true. In order to prove the ful…llment of (13.7), let (13.11) 8t 000 2 I x ; 9t 1 2 T x \ [t 000 ; 1); 9z 1 2 Z; t 1 + z 1 T 0 t 000 and t 1 + z 1 T 0 = 2 T x :

t
Let t 000 t 0 arbitrary such that ( 1; t 000 ] T x x( 1+0) and k 2 N with the property that t 1 + kT maxft 00 ; e tg; t 1 + kT + z 1 T 0 maxft 00 ; e tg: We have (13.12) = x(t 1 )

(13:6) = x(t 1 + kT ) = e t (x)(t 1 + kT ) (13:10) = e t (x)(t 1 + kT + z 1 T 0 ) = x(t 1 + kT + z 1 T 0 ) (13:6) = x(t 1 + z 1 T 0 ):
The statements (13.11), (13.12) are contradictory.

Remark 114. In Theorem 77, the statements about the eventual periodicity b) If 2 !(x) is an eventually periodic point of x : 9T > 0; 9T 0 > 0; 9t 0 2 R;9t 00 (11.4) page 107 ; instead of (12.5) page 109 : In order to understand the phenomenon, one may consider the case of x from Example 25, page 107: x 2 S (1) ; x 0 = fp 0 ; 2p 0 ; 3p 0 ; :::g imply the existence of n 1 ; n 2 1 relatively prime such that n 1 p = n 2 p 0 and if we denote this value with p 00 ; then b P b

x(t) = ( 1;0) (t
x \ b P b

x 0 = fp 00 ; 2p 00 ; 3p 00 ; :::g; b) P x = fT; 2T; 3T; :::g; P x 0 = fT 0 ; 2T 0 ; 3T 0 ; :::g =) 9n 1 1; 9n 2 1 relatively prime with n 1 T = n 2 T 0 and for T 00 equal with the previous value we get P x \ P x 0 = fT 00 ; 2T 00 ; 3T 00 ; :::g:

The limit case consists in signals that have all their points periodic, the periodic signals.

CHAPTER 8

Periodic signals

We give in Section 1 and Section 2 properties that are equivalent with the periodicity of the signals, structured in two groups.

The purpose of Section 3 is that of showing that all the values of the orbit of a periodic signal are accessible in an interval with the length of a period.

Section 4 proves the independence of periodicity on the choice of t 0 =initial time of x and limit of periodicity of x and gives the bounds of t 0 .

The property of constancy from Section 5 is interesting by itself and it is also a useful result in the exposure. The discussion from Section 6 shows the relation between stating the constancy of a signal and the corresponding statement that refers to the periodicity of its points.

When the relation between b x and x is

x(t) = b x( 1) ( 1;t0) (t) b x(0) [t0;t0+h) (t) ::: ::: b x(k) [t0+kh;t0+(k+1)h) (t) :::
we are interested to see how the periodicity of b x determines the periodicity of x and vice versa. This is made in Section 7.

The fact that the sums, the di¤erences and the multiples of the periods are periods is proved in Section 8.

Section 9 characterizes the form of b P b x ; P x ; in particular the existence of the prime period is proved.

Sections 10, 11 give necessary and su¢ cient conditions of periodicity, stated in terms of support sets. These conditions are inspired by those of the periodic points and use the fact that if all the values of a signal are periodic with the same period, then the signal is periodic.

A special case of periodicity is presented in Section 12. In this case the exact value of the prime period is known.

By forgetting some …rst values of the periodic signals b

x; x we get signals with the same period. This is the topic of Section 13.

In Section 14 we put the problem of changing the order of some quanti…ers in stating the periodicity of the signals.

The …rst group of periodicity properties

Remark 118. These properties involve the periodicity and the eventual periodicity of all the points 2 c

Or(b x); 2 Or(x): The properties (1.1),..., (1.6) are associated with the periodicity properties (1.1) page 94 ,..., (1.6) page 94 and the properties (1.7),...,(1.12) are associated with (1.7) page 94 ,..., (1.12) page 94 from Theorem 60, page 93. One should compare also these properties with (2.1) page 36 ,...,(2.6) page 37 and (2.7) page 37 ,...,(2.12) page 37 from Theorem 16, page 36. (1.2)

( 8 2 c
Or(b x); 8k 0 2 N _ ; 8k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x ;

(1.3)

8 2 c Or(b x); 8k 00 2 N; 8k 2 b T b k 00 (b x) ; fk + zpjz 2 Zg \ N _ b T b k 00 (b x) ; (1.4) 8 2 c Or(b x); 8k 2 N _ ; b x(k) = =) =) (b x(k) = b x(k + p) and k p 1 =) b x(k) = b x(k p)); (1.5) 8 2 c Or(b x); 8k 0 2 N _ ; 8k k 0 ; b x(k) = =) =) (b x(k) = b x(k + p) and k p k 0 =) b x(k) = b x(k p)); (1.6) 8 > < 
> :

8 2 c Or(b x); 8k 00 2 N; 8k 2 N _ ; b k 00 (b x)(k) = =) =) (b k 00 (b x)(k) = b k 00 (b x)(k + p) and and k p 1 =) b k 00 (b x)(k) = b k 00 (b x)(k p)).
b) The following statements are also equivalent for any T > 0:

( (1.10) 8 2 Or(x); 9t 0 2 I x ; 8t t 0 ; x(t) = =) (x(t) = x(t + T ) and t T t 0 =) x(t) = x(t T ));

(1.11) 8 2 Or(x); 9t 0 2 I x ; 8t 0

1 t 0 ; 8t t 0 1 ; x(t) = =) =) (x(t) = x(t + T ) and t T t 0 1 =) x(t) = x(t T ));
(1.12)

8 > < > :
8 2 Or(x); 8t 00 2 R; 9t 0 2 I t 00 (x) ; 8t t 0 ; t 00 (x)(t) = =) ( t 00 (x)(t) = t 00 (x)(t + T ) and and t T t 0 =) t 00 (x)(t) = t 00 (x)(t T )).

Proof. a) The proof of the implications = :::

(1:13) = b x(k + zp):
We infer in all the three cases that k + zp 2 b T b

x : b) The proof of the following implications

(1:7) =) (1:8) =) (1:9) =) (1:10) =) (1:11) =) (1:12)
follows from Theorem 16.

(1.12)=)(1.7) Let 2 Or(x): (1.12) written for t 00 su¢ ciently small in order that t 00 (x) = x gives the existence of t 0 2 I x with (1.14)

8t 1 t 0 ; x(t 1 ) = =) =) (x(t 1 ) = x(t 1 + T ) and t 1 T t 0 =) x(t 1 ) = x(t 1 T )):
From Lemma 2, page 199 we have T x \ [t 0 ; 1) 6 = ?: We take t 2 T x \ [t 0 ; 1) and z 2 Z arbitrary with t + zT t 0 and we have the following possibilities.

Case z < 0; = x(t)

(1:14) = x(t T ) (1:14) = x(t 2T ) (1:14) 
= ::: We have obtained in all these cases that t+zT 2 T x : We infer the truth of (1.7).

The second group of periodicity properties

Remark 119. The properties (2.1),...,(2.3) and (2.4),..., (2.6) from this group have occurred for the …rst time as (4.1) page 48 ,...,(4.3) page 48 and (4.4) page 48 ,..., (4.6) page 48 in Theorem 18, page 48. These properties refer to the signals themselves, and not to their values.

Theorem 80. The signals b

x 2 b S (n) ; x 2 S (n) are given. a) The following properties are equivalent, for any p 1, with any of (1.1),..., (1.6):

(2.1) 8k 2 N _ ; b x(k) = b x(k + p); (2.2) 8k 0 2 N _ ; 8k k 0 ; b x(k) = b x(k + p); (2.3) 8k 00 2 N; 8k 2 N _ ; b k 00 (b x)(k) = b k 00 (b x)(k + p):
b) For any T > 0; the following properties are equivalent with any of (1.7),..., (1.12):

(2.4) 9t 0 2 I x ,8t t 0 ; x(t) = x(t + T );

(2.5) 9t 0 2 I x ; 8t 0 1 t 0 ; 8t t 0 1 ; x(t) = x(t + T );

(2.6) 8t 00 2 R; 9t 0 2 I t 00 (x) ; 8t t 0 ; t 00 (x)(t) = t 00 (x)(t + T ): x and z 2 Z arbitrary with k + zp 1: We apply (2.3) written for k 00 = 0;

(2.7)

8k 1 2 N _ ; b x(k 1 ) = b x(k 1 + p)
and we have the following cases:

Case z > 0; = b x(k) (2:7) = b x(k + p) (2:7) = b x(k + 2p) (2:7) = (2:7) 
= :::

(2:7) = b x(k + zp); Case z = 0; = b x(k) = b x(k + zp); Case z < 0; b x(k + zp) (2:7) 
= b x(k + (z + 1)p) (1.7)=)(2.4) We suppose that Or(x) = f 1 ; :::; s g and from (1. 

T x

i ; in other words x(t + T ) = i = x(t):

(2.6)=)(1.7) We take in (2.6) t 00 2 R su¢ ciently small so that t 00 (x) = x and the existence of t 0 2 I x results with (2.10) 8t 1 t 0 ; x(t 1 ) = x(t 1 + T ):

Let 2 Or(x) arbitrary. We have from Lemma 2, page 199 that T x \ [t 0 ; 1) 6 = ? and we take t 2 T x \ [t 0 ; 1); z 2 Z arbitrary such that t + zT t 0 : The following possibilities exist: Case z > 0; = x(t) = :::

(2:10) = x(t) = :
In all these cases, the satisfaction of t + zT 2 T x is proved.

Remark 120. All the points of the orbit of a periodic signal are periodic and they have a common period p; T and vice versa, if all the points of the orbit of a signal are periodic and have a common period p; T , then the signal is periodic: Proof. In order to prove the real time statement, we suppose that T > 0; t 0 2 I x exist such that 8 2 Or(x); 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x is true and let 2 Or(x) arbitrary. The fact that T x is superiorly unbounded shows that 2 !(x); wherefrom the conclusion that Or(x) !(x): As far as the inclusion !(x) Or(x) is always true, we infer that !(x) = Or(x): (3.3) 8t 0 2 L x ; Or(x) = fx(t)jt t 0 g imply 8t 0 2 R; Or(x) = fx(t)jt t 0 g: Indeed, let t 0 2 R arbitrary. If t 0 2 L x then (3.2) is true from (3.3) and if t 0 2 RnL x then for any t 00 2 L x we have t 0 < t 00 and we can write that Or(x) = fx(t)jt t 00 g fx(t)jt t 0 g Or(x):

Theorem 83. a) We suppose that b x is periodic, with the period p 1 :

(3.4) 8k 2 N _ ; b x(k) = b x(k + p):
Then 

N _ = b L b x b L b x N _ :
Example 26. Let ; 0 ; 00 2 B n distinct and x 2 S (n) de…ned this way:

x(t) = ( 1;0) (t)
Theorem 85. The non constant signal x is given, together with T > 0 and we suppose that t 0 2 I x exists with the property that (4.2) 8t t 0 ; x(t) = x(t + T ): 

Then t 0 0 ; t 0 2 R
; t 0 ) = I x \ L x :
Proof. The …rst proof. As x is not constant, t 0 2 R exists with I x = ( 1; t 0 ): We suppose that Or(x) = f 1 ; :::; s g; s 2 and from the periodicity of x we get !(x) = f 1 ; :::; s g: From Theorem 23, page 58 we infer the existence of t 0 1 ; :::; t 0 s with L x 1 = [t 0 1 ; 1); :::; L x s = [t 0 s ; 1): The periodicity of 1 ; :::; s implies I x \L x 1 6 = ?; :::; I x \ L x s 6 = ? and the eventual periodicity of x shows, from Theorem 42, page 80 that L x = L x 1 \:::\L x s : It has resulted the fact that t 0 0 = maxft 0 1 ; :::; t 0 s g satis…es L x = [t 0 0 ; 1); I x \ L x = [t 0 0 ; t 0 ) 6 = ?: Proof. The second proof. We de…ne t 0 in the following way:

(4.4) 8t < t 0 ; x(t) = x( 1 + 0); (4.5) x(t 0 ) 6 = x( 1 + 0)
and this is possible since x is not constant. From (4.4), (4.5) we have I x = ( 1; t 0 ) and since t 0 2 I x ; we infer that t 0 < t 0 : We have from (4.2): We can see that

( 1; t 0 ) [ [t 0 + T; t 0 + T ) T x x( 1+0) ; t 0 ; t 0 + T = 2 T x x( 1+0 
) ; where t 0 < t 0 + T is the only possibility, thus t 0 < t 0 < t 0 + T < t 0 + T is true. Then t 0 0 t 0 exists such that t 0 0 + T > t 0 and (4.9)

8t 2 [t 0 0 + T; t 0 + T ); x(t) = x( 1 + 0);

(4.10)

x(t 0 0 + T 0) 6 = x( 1 + 0): We take some arbitrary t 00 2 [t 0 0 ; t 0 ); some arbitrary t 2 R and we have the following possibilities.

a) Case t 00 2 [t 0 ; t 0 ) a.1) Case t t 00 ; when x(t) = x( 1 + 0); a.2) Case t t 00 ; when t t 0 and x(t)

(4:2) = x(t + T ); b) Case t 00 2 [t 0 0 ; t 0 ) b.1) Case t t 00 ; when x(t) = x( 1 + 0); b.2) Case t t 00 b.2.1) Case t 2 [t 00 ; t 0 ); when t 0 0 + T t 00 + T t + T < t 0 + T < t 0 + T and x(t) = x( 1 + 0) (4:9) = x(t + T ); b.2.2) Case t t 0 ; when x(t) (4:2) = x(t + T ):
In all these cases t 00 2 I x and (4.3) hold. We suppose now, against all reason, that t 00 2 I x , (4.3) hold and t 00 = 2 [t 0 0 ; t 0 ): The following possibilities exist. i) Case t 00 < t 0 0 Some " 1 > 0 exists such that (4.11) 8t 2 (t 0 0 + T " 1 ; t 0 0 + T ); x(t) = x(t 0 0 + T 0) and let " 2 (0; minft 0 0 t 00 ; " 

6 = x( 1 + 0): ii) Case t 00 t 0 x( 1 + 0) = x(t 00 ) = x(t 0 ) (4:5) 6 = x( 1 + 0); contradiction.
Corollary 4. Let x be not constant, Or(x) = f 1 ; 2 ; :::; s g; s 2; with 1 = x( 1 + 0): We suppose that x has the period T > 0 and we consider the statements Remark 123. When we state the property of periodicity of a non constant signal x; the initial time=limit of periodicity t 0 belongs to some interval [t 0 0 ; t 0 ); outside this interval, any choice of t 0 makes the periodicity property of x be false. b) We suppose that t 0 2 R; h > 0 exist such that x is of the form Then: c.1) the ful…llment of (5.1) for p = 1 implies that 2 c Or(b x) = Or(x) exists such that (5.2), (5.5) are true, (5.1) holds for any p 1 and (5.4) holds for any t 0 2 R and any T > 0; c.2) the satisfaction of the statement (5.4) for some t 0 2 I x ;T 2 (0; h)[(h; 2h)[ ::: [ (qh; (q + 1)h) [ ::: implies the existence of 2 c

A property of constancy

(5.3) x(t) = x( 1 + 0) ( 1;t0) (t) x(t 0 ) [t0;t0+h) (
Or(b x) = Or(x) such that (5.2), (5.5) are true, (5.1) holds for any p 1 and (5.4) holds for any t 0 2 R and any T > 0:

Proof. a) From (5.1) written for p = 1 we get the existence of = b

x( 1) such that (5.2) is true. Moreover, as far as b

x is the constant function, (5.1) holds for any p 1: b) We suppose against all reason that x is not constant, thus t 0 0 2 R exists such that I x = ( 1; t 0 0 ): The hypothesis states the existence of t 0 2 I x with the property that (5.4) is true for T 2 (0; h) [ (h; 2h) [ ::: [ (qh; (q + 1)h) [ ::: In these conditions, Theorem 44, page 81 shows the existence of 2 !(x) such that 8t t 0 ; x(t) = ; 8t t 0 ; x(t) = x( 1 + 0) are true. We have obtained that = x( 1+0); contradiction with our supposition that x is not constant. (5.5) holds. As in this situation I x = L x = R and P x = (0; 1) are true, b) is proved. c) This is a consequence of a) and b).

Discussion on constancy

Remark 124. Theorem 62, page 100 (concerning the periodic points) and Theorem 86, page 123 (concerning the periodic signals) express essentially the same idea, namely that in the situation when b

x; x are related by 

x(t) = b x( 1) ( 1;t0) (t) b x ( 
x ; fk + zpjz 2 Zg \ N _ b T b x or 8k 2 N _ ; b x(k) = b x(k + p) true for p = 1; b) 9t 0 2 I x ;8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x or 9t 0 2 I x ;8t t 0 ; x(t) = x(t + T ) true for T 2 (0; h) [ (h; 2h) [ ::: [ (qh; (q + 1)h) [ ::: implies the truth of 8k 2 N _ ; b x(k) = ; 8t 2 R; x(t) = thus b
x; x are equal with the same constant . The validity 8p 1; of

8 2 c Or(b x); 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b x T heorem 80, page 117 
() 8k 2 N _ ; b x(k) = b x(k + p) and 8T > 0; of 9t 0 2 I x ; 8 2 Or(x); 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x
T heorem 80, page 117 () 9t 0 2 I x ; 8t t 0 ; x(t) = x(t + T ) shows the fact that the common conclusion of Theorem 62, page 100, and Theorem 86, page 123, is not surprising. 1

Discrete time vs real time

Theorem 87. We presume that b

x; x satisfy (7.1)

x(t) = b x( 1) ( 1;t0) (t) b x(0) [t0;t0+h) (t) ::: ::: b x(k) [t0+kh;t0+(k+1)h) (t) :::
for some t 0 2 R and h > 0: Then the existence of p 1 such that

(7.2) 8k 2 N _ ; b x(k) = b x(k + p)
implies that, for T = ph we have 9t 0 2 I x ;

(7.3) 8t t 0 ; x(t) = x(t + T ):
Proof. The hypothesis states that t 0 2 R; h > 0 and p 1 exist such that (7.1), (7.2) hold and we denote t 0 = t 0 h: We have (7.4) x( 1 + 0) = b x( 1);

(7.5) 8t t 0 ; x(t) = x( 1 + 0):
We …x some arbitrary t t 0 : Then k 2 N _ exists with t 2 [t 0 + kh; t 0 + (k + 1)h) wherefrom, for T = ph we infer

t + T 2 [t 0 + kh + T; t 0 + (k + 1)h + T ) = [t 0 + (k + p)h; t 0 + (k + p + 1)h):
We …nally get

x(t) = b x(k) (7:2) 
= b x(k + p) = x(t + T ) and, by taking into account (7.5) also, we infer that t 0 2 I x exists such that (7.3) is true.

Theorem 88. If b

x; x are not constant and i) t 0 2 R; h > 0 exist such that b

x; x ful…ll (7.1), ii) T > 0; t 0 2 I x exist such that x ful…lls (7.3) then T h 2 f1; 2; 3; :::g and k 0 2 N _ exists making

(7.6) 8k k 0 ; b x(k) = b x(k + p); (7.7) 8k 2 f 1; 0; :::; k 0 g; b x(k) = b x(k 0 )
true for p = T h : Proof. We presume that t 0 2 R; h > 0 exist such that (7.1) holds. We have also the existence of T > 0; t 0 2 I x such that (7.3) is true.

If T 2 (0; h) [ (h; 2h) [ ::: [ (qh; (q + 1)h) [ ::: then b x; x are both constant from Theorem 86 b), page 123, contradiction with the hypothesis. We suppose at this moment that T 2 fh; 2h; 3h; :::g and let p = T h ; p 1: Let k 1 2 Z be the number that ful…lls t 0 2 [t 0 + k 1 h; t 0 + (k 1 + 1)h) and we de…ne k 0 = maxfk 1 ; 1g: We have the following possibilities.

Case k 1 2: We have k 0 = 1: Let an arbitrary k k 0 for which an arbitrary, …xed t 2

[t 0 + kh; t 0 + (k + 1)h) ful…lls t + T 2 [t 0 + kh + T; t 0 + (k + 1)h + T ) = [t 0 + (k + p)h; t 0 + (k + p + 1)h)
and moreover (7.8) t t 0 + kh t 0 + k 0 h = t 0 h > t 0 :

We can write that b x(k) = x(t) 

(7:3);(7:8) = x(t + T ) = x(t 0 + (k + p)h) = b x(k +
t 0 + (k k 1 )h t 0 : We infer b x(k) = x(t 0 + kh) (7:9) 
= x(t 0 + (k k 1 )h)

(7:3);(7:11) = x(t 0 + (k k 1 )h + T ) = x(t 0 + (k k 1 + p)h) (7:10) = x(t 0 + (k + p)h) = b x(k + p):
We have proved the truth of (7.6) and the truth of (7.7) results from the fact that 8t t 0 ; 8k 2 f 1; 0; :::

; k 0 g; b x(k) = x(t) = x( 1 + 0): Example 27. We de…ne b x 2 b S (1) by 8k 2 N _ ; b x(k) = 1; if k 2 
f2; 4; 6; 8; :::g 0; otherwise and x 2 S (1) respectively by

x(t) = b x( 1) ( 1; 4) (t) b x(0) [ 4; 2) (t) b x(1) [ 2;0) (t) b x(2) [0;
2) (t) :::

We have I x = ( 1; 0); L x = [ 2; 1); 8t 2; x(t) = 0; 8t 2; x(t) = x(t + 4); 8k 1; b x(k) = b x(k + 2); 8k 2 f 1; 0; 1g; b x(k) = 0 thus (7.
3) page 125 is ful…lled with T = 4; t 0 = 2 and (7.6), (7.7) are true with p = 2; k 0 = 1: Furthermore, in this example h = 2:

Remark 125. In Theorem 88, the conjunction of (7.6) with (7.7) gives a special case of eventual periodicity. x has the periods p; p 0 1;

(8.1) 8k 2 N _ ; b x(k) = b x(k + p); (8.2) 8k 2 N _ ; b x(k) = b x(k + p 0 ): Then p + p 0 1, b x has the period p + p 0 ; (8.3) 8k 2 N _ ; b x(k) = b x(k + p + p 0 )
and if p > p 0 ; then p p 0 1 and b x has the period p p 0 ;

(8.4) 8k 2 N _ ; b x(k) = b x(k + p p 0 ): b) Let T; T 0 > 0; t 0 2 I x arbitrary with (8.5) 8t t 0 ; x(t) = x(t + T ); (8.6) 8t t 0 ; x(t) = x(t + T 0 )
ful…lled. We have on one hand that T + T 0 > 0 and

(8.7) 8t t 0 ; x(t) = x(t + T + T 0 );
and on the other hand that T > T 0 implies T T 0 > 0 and (8.8) 8t t 0 ; x(t) = x(t + T T 0 ):

Proof. This is a special case of Theorem 47, page 85 with the limit of periodicity k 0 = 1 at a) and t 0 2 I x at b).

Theorem 90. We consider the signals b

x; x: a) Let p; k 1 1: We have that p 0 = k 1 p ful…lls p 0 1 and

(8.9) 8k 2 N _ ; b x(k) = b x(k + p) implies (8.10) 8k 2 N _ ; b x(k) = b x(k + p 0 ): b) We suppose that T > 0; t 0 2 I x ; k 1 1 are given. We infer that T 0 = k 1 T ful…lls T 0 > 0 and (8.11) 8t t 0 ; x(t) = x(t + T ) implies (8.12) 8t t 0 ; x(t) = x(t + T 0 ):
Proof. This is a consequence of Theorem 89, the …rst assertion from a), b) that refers to the addition.

Remark 127. We can express the statements of Theorem 90 in an equivalent way under the form: if p 2 b P b x then fp; 2p; 3p; :::g b P b

x and if T 2 P x then fT; 2T; 3T; :::g P x : x is constant, then e p = 1 and b P b x = f1; 2; 3; :::g; thus (9.1) is still true. Unlike this situation, if x is constant, then (9.2) is false and we get P x = (0; 1) instead.

Theorem 92. We suppose that the relation between b

x and x is given by n) with c Or(b x) = f 1 ; :::; s g; s 2 be periodic with the period p 1: We have the existence, for any i 2 f1; :::; sg; of n i 1 ; n i 2 ; :::; n i ki 2 f 1; 0; :::; p 2g, k i 1; such that x is periodic with the period p; then we can apply for any i 2 f1; :::; sg Theorem 68, page 104, since any i is periodic with the period p.

(9.3) x(t) = b x( 1) ( 1;t0) (t) b x(0) [t0;t0+h) (t) b x(1) [t0+h;t0+2h) (t) ::: b x(k) [t0+kh;t0+ ( 
Theorem 94. Let x 2 S (n) non constant with Or(x) = f 1 ; :::; s g and we denote 1 = x( 1 + 0): We suppose that x is periodic with the period T > 0. Then t 0 and a i 1 ; b i 1 ; a i 2 ; b i 2 ; :::; a i ki ; b i ki 2 R exist, k i 1; i 2 f1; :::; sg such that (10.2) 8t < t 0 ; x(t) = 1 ;

(10.3) x(t 0 ) 6 = 1 ; (10.4) t 0 < a 1 1 < b 1 1 < a 1 2 < b 1 2 < ::: < a 1 k1 < b 1 k1 = t 0 + T; (10.5) [a 1 1 ; b 1 1 ) [ [a 1 2 ; b 1 2 ) [ ::: [ [a 1 k1 ; b 1 k1 ) = T x 1 \ [t 0 ; t 0 + T ); (11.6) T x i = [ k2N ([a i 1 + kT; b i 1 + kT ) [ [a i 2 + kT; b i 2 + kT ) [ ::: [ [a i k1 + kT; b i k1 + kT )):
For any t 0 2 [a Proof. We suppose that T and t 0 ; a 1 1 ; b 1 1 ; a 1 2 ; b 1 2 ; :::; a 

T; t 0 ) = [a 1 k1 T; t 0 ) \ [b 2 k2 T; t 0 ) \ ::: \ [b s ks T; t 0 );
i.e. in (11.8),(11.9) we can make the choice t 0 i = t 0 ; i 2 f1; :::; sg: In such circumstances t 0 2 I x and (11.7) holds: Proof. Item a) is a special case of Theorem 95, page 129 with k i = 1; i = 1; s: The theorem is also a special case of Theorem 56, page 89. Theorem 98. Let x 2 S (n) with Or(x) = f 1 ; :::; s g; s 2; T > 0 and the points t 0 ; t 1 ; :::; t s 1 2 R with the following property:

(12.4) t 0 < t 1 < ::: < t s 1 < t 0 + T; 

(12.5) T x 1 = ( 1; t 0 ) [ [t s 1 ; t 0 + T ) [ [t s 1 + T; t 0 + 2T ) [ [
= a s 1 ; t 1 = a s 1 1 = b s 1 ; :::; t s 2 = a 2 1 = b 3 1 ; t s 1 = a 1 1 = b 2 1 ; t 0 + T = b 1 1 :
The Theorem is also a special case of Theorem 57, page 89. 

(13:1) = b x(k 1 + kp) (13:3) = b x(k 1 + kp + p 0 ) (13:1) = b x(k 1 + p 0 ):
The statements (13.4) and (13.5) are contradictory. b) We suppose that P x 6 = ? and we take e t 2 R arbitrarily.

We (13.9) x(t 0 ) 6 = x( 1 + 0):

From (13.8), (13.9) we get I x = ( 1; t 0 ) and since t 0 2 I x ; we infer t 0 < t 0 : Two possibilities exist. Case e t t 0 In this case e t (x) = x and t 00 2 I e t (x) , (13.7) are true again for t 00 = t 0 :

Case e t > t 0 Some " > 0 exists with the property 8 2 ( e t "; e t); x( ) = x( e t 0): We infer from here that e t " t 0 > t 0 and for t 00 2 ( e t "; e t) arbitrary, …xed we have (13.10) e t (x)(t) = x(t); t t 00 x( e t 0); t < e t :

We notice that t 00 2 I e t (x) and, on the other hand, we can write for any t t 00 that e t (x)(t)

(13:10) = x(t) (13:6) = x(t + T ) (13:10) = e t (x)(t + T );
wherefrom the truth of (13.7). We prove P e t (x) P x : Let T 2 P x arbitrary; thus t 0 2 I x exists such that (13.6) takes place. We suppose against all reason that P e t (x) P x is false, i.e. some T 0 2 P e t (x) r P x exists. This means the existence of t 00 2 I e t (x) with (13.11) 8t t 00 ; e t (x)(t) = e t (x)(t + T 0 );

(13.12) 8t 000 2 I x ; 9t 1 t 000 ; x(t 1 ) 6 = x(t 1 + T 0 ):

Let t 000 2 I x \ [t 0 ; 1) arbitrary and we take k 2 N such that for t 1 t 000 whose existence is stated in (13.12), we have t 1 + kT maxft 00 ; e tg: We get (13.13)

x(t 1 )

(13:6) = x(t 1 + kT ) = e t (x)(t 1 + kT ) (13:11) = e t (x)(t 1 + kT + T 0 ) = x(t 1 + kT + T 0 ) (13:6) = x(t 1 + T 0 );
and (13.12), (13.13) are contradictory. Proof. a) Since (14.1)=)(14.2) is obvious, we prove (14.2)=)(14.1). We denote c

Or(b x) = f 1 ; :::; s g: From (14.2) we get that for any i 2 f1; :::; sg; some

p i 1 exists such that 8k 2 b T b x i ; fk + zp i jz 2 Zg \ N _ b T b x i :
The number p = p 1 ::: p s 1 ful…lls the property that 8i 2 f1; :::; sg; we have

(14.7) 8k 2 b T b x i ; fk + zpjz 2 Zg \ N _ fk + zp i jz 2 Zg \ N _ b T b x i ; i.e. (14.1) is true.
b) The implications (14.3)=)(14.4)=)(14.6) and (14.3)=)(14.5)=)(14.6) are obvious.

The implication (14.6)=)(14.3) has no proof.

Remark 130. In the previous Theorem, where the proof of the implication (14.6)=)(14.3) is missing, we address the problem of changing the order of the quanti…ers in stating periodicity properties of the signals. The importance of this aspect is given by the fact that we are tempted to de…ne the periodic signals by (14.2), (14.6) (all the points of c

Or(b x); Or(x) are periodic) and to use (14.1), (14.3) instead.

Further research

Remark 131. Remarks 93 and 94, page 90 from the eventually periodic signals, as well as Section 14, page 91 may be restated in the case of the periodic signals also, where they are still interesting.

CHAPTER 9

Examples

We sketch in this Chapter some constructions that either weaken, in discrete time and real time, the periodicity of the points to eventual periodicity, or change the sets of periods. 

(k 0 ) = 0 6 = = b x(k 0 ) instead of b y(k 0 ) = = b
x(k 0 ) as representing an error, or a perturbation of the periodicity of . We have: after removing from b

x the instant k 0 of periodicity of we loose the periodicity of , but we still have eventual periodicity with the same sets of periods b P b y = b P b

x and with the limit of periodicity k 0 + 1:

Example 30. The previous example is continued by taking the points 1 ; :::; s 2 B n that are not necessarily distinct, but they di¤ er from : x again, where is an eventually periodic point of b y and 1 + maxfk 1 ; :::; k s g is its limit of periodicity.

Example 31. We give the countable version of the construction. The sequence j 2 B n ; j 2 N _ is considered with 8j 2 N _ ; j 6 = and also the sequence k j 2 x the instant k 0 of equality with we loose the periodicity of , but we still have eventual periodicity with the same sets of periods and with the limit of periodicity k 0 + 1:

Example 33. We take now the distinct time instants k In this situation we say that b y is obtained from b x by addition of the instants k 1 ; :::; k s of equality with : We get the same sets of periods but eventual periodicity of only, with the limit of periodicity 1 + maxfk 1 ; :::; k s g: x of the instants (k j ) of equality with : Several possibilities exist in this construction, we point out the following two situations only, given by (k 1 ; k 0 ; k 1 ; :::) = (k 0 + 2; k 0 + 2 + e p; k 0 + 2 + 2e p; :::); k 0 + 2 2 f 1; 0; :::; e p 2g;

when, after the passage from b x to b y, the point is still periodic and i) it keeps its prime period if e p = 5; k 0 = 1; during a period interval, by adding instants of equality with ; instead of one occurrence of at k 0 + k5; we have two occurrences, k 0 + k5 and k 0 + 2 + k5; k 2 N;

ii) it doubles its prime period if e p = 4; k 0 = 1; with one occurrence of only during a period interval, at k 0 + k2; k 2 N:

Real time, periodic points

Remark 133. In this Section x 2 S (n) ; t 0 ; t 1 2 R; e T > 0 and the periodic point 2 Or(x) are given, such that t 0 < t 1 < t 0 + e T ; We notice that = x( 1 + 0) and we are in the special case of periodicity from Theorem 75, page 109 but a di¤ erent choice of or of T x does not change things signi…cantly.

T x =
Definition 20. We de…ne the function t 7 ! t that associates to each real number t 2 R an interval t R in the following way:

t = I x ; if t 2 I x ; [a; b); if t 2 [a; b); [a; b) T x
x(t) ; x(a 0) 6 = x(t); x(b) 6 = x(t): Remark 134. We notice that t is the greatest interval that contains t and where x has the constant value x(t).

Remark 135. The de…nition of t is possible since x is not constant; the non constancy of x is inferred from the form of T x : Example 35. Let now 0 2 B n with 0 6 = and let also the time instant t 00 2 T x : We de…ne the signal y(t) = x(t); t = 2 t 00 ; 0 ; t 2 t 00 :

We say that y is obtained by removing from x the interval t 00 of periodicity of : After the removal of t 00 ; the periodicity of is lost, but eventual periodicity still holds; the set of the periods is the same P y = P x and the limit of periodicity is sup t 00 .

Example 36. The points 1 ; :::; s 2 B n are taken and they are not required to be distinct, but we ask that they are distinct from : 1 6 = ; :::; s 6 = and we also take the time instants t 0 1 ; :::; t 0 s 2 T x with the property that the intervals t 0 1 ; :::; t 0 s are disjoint. We de…ne y(t) = ( x(t); t = 2 t 0 1 [ ::: [ t 0 s ; j ; 9j 2 f1; :::; sg; t 2 t 0 j :

Obviously the phenomenon is the same, is not periodic any longer, but it is eventually periodic with P y = P x and the limit of periodicity is maxfsup t 0 1 ; :::; sup t 0 s g:

Example 37. We consider the sequence j 2 B n n f g; j 2 N and also the time instants t 0 j 2 T x ; j 2 N having the property that t 0 0 ; t 0 1 ; t 0 2 ; ::: are disjoint. We de…ne y(t) = 

Lemmas

The purpose of this Appendix is that of presenting results that are necessary in the proofs of some Theorems. Several Lemmas are interesting by themselves too. x \ fk 0 ; k 0 + 1; k 0 + 2; :::g 6 = ? and we can also replace 2 !(x) with 2 Or(x); T x \ [t 0 ; 1) 6 = ?: Lemma 2. Let 2 Or(x) and t 0 2 I x : Then T x \ [t 0 ; 1) 6 = ?:

Proof. The hypothesis states that ( 1; t 0 ] T x x( 1+0) is true. If = x( 1 + 0); when t 0 2 T x ; we have T x \ [t 0 ; 1) 6 = ? true. And if 6 = x( 1 + 0); when T x \ ( 1; t 0 ] = ?; T x 6 = ?; we get T x (t 0 ; 1); thus T x \ [t 0 ; 1) 6 = ?: 199 Lemma 3. a) b

x 2 b S (n) is given and we suppose that 2 b !(b x) is eventually periodic with the period p 1 and with the limit of periodicity k 0 2 N _ : If k 00 k 0 ; then is eventually periodic with the period p and with the limit of periodicity k 00 : b) Let x 2 S (n) and we suppose that 2 !(x) is eventually periodic with the period T > 0 and with the limit of periodicity t 0 2 R: If t 00 t 0 ; then is eventually periodic with the period T and with the limit of periodicity t 00 : for an arbitrary t 00 t 0 : Indeed, we take some arbitrary t 2 T x \ [t 00 ; 1) and z 2 Z such that t + zT t 00 holds. Then t 2 T x \ [t 0 ; 1) and t + zT t 0 are true, thus we can apply (0.41). We have obtained that t + zT 2 T x ; i.e. (0.42) is ful…lled. b) Let x 2 S (n) ; 2 !(x) that is eventually periodic with the period T > 0 and the limit of periodicity t 0 2 R and we suppose that t 1 < t b) We suppose that x 2 S (n) ; 2 !(x) are given and is eventually periodic with the period T > 0 and the limit of periodicity t 0 2 R: If t 1 > t 0 and (0.47)

Proof. b)
x(t 1 0) 6 = ; x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x :

Let k 2 N arbitrary and we suppose against all reason that (0.46) is false. We obtain the contradiction: holds. Let k 2 N arbitrary: We get the existence of " 1 > 0 such that t 1 " 1 t 0 and (0.53) 8t 2 (t 1 " 1 ; t 1 ); x(t) = x(t 1 0)

= b x(k 1 + kp)
and respectively the existence of " 2 > 0 such that t 1 + kT " 2 t 0 and (0.54) 8t 2 (t 1 + kT " 2 ; t 1 + kT ); x(t) = x(t 1 + kT 0):

We denote " = minf" 1 ; " 2 g and we suppose against all reason that t 00 2 (t 1 + kT "; t 1 + kT ) exists with x(t 00 ) = : We infer (0.55) Remark 211. Lemma 5 refers to eventually periodic points and makes a weaker statement than the appropriate one of the eventually periodic signals. We cannot draw the conclusion here, like at the eventually periodic signals, that b

t
x(k 1 ) = b x(k 1 + kp); x(t 1 0) = x(t 1 + kT 0); x(t 2 ) = x(t 2 + kT ); but we can state that b x(k 1 ) 6 = ; x(t 1 0) 6 = ; x(t 2 ) 6 = imply b x(k 1 + kp) 6 = ; x(t 1 + kT 0) 6 = ; x(t 2 + kT ) 6 = : Lemma 6. Let t 1 < t 2 ; t 0 1 < t 0 2 ; T > 0 and T 0 2 (0; :, thus their minimum exists. We have t 0 > t 1 t and f 2 ; :::; s g 3 x(t 0 0) 6 = x(t 0 ) = 1 : Lemma 8. Let x 2 S (n) ; 2 !(x) be an eventually periodic point with the period T > 0 and the limit of periodicity t 0 2 R: For any t 1 > t 0 ; (0.62)

t
x(t 1 0) 6 = x(t 1 ) = implies (0.63) x(t 1 + T 0) 6 = x(t 1 + T ) = :

Proof. This is a special case of Lemma 5 b) when x(t 1 ) = and k = 1: Lemma 9. Let x 2 S (n) and the sequence T k 2 R; k 2 N that is strictly decreasingly convergent to T 2 R: Then 9N 2 N; 8k N; (0.64)

x(T k 0) = x(T k ) = x(T ):

Proof. Some > 0 exists with the property that (0.65) 8 2 [T; T + ); x( ) = x(T ):

As T k ! T strictly decreasingly, N 2 N exists such that (0.66) 8k N ; T < T k < T + :

We …x an arbitrary k N : If we take " 2 (0; T k T ) arbitrary also; we have (0.67) T T k < " < 0:

We add T k to the terms of (0.67) and we obtain, taking into account (0.66) too:

(0.68) T < T k " < T k < T + :

We conclude on one hand that x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b

x holds. We de…ne n 1 ; n 2 ; :::; n k1 2 N _ ; k 1 1 by (0.72) fn 1 ; n 2 ; :::; n k1 g = b T b x \ fk 0 ; k 0 + 1; :::; k 0 + p 1g:

For any k 00 k 0 ; with n 0 1 ; n 0 2 ; :::; n 0 p1 2 N _ ; p 1 1 de…ned by (0.73) fn 0 1 ; n 0 2 ; :::; n 0 p1 g = b T b x \ fk 00 ; k 00 + 1; :::; k 00 + p 1g; x \ fk 0 ; k 0 + 1; k 0 + 2; :::g 6 = ? and we can apply Theorem 21, page 56, wherefrom b T b

x \ fk 0 ; k 0 + 1; :::; k 0 + p 1g 6 = ?; b T b x \ fk 00 ; k 00 + 1; :::; k 00 + p 1g 6 = ? hence the de…nitions (0.72), (0.73) of n 1 ; n 2 ; :::; n k1 and n 0 1 ; n 0 2 ; :::; n 0 p1 make sense. Let j 2 f1; :::; k 1 g arbitrary. We claim that exactly one term of the sequence n j ; n j + p; n j + 2p; ::: belongs to b T b x \ fk 00 ; k 00 + 1; :::; k 00 + p 1g: Indeed, let us suppose against all reason that no term belongs to b T b x \ fk 00 ; k 00 + 1; :::; k 00 + p 1g:

As (0.71) implies 8k 2 N; n j + kp 2 b T b

x ; we infer the existence of k having the property that n j + kp k 00 1;

n j + (k + 1)p k 00 + p:

We infer the contradiction k 00 + p n j + (k + 1)p k 00 1 + p:

We suppose against all reason that several terms of the sequence n j ; n j +p; n j + 2p; ::: belong to b T b x \ fk 00 ; k 00 + 1; :::; k 00 + p 1g: This fact implies the existence of k 2 N with n j + kp k 00 ; n j + (k + 1)p k 00 + p 1;

wherefrom we get the contradiction k 00 + p n j + (k + 1)p k 00 + p 1:

We have shown the existence of the function b : b T b x \fk 0 ; k 0 +1; :::; k 0 +p 1g ! b T b

x \ fk 00 ; k 00 + 1; :::; k 00 + p 1g; b T b x \ fk 0 ; k 0 + 1; :::; k 0 + p 1g 3 n j ! n j + kp 2 b T b

x \fk 00 ; k 00 +1; :::; k 00 +p 1g; where k may depend on j and it is chosen conveniently.

We show that b is injective and we suppose for this, against all reason, that j 1 ; j 2 2 f1; :::; k 1 g; j 1 6 = j 2 ; k 1 ; k 2 2 N exist such that n j1 + k 1 p = n j2 + k 2 p where, without loss of generality, we have k 0 n j1 < n j2 k 0 + p 1:

On one hand we have n j2 n j1 = (k 1 k 2 )p 2 fp; 2p; 3p; :::g; thus n j2 n j1 p and on the other hand we obtain n j2 n j1 k 0 + p 1 k 0 ; thus n j2 n j1 p 1:

The contradiction that we have obtained completes the proof that b is injective.

We show that b is surjective and let j 0 2 f1; :::; p 1 g arbitrary. The fact that exactly one term of the sequence n 0 j 0 ; n 0 We take an arbitrary t 00 t 0 : As far as 2 !(x); we have that T x is superiorly unbounded and consequently T x \ [t 0 ; 1) 6 = ?: We can apply Theorem 21, page 56 and we get T x \ [t 0 ; t 0 + T ) 6 = ?; T x \ [t 00 ; t 00 + T ) 6 = ?; hence the de…nitions (0.75) of the disjoint intervals [a 1 ; b 1 ); [a 2 ; b 2 ); :::; [a k1 ; b k1 ) and (0.76) of the disjoint intervals [a 0 1 ; b 0 1 ); [a 0 2 ; b 0 2 ); :::; [a 0 p1 ; b 0 p1 ) make sense. Let t 2 T x \[t 0 ; t 0 +T ) arbitrary: We have from (0.74) that 8k 2 N; t+kT 2 T x and we claim that exactly one term of the sequence t; t + T; t + 2T; ::: belongs to T x \[t 00 ; t 00 +T ): This is proved similarly with a), the supposition that no term of the sequence belongs to T x \ [t 00 ; t 00 + T ) and the supposition that several terms of the sequence belong to T x \ [t 00 ; t 00 + T ) give contradictions. The reasoning shows the existence of a function : T x \[t 0 ; t 0 +T ) ! T x \[t 00 ; t 00 +T ); T x \[t 0 ; t 0 +T ) 3 t ! t + kT 2 T x \ [t 00 ; t 00 + T ); where k may depend on t and it is chosen conveniently.

We prove that is injective and let us suppose against all reason that t 1 ; t 2 2 T x \ [t 0 ; t 0 + T ); k 1 ; k 2 2 N exist with the property that t 1 + k 1 T = t 2 + k 2 T: We can suppose without loosing the generality that t 0 t 1 < t 2 < t 0 + T: On one hand t 2 t 1 = (k 1 k 2 )T 2 fT; 2T; 3T; :::g; thus t 2 t 1 T and on the other hand t 2 t 1 < t 0 + T t 0 = T; contradiction.

The proof that is surjective is made by taking e t 2 T x \ [t 00 ; t 00 + T ) arbitrarily and showing, by making use of (0.74), that exactly one term of the sequence e t; e t T; e t 2T; ::: belongs to T x \ [t 0 ; t 0 + T ):

The conclusion is that is bijective. 

Figure 1 .

 1 Figure 1. Asynchronous circuit.

Figure 2 .

 2 Figure 2. The state diagram of the circuit from Figure 1.

Notation 4 .Definition 2 .

 42 A : R ! B is the notation of the characteristic function of the set A R : 8t 2 R; A (t) = 1; if t 2 A; 0; otherwise : The discrete time signals are by de…nition the functions b x : N _ ! B n : Their set is denoted with b S (n) : The continuous time signals are the functions x : R ! B n of the form 8t 2 R;

Remark 3 .

 3 b x; b y; :: and the notation of the real time signals x; y; ::: The discrete time signals are sequences. The real time signals are piecewise constant functions.

3 . 4 .

 34 Initial and …nal values, initial and …nal time Definition The initial value of b x 2 b S (n) is b x( 1) 2 B n : For x 2 S (n) ; (3.1)

Definition 5 .

 5 By de…nition, the initial time (instant) of b

( 3 . 2 )Notation 6 .Definition 6 .Notation 7 .

 32667 8t t 0 ; x(t) = x( 1 + 0): The set of the initial time instants of x is denoted byI x : The …nal value 2 B n of b x 2 b S (n) is de…ned by 9k 0 2 N _ ; (3.3) 8k k 0 ; b x(k) =and the …nal value 2 B n of x 2 S (n) is de…ned by 9t 0 2 R;(3.4) 8t t 0 ; x(t) = : The usual notations for in (3.3) are bx(1 0) and lim

Definition 7 .Notation 8 .x 1 x= 1 ;Remark 8 .

 78118 If the …nal value of b x exists, then any k 0 2 N _ like in (3.3) is called …nal time (instant) of b x. Similarly, if the …nal value of x exists and (3.4) holds, then any such t 0 2 R is called …nal time (instant) of x. The set of the …nal time instants of b x is denoted by b F b x : The set of the …nal time instants of x has the notation F x : Example 3. The signals from (1.2), (1.3) ful…ll lim (t) = ; b F b x = N _ ; I x = F x = R and the signal from (1.5) ful…lls lim t! I x = ( 1; 0); F x = [0; 1): The signals (1.4), (1.6) have no …nal value: b F b x = F x = ?: For arbitrary b x; x the initial value exists and it is unique; the initial time of b

(3. 10 )

 10 8t 2 R; x(t) = x(1 0) () F x = R: Proof. a) Two possibilities exist. Case k 0 = 1 The statements 8k 2 N _ ; b x(k) = b x(1 0) and fk 0 j8k k 0 ; b x(k) = bx(1 0)g = N _ are equivalent indeed and this special case of (3.5) coincides with (3.6):Casek 0 0 We have that (8k k 0 ; b x(k) = b x(1 0) and b x(k 0 1) 6 = b x(1 0)) is equivalent with fk 0 j8k k 0 ; b x(k) = b

Theorem 3 .

 3 Let the signal x 2 S (n) from (3.1). We de…ne b x 2 b S (n) by b x( 1) = ; 8k 2 N; b x(k) = x(t k ): The following statements hold. a) lim k!1 b x(k) exists if and only if lim

4. The forgetful function Definition 8 .

 8 The discrete time forgetful function b k 0

Remark 10 .

 10 Let us give b x by its values b x = x 1 ; x 0 ; x 1 ; ::: where x k 2 B n ; k 2 N _ : Then b 1 (b x) = x 0 ; x 1 ; ::: i.e. b x has forgotten its …rst value. Furthermore, b 0 (b x) makes b x forget nothing and b k 0 (b x) makes b x forget its …rst k 0 1 values.

5 .Definition 10 . 1 Example 4 .de…ne b x 2

 510142 Orbits, omega limit sets and support sets Definition 9. The orbits of b x 2 b S (n) ; x 2 S (n) are the sets of the values of these functions: c Or(b x) = fb x(k)jk 2 N _ g; Or(x) = fx(t)jt 2 Rg: The omega limit set b !(b x) of b x is de…ned as b!(b x) = f j 2 B n ; 9(k j ) 2 d Seq; 8j 2 N _ ; b x(k j ) = gand the omega limit set !(x) of x is de…ned by!(x) = f j 2 B n ; 9(t k ) 2 Seq; 8k 2 N; x(t k ) = g:The points of b !(b x); !(x) are called omega limit points. We

  0) [0;1) (t) ::: b x(k) [k;k+1) (t) ::: We see that c Or(b x) = Or(x) = B 2 and b !(b x) = !(x) = f(0; 1); (1; 0); (1; 1)g:

Definition 11 .Remark 12 .

 1112 For b x 2 b S (n) ; x 2 S (n) and 2 B n ; we de…ne the support sets of by b T b x = fkjk 2 N _ ; b x(k) = g;T x = ftjt 2 R; x(t) = g:The previous De…nition allows us to express the fact that t is an initial time instant of x, t 2 I x under the equivalent form ( 1; t] T x x( 1+0) : We shall use sometimes this possibility in the rest of the exposure.Theorem 5. Let b x 2 b S (n) ; x 2 S (n) . We have that a) b !(b x) = f j 2 B n ; b T b x is in…niteg; !(x) = f j 2 B n ; T x isunbounded from aboveg; b) b !(b x) 6 = ?; !(x) 6 = ?; c) for any e k 2 N; e t 2 R the following diagrams commute c Or(b e k (b x)) c Or(b x) [ [ b !(b e k (b x)) = b !(b x) ;

2 n g: Because in the equation b T b x 1 [

 1 ::: [ b T b x 2 n = N _ the right hand set is in…nite, we infer that in…nite sets b T b x i always exist, let them be, without loosing the generality, b T b x 1 ; :::; b T b x p : We have from a) b !(b x) = f 1 ; :::; p g: Similarly, we consider the equation T x 1 [ ::: [ T x

x 1 ;

 1 :::; T x p : We infer from a) that !(x) = f 1 ; :::; p g: c) We prove that b !(b x) c Or(x): Some sets b T b x i may exist which are …nite nonempty, let them be without loosing the generality b T b x p+1 ; :::; b T b x s ; where p s 2 n : Then b !(b x) = f 1 ; :::; p g f 1 ; :::; s g = c Or(b x):

  x i are unbounded from above, i.e. when p = s: b !(b e k (b x)) = b !(b x) is a consequence of the fact that for any 2 B n ; the sets b T b

( 5 . 1 )

 51 x(t) = b x( 1) ( 1;t0) (t) b x(0) [t0;t1) (t) ::: b x(k) [t k ;t k+1 ) (t) ::: a) We have c Or(b x) = Or(x) and b !(b x) = !(x). b) For any e k 2 N; e t 2 R we infer b !(b e k (b x)) = !( e t (x)); if either e k = 0; e t t 0 ; or e k 1; e t 2 (t e k 1 ; t e k ], then c Or(b e k (b x)) = Or( e t (x)). Proof. a) We have c Or(b x) = fb x(k)jk 2 N _ g (5:1)

8j 2 N

 2 _ ; t 0 j+1 def = t kj ; for which we get 8j 2 N _ ; x(t 0 j+1 ) = x(t kj ) = b x(k j ) = ; thus 2 !(x) and b !(b x) !(x): The inverse inclusion is proved similarly. 2 If = x( e t 0) then the the inclusion T e t (x) T x \ [ e t; 1) is strict, otherwise it takes place as equality. b) We …x e k 2 N; e t 2 R arbitrarily. The …rst statement results from b !(b e k (b x)) We prove the second statement. If e k = 0; e t t 0 ; then b e k (b x) = b x and e t (x) = x; thus c Or(b e k (b x)) = c Or(b x) a)

T b x 1 [b x 1 [

 11 2 n : From the proof of Theorem 5, if b T b x 1 ; :::; b T b x p are the in…nite sets b T b x i ; i = 1; 2 n then b !(b x) = f 1 ; :::; p g: The number k 0 = 1 + maxfkjk 2 N _ ; b x(k) 2 c Or(b x) r b !(b x)g; if c Or(b x) r b !(b x) 6 = ? 1; otherwise satis…es the property that 8i 2 f1; :::; pg; 8k 00 k 0 ; fk 00 ; k 00 +1; k 00 +2; :::g\ b T b x i 6 = ?; thus 8k 00 k 0 ; f 1 ; :::; p g = fb x(k)jk 2 b ::: [ b T b x p g = fb x(k)jk 2 ( b T ::: [ b T b

x 1 [

 1 ::: [ T x p g = fx(t)jt 2 (T x 1 [ ::: [ T x p ) \ [t 00 ; 1)g = fx(t)jt t 00 g: Remark 13. Let the signals b x and x. If c Or(b x) 6 = b !(b x); the time instant k 0 2 N _ exists that determines two time intervals for b x : f 1; 0; :::; k 0 g when b x can take values in any of c Or(b x) r b !(b x); b !(b x) and fk 0 + 1; k 0 + 2; :::g when b x takes values in b

( 1 : 2 ) holdsg: Notation 10 .

 1210 We denote with b L b x the set of the limits of periodicity of 2 c Or(b x) : b L b x = fk 0 jk 0 2 N _ ; 9p 1; (1:1) holdsg and L x denotes the set of the limits of periodicity of 2 Or(x) :

  ) = ::: Remark 15. The requirement b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g 6 = ? is one of nontriviality. It is necessary, because for any point 2 c Or(b x) r b !(b x); the set b T b x is …nite, some k 0 2 N _ exists such that b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g = ? and ( 8k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b x ; equivalent with 8k; k 2 ? =) fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b x ; is true, 8p 1: Remark 16. The eventually periodic points 2 c Or(b x) are omega limit points 2 b !(b x) because the set b T b x is necessarily in…nite. Remark 17. De…nition 12 avoids the triviality expressed by the possibility b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g = ?, but a way of obtaining the same result is to ask 2 b !(b x) instead of 2 c Or(b x); see Lemma 1, page 199, since in that case we have that b T b x is in…nite and 8k 0 2 N _ ; b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g 6 = ?: With this note, the discrete time part of De…nition 12 becomes, equivalently: 2 b !(b x) is eventually periodic with the period p and the limit of periodicity k 0 if 8k 2 b T b

Remark 21 .Example 5 .x( 1 ; 1 )

 21511 We have b P b x 6 = ? () b L b x 6 = ? and P x 6 = ? () L x 6 = ?: The signal b x 2 b S (2) with b T b = f1; 3; 5; :::g ful…lls the property that (1; 1) is eventually periodic with the period 2 and the limit of periodicity k 0 = 0: Example 6. Let b x 2 b S (2) arbitrary with (1; 1) = 2 c Or(b x) and b x( 1) 6 = b

Notation 11 .Notation 12 .

 1112 ) are called prime limits of periodicity (of b x; x): We use the notation b P b x for the set of the periods of b x : b P b x = fpjp 1; 9k 0 2 N _ ; (2:1) holdsg and also the notation P x for the set of the periods of x : P x = fT jT > 0; 9t 0 2 R; (2:2) holdsg: We use the notations b L b x = fk 0 jk 0 2 N _ ; 9p 1; (2:1) holdsg;

Example 9 .

 9 Let b x 2 b S (n) ; 2 c Or(b x) with b T b x = f 1; 1; 3; 5; :::g; thus the point is periodic with the period p = 2:

  30. If b x is periodic with the period p then all its values 2 c Or(b x) are periodic with the period p: This means in particular that the periodicity of b x implies c Or(b x) = b !(b x): Remark 31. If the signal x is periodic with the period T then all the values 2 Or(x) are periodic with the same period T . Note that Or(x) = !(x): Remark 32. The periodic signals are special cases of eventually periodic signals when k 0 = 1 instead of k 0 2 b L b

Theorem 8 .

 8 Let the signals b x 2 b S (n) ; x 2 S (n) : a) The statements (1.1) 9 2 B n ; 9k 0 2 N _ ; 8k k 0 ; b x(k) = ;

Theorem 10 .

 10 .1)-{(3.5),(3.6)}; (3.2)-{(3.7),(3.8)}; (3.3)-{(3.9),(3.10)}; (3.4)-{(3.11), (3.12)}; -(3.1)-(3.2), (3.3)-(3.4) and (3.5)-(3.6)-(3.7)-(3.8), (3.9)-(3.10)-(3.11)-(3.12); -(3.1)-(3.3), (3.2)-(3.4) and (3.5)-(3.6)-(3.9)-(3.10), (3.7)-(3.8)-(3.11)-(3.12). Let the signals b x 2 b S (n) ; x 2 S (n) : a) The following statements are equivalent with the eventual constancy of b

0 6 =

 6 This corresponds to the situation when 0 2 c Or(b x) n b !(b x) and b T b x 0 \ fk 0 ; k 0 + 1; k 0 + 2; :::g = ?: The statement (3.14) ( 8k 2 b T b x 0 \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b x 0 takes place trivially. Case 0 = In this case b T b x \fk 0 ; k 0 +1; k 0 +2; :::g 6 = ? and let k 2 b T b x \fk 0 ; k 0 +1; k 0 +2; :::g; z 2 Z arbitrary such that k + zp k 0 : Then from (3.13) we get b x(k + zp) = ; thus k + zp 2 b T b x : (3.1)=)(3.2) Let p 1; 2 c Or(b x) be arbitrary. From (3.1) we have the existence of k 0 2 N

b T b k 00 (

 00 b x) = ? This situation occurs because c Or(b k 00 (b x)) c Or(b x); in the situation when 2 c Or(b x) n c Or(b k 00 (b x)): The statement

1 )

 1 We write (3.4) for p = 1 and for an arbitrary 2 b !(b x) (we have b !(b x) 6 = ?). Some k 00 2 N exists then with

Theorem 11 .8p 1 ; 9 2 c

 1112 Let the signals b x 2 b S (n) ; x 2 S (n) : a) The following statements are equivalent with the eventual constancy of b x : Or(b x); 9k 0 2 N _ ; b T b

T b k 00 (b x) 6 = ? and 8k 2 b T b k 00 (b x) ; fk + zpjz 2

 006002 Or(b x); 9k 00 2 N; b Zg \ N _ b T Or(b x); 9k 0 2 N _ ; 9k 1 k 0 ; b x(k 1 ) = and and 8k k 0 ; b x

  Proof. a) (1.1)=)(4.1) Let p 1 arbitrary. From (1.1) we have the existence of 2 B n and k 0 2 N _ with the property (4.13) 8k k 0 ; b x(k) = : We have that b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g 6 = ? and let k 2 b T b x ; z 2 Z arbitrary such that k k 0 ; k + zp k 0 : We get from (4.13) that k + zp 2 b T b x : (4.1)=)(4.2) Let p 1 arbitrary. (4.1) shows the existence of 2 c Or(b x) and k 0 2 N _ such that (4.14) b T b

p 1 :

 1 + k 00 ) = ; in other words k + zp 2 b T (4.2) states the existence of 2 c Or(b x) and k 00 2 N such that (4.16) b T b k 00 (b x) 6 = ?; (4.17) 8k 2 b T b k 00 (b x) ; fk + zpjz 2 Zg \ N _ b T b k 00 (b x) : We de…ne k 0 = k 00 1: (4.16) shows the existence of k 2 b T b k 00 (b x) ; thus b x(k +k 00 ) = : With the notation k 1

  4) Let p 1 arbitrary. From (4.3) we infer the existence of 2 c Or(b x) and k 0 2 N _ such that (4.18)

(4.24) 8k 2 N

 2 _ ; b x(k + k 00 ) = =) (b x(k + k 00 ) = b x(k + k 00 + 1) and and k 0 =) b x(k + k 00 ) = b x(k + k 00 1)): We de…ne k 0 = k 00 1: With the notation k 2 = k + k 00 ; where k 2 N _ ; we get k 2 = k + k 0 + 1 k 0 and (4.23), (4.24) become (4.25)

8 2 c

 2 Or(b x); 8 2 Or(x) in Theorem 10, page 19 can be replaced by the existential quan-ti…er in two di¤ erent ways; the …rst possibility expressed at (4.1), (4.5) is: 9 2 c Or(b x); :::; b T b

Remark 46 .

 46 The statements (3.2), (3.4) and (3.7), (3.11); (4.2), (4.4) and (4.7), (4.11); (5.2), (5.4) and (5.7), (5.11); (6.2) and (6.5) are of periodicity of b k 00 (b x); t 00 (x): The eventual periodicity of b x; x results from the fact that b k 00 (b x); t 00 (x) ignore the …rst values of b x; x:

  Remark 49. The eventually constant signals b x; x ful…ll b !(b x) = f g; !(x) = f g like the constant signals, but c Or(b x); Or(x) contain also other points than ; in general. The points of c Or(b x) n b !(b x); Or(x) n !(x) are some '…rst values' of these signals. CHAPTER 4

1 t 0 1 t 0 ;

 1010 7) and (3.8) (the last contains 8t 0 ) are inspired by (4.5) page 25 (containing 9t 0 T x \ [t 0 1 ; 1) 6 = ?) and (4.6) page 25 (containing 9t 0 1 2 R; T x \ [t 0 1 ; 1) 6 = ?); -(3.9) (containing 8t 00 2 R) is inspired by (4.7) page 25 and (4.8) page 25 (containing 9t 00 2 R...T t 00 (x) \ [t 0 ; 1) 6 = ?); -(3.10) and (3.11) (the last contains 8t 0 1

1 t 0 1 t 0

 1010 .1), (3.2) (the last contains 9 2 c Or(b x); 8k 0 2 N _ ) are inspired by (5.1) page 30 (containing 9 2 b !(b x); 9k 0 2 N _ ); -(3.3) (containing 9 2 c Or(b x); 8k 00 2 N) is inspired by (5.2) page 30 (containing 9 2 b !(b x); 9k 00 2 N); -(3.4), (3.5) (the last contains 9 2 c Or(b x); 8k 0 2 N _ ) are inspired by (5.3) page 30 (containing 9 2 b !(b x); 9k 0 2 N _ ); -(3.6) (containing 9 2 c Or(b x); 8k 00 2 N) is inspired by (5.4) page 30 (containing 9 2 b !(b x); 9k 00 2 N); -(3.7) and (3.8) (the last contains 9 2 Or(x); :::; 8t 0 ) are inspired by (5.5) page 31 (containing 9 2 !(x); :::; 9t 0 ) and (5.6) page 31 (containing 9 2 !(x); 9t 0 1 2 R); -(3.9) (containing 9 2 Or(x); 8t 00 2 R) is inspired by (5.7) page 31 and (5.8) page 31 (containing 9 2 !(x); 9t 00 2 R); -(3.10) and (3.11) (the last contains 9 2 Or(x); :::; 8t 0 1 t 0

Proof. a) ( 1 . 1 ) 2 c

 112 =)(3.1) Let us prove …rst that (1.1) implies (3.13) 9 Or(b x); 8p 1; 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b x : Indeed, the hypothesis states the existence of 2 c Or(b x) with 8k 2 N _ ; b x(k) = and let p 1; k 2 b T b x ; z 2 Z arbitrary such that k + zp 1: Then b x(k + zp) = ; thus k + zp 2 b T b x and (3.13) holds. (3.13) obviously implies (3.1). (3.1)=)(3.2) We take p 1 arbitrarily. The truth of (3.1) shows the existence of 2 c

  ) once again in order to infer that b x(k) = b x(k p): (3.5)=)(3.6) For an arbitrary p 1; the hypothesis states the existence of 2 c

( 4 .

 4 3)=)(1.1) We write (4.3) for p = 1 and k 00 = 0; when b k 00 (b x)(k) = b x(k); with k = 1; 0; 1; ::: and we get b x( 1) = b x(0) = b x(1) = ::: We denote with the common value of b x( 1); b x(0); b x(1); ::: (1.1) holds. b) (1.4)=)(4.4) If 2 B n exists with 8t 2 R; x(t) = ; then for arbitrary T > 0 and t 0 2 R;

  (b x) = Or(x): We infer then the equivalence between (1.3) page 35 and (1.6) page 35 : 9 2 B n ; c Or(b x) = f g () 9 2 B n ; Or(x) = f g: 6. Discussion Remark 58. The statements from Theorems 15, 16, 17, 18 are present in discrete time -real time couples: (1.1)-(1.4), (1.2)-(1.5),... This continues the previous style of organizing the exposure, corresponding to our intuition that strong analogies work between the discrete time and the real time properties of the signals. Theorem 19 gives the relation between the discrete time and the real time constancy of the signals.

1 :

 1 And in order to rediscover constancy, they should hold for any p; T and any 2 c Or(b x); 2 Or(x): Remark 64. Let us …x in (2.3) p 1; 2 c Or(b x) and k 00 2 N: In general we have c Or(b k 00 (b x)) c Or(b x) (we have shown this at Theorem 5 c), page 8) and the points 2 c Or(b x) r c Or(b k 00 (b x)) may satisfy b T b k 00

8 2 c

 2 Or(b x); 8 2 Or(x) with 9 2 c Or(b x); 9 2 Or(x): This is possible since constancy means that the orbits have exactly one point, c Or(b x) = f g; Or(x) = f g: The proofs of the implications are in general similar with those of the second group. Remark 71. The properties 8k 2 N _ ; b x(k) = b x(k + p); 9t 0 2 I x ; 8t t 0 ; x(t) = x(t + T ) from (4.1), (4.4) are of periodicity of the signals b

  with (3.1) page 19 ,...,(3.4) page 19 and (1.5),...,(1.12) with (3.5) page 19 ,...,(3.12) page 20 : We make also the associations (1.3)-(6.1) page 31 , (1.4)-(6.2) page 31 and (1.9)-(6.3) page 31 , (1.10)-(6.4) page 31 , (1.11)-(6.5) page 31 , (1.12)-(6.6) page 31 with the properties of eventual constancy of the signals from group four, see Theorem 13, page 31. Theorem 20. We consider the signals b x 2 b S (n) ; x 2 S (n) . a) The following statements are equivalent for any p 1 and any 2 b !(b x) :

  and 2 b !(b x) with the property that b L b x 6 = ?:Then k 0 2 N _ exists with b L b x = fk 0 ; k 0 + 1; k 0 + 2; :::g: b) Let x 2 S (n)non constant and 2 !(x) having the property that L x 6 = ?:Then t 0 2 R exists such that L x = [t 0 ; 1): Proof. a)The statement is a consequence of Lemma 3, page 200. b) Because x is not constant, t 0 2 R exists with I x = ( 1; t 0 ): Let T 2 P x : b.i) We show …rst that t 0 T = 2 L x and we suppose against all reason that t 0 T 2 L x : We have two possibilities.Case = x( 1 + 0)

5 . 5 )

 55 8t t 0 ; x(t) = is true and in this case(5.4) holds for any T > 0: c) We ask that (5.3) is ful…lled under the form(5.6) x(t) = b x( 1) ( 1;t0) (t) b x(0) [t0;t0+h) (t) ::: ::: b x(k) [t0+kh;t0+(k+1)h) (t) ::: and let 2 b !(b x) = !(x) 2 be arbitrary. The following statements hold: c.1) If k 0 2 N _ exists making (5.1) true for p = 1, then (5.2) is true, (5.1) holds for any p 1 and t 0 2 R exists such that (5.5) holds and (5.4) is also true for any T > 0: c.2) If t 0 2 R; T 2 (0; h) [ (h; 2h) [ ::: [ (qh; (q + 1)h) [ ::: exist making (5.4) true, then (5.5) is true, (5.4) is true for any T > 0 and k 0 2 N _ exists such that (5.2) is true and (5.1) is also true for any p 1. Proof. a) Some k 0 2 N _ exists with (5.1) ful…lled for p = 1, meaning that 8k; 8z; (k 2 b T b x and z 2 Z and k k 0 and k

2 b T b x and z 2 Z

 2 be arbitrary with k k 0 and k + zp k 0 ( b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g 6 = ? because 2 b !(b x) = !(x) and b T b

Then 1 1 then 1 7 .

 1117 is an eventually periodic point of b x, p = 3 is its period and any k 0 = 1 is the prime limit of periodicity. If b x(4) = b x(5) = b x(7) = b x(8) = ::: = 0 then 3 is its prime period and if b x(4) = b x(5) = b x(7) = b x(8) = ::: = is its prime period. Support sets vs sets of periods Remark 79. Let x; y 2 S (n) be two signals and 2 !(x) \ !(y): One might be tempted to think that implications of the kind (7.1)

  5) [ [9; 10) [ [14; 15) [ ::: T y = ( 1; 1) [ [2; 3) [ [4; 5) [ [7; 8) [ [9; 10) [ [12; 13) [ :::

Theorem 26 .

 26 The signals b x; x are considered. a) Let p; p 0 1; k 0 2 N _ , 2 b !(b x) and we ask that (8.1) 8k 2 b T b

(8: 5 ) 2 T( 8 . 10 )

 52810 x ; t + z(T + T 0 ) hyp t 0 ; t + z(T + T 0 ) Theorem 27. a) Let p; k 1 1; k 0 2 N _ and 2 b !(b x): Then p 0 = k 1 p ful…lls p 0 1 and (8.9) 8k 2 b T bx \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T bx implies 8k 2 b T b x \fk 0 ; k 0 +1; k 0 +2; :::g; fk +zp 0 jz 2 Zg\fk 0 ; k 0 +1; k 0 +2; :::g b T bx :

Corollary 1 .

 1 a) For any b x; 2 b !(b x) and p 1; if p 2 b P b x ; then fp; 2p; 3p; :::g b P b

9 .

 9 The set of the periods Theorem 28. a) Let b x 2 b S (n) and 2 b !(b x): We ask that is an eventually periodic point of b x. Then e p 1 exists such that b P b x = fe p; 2e p; 3e p; :::g: b) We suppose that the signal x 2 S (n) is not eventually constant and let 2 !(x): We ask that is an eventually periodic point of x. Then e T > 0 exists such that P x = f e T ; 2 e T ; 3 e T ; :::g: Proof. a) We denote with e p the least element of b P b x : From Corollary 1, page 66 we have the inclusion fe p; 2e p; 3e p; :::g b P b x : We show that b P b x fe p; 2e p; 3e p; :::g: We presume against all reason that this is not true, i.e. that some p 0 2 b P b x r fe p; 2e p; 3e p; :::g exists. In these circumstances we have the existence of k 1 1 with k 1 e p < p 0 < (k 1 + 1)e p: We infer that 1 p 0 k 1 e p < e p and, from Theorems 26, 27, page 64 we conclude that p 0 k 1 e p 2 b P b x : We have obtained a contradiction with the fact that e p is the least element of b P b

1 )

 1 [t0+h;t0+2h) (t) ::: ::: b x(k) [t0+kh;t0+(k+1)h) (t) ::: where t 0 2 R and h > 0 and that 2 b !(b x) = !(x) is an eventually periodic point of any of b x; x: Then two possibilities exist: a) b x; x are both eventually constant, b P b x = f1; 2; 3; :::g and P x = (0; 1); b) none of b x; x is eventually constant, min b P b x = p > 1 and min P x = T = ph.

T h 2

 2 b P b x : From Theorem 28 we get b P b x = fp; 2p; 3p; :::g and P x = fT; 2T; 3T; :::g, thus T = ph: 10. Necessity conditions of eventual periodicity Theorem 30. Let b x 2 b S (n) be not eventually constant. For 2 b !(b x); p 1 and k 0 2 N _ we suppose that (10.1) 8k 2 b T b

k2N fn 1 +

 1 kp; n 2 + kp; :::; n k1 + kpg and let k 00 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g arbitrary. We get from (10.1) the existence of a …nite sequence k 00 ; k 00 p; :::; k 00 kp 2 b T bx ; k 2 N with the property that k 00 kp 2 fk 0 ; k 0 +1; :::; k 0 +p 1g; thus we have from (10.3) the existence of j 2 f1; :::; k 1 g with k 00 kp = n j : This means that k 00 = n j + kp 2 [ k2N fn 1 + kp; n 2 + kp; :::; n k1 + kpg: We prove that [ k2N fn 1 + kp; n 2 + kp; :::; n k1 + kpg b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g: Let k 00 2 [ k2N fn 1 + kp; n 2 + kp; :::; n k1 + kpg arbitrary, thus j 2 f1; :::; k 1 g and k 2 N exist such that k 00 = n j + kp: As n j 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; we have n j + kp k 0 thus we can apply (10.1) and we get k 00 2 b T b x : Remark 80. The hypothesis of the previous Theorem avoids the situation when b x is eventually constant. In that case b !(b x) = f g; p = 1; k 1 = 1; n 1 = k 0 and (10.2) takes the form b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g = [ k2N fk 0 + kg = fk 0 ; k 0 + 1; k 0 + 2; :::g: Remark 81. Lemma 10, page 203 shows that we can replace (10.3) and (10.2) with b T b x \ fk 00 ; k 00 + 1; :::; k 00 + p 1g = fn 0 1 ; n 0 2 ; :::; n 0 k1 g; b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g = [ k2N fn 1 + kp; n 2 + kp; :::; n k1 + kpg = [ z2Z fn 0 1 + zp; n 0 2 + zp; :::; n 0 k1 + zpg \ fk 0 ; k 0 + 1; k 0 + 2; :::g [ k2N fn 0 1 + kp; n 0 2 + kp; :::; n 0 k1 + kpg = b T b

): 11 .

 11 Su¢ ciency conditions of eventual periodicity Theorem 32. Let b x 2 b S (n) , 2 b !(b x); p 1; k 0 2 N _ and n 1 ; n 2 ; :::; n k1 2 fk 0 ; k 0 + 1; :::; k 0 + p 1g, k 1 1 such that (11.1) b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g = [ k2N fn 1 + kp; n 2 + kp; :::; n k1 + kpg: In such circumstances (11.2) 8k 2 b T b

1 ; k 0 2 N

 12 _ and n 1 2 fk 0 ; k 0 + 1; :::; k 0 + p 1g such that (12.1) b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g = fn 1 ; n 1 + p; n 1 + 2p; n 1 + 3p; :::g:Then a) is an eventually periodic point of b x with the period p :(12.2) 8k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b x ;b) p is the prime period of :(12.3) b P b x = fp; 2p; 3p; :::g: Proof. a) This is a special case of Theorem 32, page 69, written for k 1 = 1: b) We suppose against all reason that p 0 2 b P b x exists with p 0 < p: As n 1 2 b T b x \ fk 0 ; k 0 +1; k 0 +2; :::g; we obtain from (12.2) that n 1 +p 0 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; contradiction with (12.1). Thus any p 0 2 b P b x ful…lls p 0 p: We apply Theorem 28, page 66. Theorem 35. Let x; 2 !(x); T > 0; t 0 2 R and the interval [a; b) [t 0 ; t 0 +T ) such that (12.4) T x \ [t 0 ; 1) = [a; b) [ [a + T; b + T ) [ [a + 2T; b + 2T ) [ :::

  13. Eventually periodic points vs. eventually constant signals Theorem 36. a) Let the signal b x 2 b S (n) and the point 2 b !(b x): We suppose that p 1 and k

( 1 :

 1 1) =) (1:2) =) (1:3) =) (1:4) follows from Theorem 10, page 19. We prove (1.4)=)(1.1). Let 2 b !(b x) arbitrary, …xed. (1.4) shows the existence of k 00 2 N such that (1.13)

Example 18. The signal b x 2 1 ; 0; 0 |{z} 2 ; 1 ; 1 |{z} 2 ; 3 ; 1 ; 1 ; 1 | {z } 3 ;

 212123113 0; 0; 0 | {z } 0; 0; 0; 0 | {z }

4

 4 

. 1 )

 1 page 31 ; (2.2)-(6.2) page 31 and (2.3)-(6.3) page 31 ; :::;(2.6)-(6.6) page 31 : Theorem 38. The signals b x; x are given. a) For any p 1; the following statements are equivalent with the eventual periodicity of bx:

k 0 i + 2 ; 2

 22 :::g; fk + zpjz 2 Zg \ fk 0 i ; k 0 i + 1; k 0 i + 2; :::g b T b x i : Let e k 2 N _ be a time instant that ful…lls b !(b x) = fb x(k)jk e kg: With k 0 = maxf e k; k 0 1 ; :::; k 0 s g; from Lemma 3, page 200 we have (

(2. 11 )Let now k 2 b T b x and z 2 Z

 112 8k 000 k 0 ; b x(k 000 ) = bx(k 000 + p): arbitrary such that k k 0 and k +zp k 0 : The following possibilities exist.Case z

( 2 :

 2 16) = x(t + T ) (2:16) = x(t + 2T )(2:16) = :::

( 2 :

 2 16) = x(t + zT ); Case z = 0; = x(t) = x(t + zT ); Case z < 0; x(t + zT )

  We have obtained that in all these situations x(t + zT ) = ; i.e. t + zT 2 T x : Remark 87. The eventual periodicity of the signals highlights the existence of two time instants, e k 2 N _ and k 0 2 N _ given by (2.17) b !(b x) = fb x(k)jk e kg;

  arbitrary. We prove b !(b x) fb x(k)jk k 0 g: Some e k 2 N _ exists such that b !(b x) = fb x(k)jk e kg and we have the following possibilities. Case k 0 < e k In this case b !(b x) fb x(k)jk k 0 g: Case k 0 e k If so, we have from Theorem 7, page 10 that b !(b x) = fb x(k)jk k 0 g: We prove fb x(k)jk k 0 g b !(b x): For this we take arbitrarily k k 0 and p 2 \ 2b !(b x) b P b x : We have b x(k) = b x(k + p) = b x(k + 2p) = :::; thus b T b

( 3 . 7 )

 37 8t t 0 ; x(t) = x(t + T ); then (3.8) 8t t 0 ; !(x) = fx( )j 2 [t; t + T )g: Proof. a) We know from Theorem 39 that b !(b x) = fb x(k)jk k 0 g: Let k k 0 and 2 b !(b x) arbitrary, …xed. As is eventually periodic with the period p, we have from Theorem 21, page 56 that b T b x \ fk; k + 1; :::; k + p 1g 6 = ?: We get the existence of i 2 b T b x \ fk; k + 1; :::; k + p 1g thus = b x(i): We have proved that b !(b x)

(4. 6 )

 6 8t t 0 ; x(t) = x(t + T 0 ) is true. Proof. a) Let k k 0 arbitrary, …xed. We have two possibilities. Case k 0 k 00 In this situation k k 00 ; thus we can write + p 0 ): Case k 0 < k 00 Let us take k 1 2 N with the property that k + k 1 p k 00 : We can write: + p 0 ): Remark 90. The previous Theorem states the fact that, if b x; x are eventually periodic, then b L b x ; L x do not depend on the choice of p 2 b P b x ; T 2 P x : Theorem 42. a) If b x is eventually periodic, then b

L x : Proof. a) The hypothesis states b P b x 6 = ? and let p 2 wherefrom we have that k 0 2 \x and let for this k 0 2 \x 1 \

 62221 8k k 0 ; b x(k) = b x(k + p): Starting from Theorem 38, page 76, the proof of (2.2) page 76 =)(1.1) page 73 it is shown that (4.7) implies (4.8) ( 8 2 b !(b x); 8k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T b x ; 2b !(b x) b L b x ; i.e. (4.8) holds. Starting from the implication (1.1) page 73 =)(2.2) page 76 of Theorem 38, page 76, it is shown the truth of (4.7), in other words k 0 2 b L b x : Theorem 43. a) Let b x 2 b S (n) eventually periodic. Then k 0 2 N _ exists with b L b x = fk 0 ; k 0 + 1; k 0 + 2; :::g: b) Let x 2 S (n) be eventually periodic and not constant: Then t 0 2 R exists such that L x = [t 0 ; 1): Proof. a) We put b !(b x) under the form b !(b x) = f 1 ; :::; s g; s 1: Theorem 23, page 58 shows the existence of k 0 i 2 N _ that ful…ll b L b x i = fk 0 i ; k 0 i + 1; k 0 i + 2; :::g; i = 1; s: We apply Theorem 42 and we get b L b x = b L b ::: \ b L b x s = fk 0 ; k 0 + 1; k 0 + 2; :::g; where k 0 = maxfk 0 1 ; :::; k 0 s g: 5. A property of eventual constancy Theorem 44. We consider the signals b x; x. a) If k 0 2 N _ exists making (5.1) 8k k 0 ; b x(k) = b x(k + p) true for p = 1; then 2 b !(b x) exists with (5.2) 8k k 0 ; b x(k) = ful…lled and in this case (5.1) holds for any p 1: b) We suppose that

  t) ::: ::: b x(k) [t0+kh;t0+(k+1)h) (t) ::: !(b x); 8k 2 b T b

(8. 8 )

 8 8t t 0 ; x(t) = x(t + T T 0 ): Proof. a) Let k k 0 be arbitrary and …xed. + p + p 0 ):We suppose now that p > p 0 ; thus k + p p 0 k 0 : We can write that b x(k + p p 0 ) Theorem 48. We consider the signals bx; x: a) Let p; k 1 1 and k 0 2 N _ : Then p 0 = k 1 p ful…lls p 0 1 and

Corollary 2 .

 2 a) If p 2 b P b x ; then fp; 2p; 3p; :::g b P bx : b) If T 2 P x ; then fT; 2T; 3T; :::g P x :

9 .

 9 The set of the periods Theorem 49. a) We suppose that for b x 2 b S (n) ; the set b P b x is not empty. Some e p 1 exists then with the property (9.1) b P b x = fe p; 2e p; 3e p; :::g: b) Let x 2 S (n) be not eventually constant and we suppose that the set P x is not empty. Then e T > 0 exists such that (9.2) P x = f e T ; 2 e T ; 3 e T ; :::g: Proof. a) We have b P b x 6 = ? and we denote with e p 1 its minimum: The inclusion fe p; 2e p; 3e p; :::g b P b x was stated in Corollary 2: In order to prove that b P b x fe p; 2e p; 3e p; :::g; we suppose against all reason that p 0 2 b P b

1 )P b x = b P b x 1 \

 11 [t0+h;t0+2h) (t) ::: ::: b x(k) [t0+kh;t0+(k+1)h) (t) ::: where t 0 2 R and h > 0: If b x; x are eventually periodic, two possibilities exist: a) b x; x are both eventually constant, p = 1 is the prime period of b x and x has no prime period; b) neither of b x; x is eventually constant, e p > 1 is the prime period of b x and e T = e ph is the prime period of x. Proof. b x; x are simultaneously eventually constant or not. Let us suppose that they are not eventually constant and we prove b). Theorem 45, page 83 shows that p 2 b P b x =) T = ph 2 P x and conversely, Theorem 46, page 84 shows that T 2 P x =) p = T h 2 b P b x : From Theorem 49 we have that b P b x = fe p; 2e p; 3e p; :::g; P x = f e T ; 2 e T ; 3 e T ; :::g; thus e T = e ph: Theorem 51. a) If b x is eventually periodic and b !(b x) = f 1 ; :::; s g, then b ::: \ b P b x s :b) We suppose that x is eventually periodic and !(x) = f 1 ; :::; s g holds. In this case P x = P x 1 \ ::: \ P x s :Proof. a) In order to prove that b P b ; :::; ng;

2 ; 10 .

 210 :::g b T b x i holds. This means that 8i 2 f1; :::; ng; p 2 b Necessity conditions of eventual periodicity Theorem 52. Let b x 2 b S (n) with b !(b x) = f 1 ; :::; s g: We suppose that b

ifn i 1 +

 1 \ fk 0 ; k 0 + 1; k 0 + 2; :::g = [ k2N kp; n i 2 + zp; :::; n i ki + kpg for i 2 f1; :::; sg: Proof. If b

( 11 . 2 )

 112 8k 2 b T b x i \fk 0 ; k 0 +1; k 0 +2; :::g; fk+zpjz 2 Zg\fk 0 ; k 0 +1; k 0 +2; :::g b T b

12. A special case Theorem 56 .

 56 Let the signal b x 2 b S (n) , b !(b x) = f 1 ; :::; s g and p 1; k 0 2 N _ : We ask that 8i 2 f1; :::; sg; n i 2 fk 0 ; k 0 + 1; :::; k 0 + p 1g exists such that (12.1) b T b

( 12 . 2 )

 122 8k 2 b T b x i \fk 0 ; k 0 +1; k 0 +2; :::g; fk+zpjz 2 Zg\fk 0 ; k 0 +1; k 0 +2; :::g b T b

(13. 10 )

 10 8k 2 b T b x i \fk 0 ; k 0 +1; k 0 +2; :::g; fk+zp i jz 2 Zg\fk 0 ; k 0 +1; k 0 +2; :::g b T b x i ; i 2 f1; :::; sg: Let in (13.1) = i 2 f 1 ; :::; s g and k 2 b T b

Remark 93 .b x 1 6 =b x 1 6

 931616 Let b !(b x) = f 1 ; :::; s g: The implication (13.4)=)(13.1) of Theorem 58 showed that if 1 ; :::; s are all eventually periodic: b P ? and ... and b P b x s 6 = ? then b P b x 1 \ ::: \ b P b x s 6 = ?: Since the equality b P b x = b P b x 1 \ ::: \ b P b x s is always true, even when the left hand term and the right hand term are both empty, we conclude that the eventual periodicity of b x expressed by (13.1) (or b P b x 6 = ?) and the eventual periodicity of all the points of the orbit expressed by (13.4) (or b P = ? and ... and b P b

x 6 = ? and b P b x 0 6 =

 66 ?) =) b P b x \ b P b

(8 2

 2 !(x); P x 6 = ?) =) \ 2!(x) P x 6 = ?; we say that x ful…lls the hypothesis P: Theorem 59. a) We suppose that the signal b x 2 b S (n) is not eventually constant, we denote b !(b x) = f 1 ; :::; s g and we ask that 8i 2 f1; :::; sg; the set b P b x i is not empty. We denote with e p i 1; e p 1 the numbers that ful…ll (14.1) b P b x i = fe p i ; 2e p i ; 3e p i ; :::g; (14.2) b P b x = fe p; 2e p; 3e p; :::g: Then (14.3) e p = n 1 e p 1 = ::: = n s e p s ;

P b x belongs to b P b x 1 \p = n 0 1 p 1 = 1 1p 1 = n 00 1 e p 1 ;

 1111 e T = n 1 e T 1 = ::: = n s e T s ;where n 1 1; :::; n s 1 are relatively prime.Proof. a) Any p 2 b ::: = n 0 s p s : But each p i is a multiple of e p i ; thus n 00 :::; p s = n 00 s e p s :

. 1 )

 1 page 48 ; :::; (1.6)-(4.3) page 48 and (1.10)-(4.4) page 48 ; :::;(1.12)-(4.6) page 48 with the fourth group of constancy properties from Theorem 18, page 48. Theorem 60. We consider the signals b x 2 b S (n) ; x 2 S (n) . a) The following statements are equivalent for any p 1 and 2 c Or(b x) :

( 1 . 6 )=)( 1 . 1 )

 1611 We can use(1.4) that is a special case of (1.6) when k 00 = 0: Let k 2 b T b x and z 2 Z with k + zp 1 and we have the following possibilities. Case z > 0; = b

1 2 c 4 ;

 24 Or(b x) is periodic or eventually periodic: 0; ::: This signal is similar with that of Example 18, page 75. Example 22. Let the signal b x 2 b S (1) and we presume that b x = 0; b x(0); b x(1); 0; b x(3); b x(4); 0; b x(6); ::: Then 0 is a periodic point of c Or(b x) and it has the period 3. In particular if b x(0); b x(1); b x(3); b x(4); b x(

Remark 96 .

 96 From the periodicity properties (1.1), (1.7), we have that b T bx is in-…nite and T x is superiorly unbounded, thus the periodic points 2 c Or(b x); 2 Or(x) satisfy in fact 2 b !(b x); 2 !(x): This was noticed since the …rst introduction of the periodic points, see Remark 28 from page 14, and several times afterwards.

Remark 100. Let b x; 2 c Or(b x) and p 1 :

 1 We have b T b x 6 = ? and if 8k 2 b T b

7 .

 7 Support sets vs sets of periods Remark 105. Let the signals b x; b y 2 b S (n) ; x; y 2 S (n) with 2 c Or(b x) \ c Or(b y): T x = T y =) P x = P y are not true, in the sense given by Example 15, page 64 and its discrete time counterpart: b T b x = b T b y may take place and may be a periodic point of b x and an eventually periodic point of b y: If so, the equality b P b x = b P b y refers to eventual periodicity, not to periodicity.

  . The set of the periods Theorem 66. a) Let the signal b x 2 b S (n) and 2 c Or(b x): We ask that is a periodic point of b x. Then some e p 1 exists such that b P b x = fe p; 2e p; 3e p; :::g: b)

Proof. 2 c

 2 [t0+h;t0+2h) (t) ::: ::: b x(k) [t0+kh;t0+(k+1)h) (t) ::: where t 0 2 R and h > 0 and that 2 b !(b x) = !(x) is a periodic point of any of b x; x: Then two possibilities exist: a) b x; x are both constant, b P b x = f1; 2; 3; :::g and P x = (0; 1); b) none of b x; x is constant, min b P b x = p > 1 and min P x = T = ph. Proof. The fact that b x; x are simultaneously constant or non constant is obvious. We suppose that they are both non constant and we prove b). From Theorem 63, page 101 we have that p 2 b P b x =) T = ph 2 P x and conversely, T 2 P x =) p = T h 2 b P b x : In particular, if b P b x = fp; 2p; 3p; :::g and P x = fT; 2T; 3T; :::g (from Theorem 66, page 104), then T = ph: 10. Necessity conditions of periodicity Theorem 68. Let b x 2 b S (n) non constant. For 2 c Or(b x); p 1 we suppose that (10.1) 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b x takes place. Then n 1 ; n 2 ; :::; n k1 2 f 1; 0; :::; p 2g; k 1 1; exist such that (10.2) b T b x = [ k2N fn 1 + kp; n 2 + kp; :::; n k1 + kpg holds. Or(b x) and (10.1) imply 2 b !(b x): We apply Theorem 30, page 67 written for k 0 = 1: Remark 109. If b x is constant, then the previous Theorem takes the form c Or(b x) = f g; p = 1; k 1 = 1; n 1 = 1 and (10.2) becomes b T

( 10 .([a 1 +

 101 13) t 0 a 1 < b 1 < a 2 < b 2 < ::: < a k1 < b k1 < t 0 + T; (10.14) [a 1 ; b 1 ) [ [a 2 ; b 2 ) [ ::: [ [a k1 ; b k1 ) = T x \ [t 0 ; t 0 + T ); kT; b 1 + kT ) [ [a 2 + kT; b 2 + kT ) [ ::: ::: [ [a k1 + kT; b k1 + kT )) are ful…lled.

  true is proved. The proof of the equation (10.15) is made like in the proof of Theorem 69. Remark 110. The proofs of Theorem 69 and Theorem 70 are similar with the proof of Theorem 31, page 68 stating necessary conditions of eventual periodicity of the points 2 !(x); 2 b !(b x):

fn 1 +

 1 kp; n 2 + kp; :::; n k1 + kpg:

  t 2 [a k1 + kT; b k1 + kT ); k 0 when there are two sub-cases, c.1) Case t 2 [t 0 + (k + 1)T; b k1 + kT );ft + zT jz 2 Zg \ [t 0 ; 1) = ft + ( k 1)T; t + ( k)T; t + ( k + 1)T; :::g [t 0 ; t 0 ) [ [t 0 + T; b k1 ) [ [t 0 + 2T; b k1 + T ) [ ::: ( 1; t 0 ) [ [a k1 ; b k1 ) [ [a k1 + T; b k1 + T ) [ ::: T xand we have used the fact thatt + ( k 2)T < t 0 T < a k1 T t 0 t + ( k 1)T < t 0 : c.2) Case t 2 [a k1 + kT; t 0 + (k + 1)T ); ft + zT jz 2 Zg \ [t 0 ; 1) = ft + ( k)T; t + ( k + 1)T; t + ( k + 2)T; :::g [a k1 ; t 0 + T ) [ [a k1 + T; t 0 + 2T ) [ [a k1 + 2T; t 0 + 3T ) [ ::: [a k1 ; b k1 ) [ [a k1 + T; b k1 + T ) [ [a k1 + 2T; b k1 + 2T ) [ ::: T x and we have used t + ( k 1)T < t 0 < t 0 < a k1 t + ( k)T < t 0 + T: (11.5) holds.Theorem 73. Let x; 2 Or(x); 6 = x( 1 + 0); T > 0 and the numbers t 0 ; a 1 ; b 1 ; a 2 ; b 2 ; :::; a k1 ; b k1 2 R; k 1 1; with the property that (11.6) 8t < t 0 ; x(t) = x( 1 + 0); (11.7) x(t 0 ) 6 = x( 1 + 0); (11.8) b k1 T < t 0 a 1 < b 1 < a 2 < b 2 < ::: < a k1 < b k1 ; (11.9) T x = [ k2N ([a 1 + kT; b 1 + kT ) [ [a 2 + kT; b 2 + kT ) [ ::: [ [a k1 + kT; b k1 + kT )):

  )T; :::g [a j ; b j ) [ [a j + T; b j + T ) [ [a j + 2T; b j + 2T ) [ ::: T x ; where t + ( k 1)T < t 0 < t 0 a j t + ( k)T < b j t 0 + T: (11.10) holds. Remark 112. The proofs of Theorem 71, page 107, Theorem 72, page 107 and Theorem 73, page 108 are similar with the proofs of Theorem 30, page 67 and Theorem 31, page 68 that state su¢ cient conditions of eventual periodicity of the points 2 b !(b x); 2 !(x): 12. A special case Theorem 74. Let b x 2 b S (n) , 2 c Or(b x); p 1 and n 1 2 f 1; 0; :::; p 2g such that (12.1) b T b x = fn 1 ; n 1 + p; n 1 + 2p; n 1 + 3p; :::g: Then a) is a periodic point of b

  Proof. a) This is a special case of Theorem 71, page 107, written for k 1 = 1: b) We suppose against all reason that p 0 2 b P b x exists with p 0 < p: As n 1 2 b T b x ; we obtain that n 1 + p 0 2 b T b x ; contradiction with (12.1). Thus any p 0 2 b P b

T b x ; fk + zpjz 2 :T b x ; 9z 1 2 Z; k 1 + z 1 p 0 1 and k 1 + z 1 p 0 = 2 b T b x : Let k 2 N 1 +

 221121 13. Periodic points vs. eventually periodic points Theorem 77. a) Let b x and the periodic point 2 c Or(b x); for any e k 2 N; we have b P b x = b P b e k (b x) : b) We consider x and the periodic point 2 Or(x); for any e t 2 R; we have P x = P e t (x) : Proof. a) The hypothesis states that b P b x 6 = ? and let e k 2 N arbitrary. Zg \ N _ b T b x holds and we must show that 2 c Or(b e k (b x)) and (13.2) 8k 2 b T b e k (b x) ; fk + zpjz 2 Zg \ N _ b T b e k (b x) : If 2 c Or(b x); then b T b x 6 = ? and from (13.1) we infer that 2 b !(b x): Theorem 5, page 8 shows that b !(b e k (b x)) = b !(b x); hence 2 b !(b e k (b x)) c Or(b e k (b x)) and b T b e k (b x) 6 = ?: Let now k 2 b T b e k (b x) and z 2 Z with k + zp 1; meaning that b x(k + e k) = : We have k + e k 2 b T b x and k + e k + zp 1; thus we can apply (13.1). We infer that k + e k + zp 2 b T b x ; wherefrom = b x(k + e k + zp) = b e k (b x)(k + zp) and, …nally, k + zp 2 b T Let p 2 b P b x ; thus (13.1) is true. We suppose against all reason that b P b e k (b x) b P b x is false, i.e. some p 0 2 b P b e k (b x) r b P b x exists. This means the truth of (13.3) 8k 2 b T b x \ f e k 1; e k; e k + 1; :::g; fk + zp 0 jz 2 Zg \ f e k 1; e k; e k + 1; :::g b T b x ; having the property that k 1 + kp e k 1; k 1 + kp + z 1 p 0 e k 1: kp + z 1 p 0 ) (13:1) = b x(k 1 + z 1 p 0 ):

of 2 cb k 00 (

 200 Or(b x); 2 Or(x) are in fact statements about the periodicity of 2 c Or(b e k (b x)); 2 Or( e t (x)): Theorem 78. a) If 2 b !(b x) is an eventually periodic point of b x : 9p 1; 9p 0 1; 9k 0 2 N; 9k 00 2 N with (13.13) 8k 2 b T b k 0 (b x) ; fk + zpjz 2 Zg \ N _ b T b k 0 (b x) ; (13.14) 8k 2 b T b k 00 (b x) ; fk + zp 0 jz 2 Zg \ N _ b T

Remark 115 .

 115 Proof. a) Both (13.13) and (13.14) are equivalent with b P b x 6 = ?: If they are ful…lled, then b P Item b) in Theorem 75, page 109 does not work in the general case, when T x is given by

  4; 6; :::g: A generalization of Theorem 75 b) and Theorem 76 b) is required. Remark 116. Theorem 63, page 101 referring to the periodic point 2 Or(x) is continued by Theorem 87, page 125 and Theorem 88 to follow. The statement (7.7) page 125 of Theorem 88 suggests that Theorem 63 b) can be strengthened. Remark 117. Let the non constant signals bx; x and we think if the compatibility properties

2

 2 Or(x); 8 0 2 Or(x); (P x 6 = ? and P x 0 6 = ?) =) P x \ P x 0 6 = ? hold, see Remark 94, page 91. Proving the …rst one is trivial, while the second one has no proof so far. Taking into account the form of the sets of periods, the above statements give the suggestions that, see Theorem 59, page 91: a) b P b x = fp; 2p; 3p; :::g; b P b

Theorem 79 .

 79 The signals b x 2 b S (n) ; x 2 S (n) are given. a) The following statements are equivalent for any p 1: Or(b x); 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b x ;

T b x and z 2 Z

 2 arbitrary such that k+zp 1:(1.6) written for k 00 = 0 gives(1.13) 8k 1 2 N _ ; b x(k 1 ) = =) =) (b x(k 1 ) = b x(k 1 + p) and k 1 p 1 =) b x(k 1 ) = b x(k 1 p)):

( 1 :

 1 14)= x(t + zT ):

  Proof. a) The proof of (2.1)=)(2.2)=)(2.3) follows from Theorem 18. (1.1)=)(2.1) Let k 2 N _ arbitrary, …xed and we choose 2 c Or(b x) with the property bx(k) = : We inferk + p 2 fk + zpjz 2 Zg \ N _ (1:1) b T b x ; thus b x(k + p) = = b x(k): (2.3)=)(1.1) Let 2 cOr(b x); k 2 b T b

  In all these cases we have obtained that k + zp 2 b T bx : b) The proof of the implications (2.4)=)(2.5)=)(2.6) follows from Theorem 18.

( 2 : 10 )

 210 = x(t + zT );Case z = 0; = x(t) = x(t + zT );Case z < 0;x(t + zT )

( 1 : 1 )

 11 page 116 () 8 2 c Or(b x); (1:1) page 94 ; (1:7) page 116 () 8 2 Or(x); (1:7) page 94 hold. Remark 121. (1.1),...,(1.6) and (1.7),...,(1.12) refer to left-and-right time shifts, (2.1),...,(2.3) and (2.4),...,(2.6) refer to right time shifts only. Theorem 81. Let the periodic signals b x 2 b S (n) ; x 2 S (n) : We have b !(b x) = c Or(b x); !(x) = Or(x):

3 .P b x 6 =N\ 2

 362 The accessibility of the orbitTheorem 82. a) If b x 2 b S (n) ; then (3.1) b ? =) 8k 0 2 N _ ; c Or(b x) = fb x(k)jk k 0 g: b) For x 2 S (n) we have (3.2) P x 6 = ? =) 8t 0 2 R; Or(x) = fx(t)jt t 0 g: Proof. In the case of the periodicity of b x; x we have b !(b x) = c Or(b x); !(x) = Or(x): These statements follow from Theorem 39, page 78 where b _ at a) and at b) notice that P x 6 = ?; L x =

(3. 5 ) 2 c

 52 8k 2 N _ ; c Or(b x) = fb x(i)ji 2 fk; k + 1; :::; k + p 1gg: b) If x is periodic with the period T > 0 : t 0 2 I x exists with(3.6) 8t t 0 ; x(t) = x(t + T ); then (3.7) 8t t 0 ; Or(x) = fx( )j 2 [t; t + T )g:Proof. We apply Theorem 40, page 79 with b!(b x) = c Or(b x); k 0 = 1 and !(x) = Or(x); t 0 2 I x :Remark 122. The previous Theorem states the property that, in the case of the periodic signals, all the points of the orbit are accessible in a time interval with the length of a period.4. The limit of periodicityTheorem 84. If bx is periodic, then (4.1) 8 Or(b x); b L b x = b L b x = N _ : Proof. The fact that the periodicity of b x implies b L b x = N _ is obvious and the fact that 8 2 c Or(b x); b L b x b L b x results from Theorem 42, page 80, where c Or(b x) = b !(b x): For any 2 c Or(b x); we infer

(4. 6 )

 6 8t 2 [t 0 ; t 0 ); x( 1 + 0) = x(t) = x(t + T ); thus (4.7)8t 2 [t 0 + T; t 0 + T ); x(t) = x( 1 + 0);(4.8)x(t 0 + T ) = x(t 0 )

(

  

Theorem 86 .

 86 Let the signals b x; x: a) If the statement (5.1) 8k 2 N _ ; b x(k) = b x(k + p) is true for p = 1; then 2 c Or(b x) exists such that (5.2) 8k 2 N _ ; b x(k) = and (5.1) is true for any p 1.

  0) [t0;t0+h) (t) ::: ::: b x(k) [t0+kh;t0+(k+1)h) (t) ::: any of a) 8k 2 b T b

Remark 126 .

 126 Theorem 87 and Theorem 88 represent the periodic version of Theorem 45, page 83 and Theorem 46, page 84 that refer to eventual periodicity. 8. Sums, di¤erences and multiples of periods Theorem 89. Let the signals b x; x: a) We suppose that b

9 .

 9 The set of the periods Theorem 91. a) We suppose that for b x 2 b S (n) ; the set b P b x is non empty. Some e p 1 exists then with the property (9.1) b P b x = fe p; 2e p; 3e p; :::g: b) Let x 2 S (n) be not constant and we suppose that the set P x is not empty. Then e T > 0 exists such that (9.2) P x = f e T ; 2 e T ; 3 e T ; :::g: Proof. This is a special case of Theorem 49, page 86 with b L b x = N _ at a) and I x \ L x 6 = ? at b). Remark 128. If in Theorem 91, item a) b

  k+1)h) (t) ::: where t 0 2 R and h > 0: If b x; x are periodic, two possibilities exist: a) b x; x are both constant, b P b x = f1; 2; 3; :::g and P x = (0; 1); b) b x; x are both non-constant, min b P b x = p > 1 is the prime period of b x and min P x = T = ph is the prime period of x. Proof. The proof is analogue with the proof of Theorem 67, page 104. b) Theorem 87, page 125 shows that p 2 b P b x =) T = ph 2 P x and from Theorem 88, page 125 we get that T 2 P x =) p = T h 2 b P b x : We suppose, see Theorem 91, that b P b x = fe p; 2e p; 3e p; :::g and P x = f e T ; 2 e T ; 3 e T ; :::g: Then e T = e ph: 10. Necessity conditions of periodicity Theorem 93. Let b x 2 b S

i 1 +

 1 kp; n i 2 + kp; :::; n i ki + kpg:Proof. If b

i ; fk + zp 0 jz 2 Zg \ N _ b T b x i true ful…lls p 0 2

 22 12. A special case Theorem 97. Let b x 2 b S (n) with c Or(b x) = f 1 ; :::; s g and p 1: We suppose that 8i 2 f1; :::; sg; n i 2 f 1; 0; :::; p 2g exists such that (12.1) b T bx i = fn i ; n i + p; n i + 2p; :::g: a) We have 8i 2 f1; :::; sg;(12.2) 8k 2 b T b x i ; fk + zpjz 2 Zg \ N _ b T bx i : b) Any p 0 1 making 8i 2 f1; :::; sg; fp; 2p; 3p; :::g; i.e. p is the prime period of bx.

Let k 2 N with the property that k 1 + kp e k 1 :

 211 13. Periodicity vs eventual periodicityTheorem 99. a) If b x is periodic, then for any e k 2 N, b e k (b x) is periodic and b P b x = b P b e k (b x) :b) We suppose that x is periodic. For arbitrary e t 2 R; we have that e t (x) is periodic and P x = P e t (x) : Proof. a) We suppose that b P b x 6 = ? and let e k 2 N arbitrary. We prove b P b x b P b e k (b x) : We take an arbitrary p 2 b P b x ; meaning that (13.1) 8k 2 N _ ; b x(k) = b x(k + p) holds and we show that (13.2) 8k 2 N _ ; b e k (b x)(k) = b e k (b x)(k + p) is true. Indeed, for any k 2 N _ we get b e k (b x)(k) = b x(k + e k) (13:1) = b x(k + e k + p) = b e k (b x)(k + p): We prove b P b e k (b x) b P b x : Let p 2 b P b x ; thus (13.1) is true. We suppose against all reason that b P b e k (b x) b P b x is false, i.e. some p 0 2 b P b e k (b x) r b P b x exists. This means, by rewriting (13.2) under the form (13.3) 8k e k 1; b x(k) = b x(k + p 0 ); that (13.4) 9k 1 2 f 1; 0; :::; e k 2g; b x(k 1 ) 6 = b x(k 1 + p 0 ): We

Remark 129 .

 129 In Theorem 99, the statements about the eventual periodicity of b x; x are statements about the periodicity of b e k (b x); e t (x): 14. Changing the order of the quanti…ers Theorem 100. a) The statements (14.1) 9p 1; 8 2 c Or(b x); 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b Or(b x); 9p 1; 8k 2 b T b x ; fk + zpjz 2 Zg \ N _ b T b x are equivalent. b) The real time statements (14.

1 .

 1 Discrete time, periodic points Remark 132. In the following, the signal b x 2 b S (n) and the periodic point 2 c Or(b x) with the period e p 1 are considered. The sets b T b x and b P b x are given by b T b x = fk 0 ; k 0 + e p; k 0 + 2e p; :::g; k 0 2 f 1; 0; :::; e p 2g; b P b x = fe p; 2e p; 3e p; :::g: This simple form of b T b x ; corresponding to the special case from Theorem 74, page 109 does not restrict the generality of the exposure. Example 29. Let 0 2 B n ; 0 6 = and the time instant k 0 2 b T b x : We de…ne b y 2 b S (n) by 8k 2 N _ ; b y(k) = b x(k); k 6 = k 0 ; 0 ; k = k 0 :We say that b y is obtained by removing from b x the instant k 0 of periodicity of and we interpret the fact that b y

1 6 =

 6 ; :::; s 6 = and also the distinct time instants k 1 ; :::; k s 2 b T b x : The signal b y 2 b S (n) is de…ned in the following way: 8k 2 N _ ; b y(k) = b x(k); k = 2 fk 1 ; :::; k s g; j ; 9j 2 f1; :::; sg; k = k j : We use to say that b y is obtained by the removal from b x of the instants k 1 ; :::; k s of periodicity of : Then b P b y = b P b

2 NP b y = b P b y 0 =

 20 _ of distinct time instants. We de…ne b y 2 b S (n) : 8k 2 N _ ; b y(k) = b x(k); 8j 2 N _ ; k 6 = k j ; j ; 9j 2 N _ ; k = k j ; thus b y is obtained by removing from b x the instants (k j ) of periodicity of : We get several possibilities that result from this construction, we give here only one of these possibilities: j = 0 2 B n n c Or(b x); j 2 N _ ; (k 1 ; k 0 ; k 1 ; :::) = (k 0 ; k 0 + 2e p; k 0 + 4e p; :::) and the periodic point gives birth to two periodic points, and 0 ; with b f2e p; 4e p; 6e p; :::g; b T b y = fk 0 + e p; k 0 + 3e p; k 0 + 5e p; :::g; b T b y 0 = fk 0 ; k 0 + 2e p; k 0 + 4e p; :::g: Example 32. For the time instant k 0 2 N _ n b T b x ; we de…ne b y 2 b S (n) like that: 8k 2 N _ ; b y(k) = b x(k); k 6 = k 0 ; ; k = k 0 : We say that b y is obtained by adding to b x the instant k 0 of equality with : We notice that after adding to b

  1 ; :::; k s 2 N _ n b T b x and we de…ne b y 2 b S (n) by: 8k 2 N _ ; b y(k) = b x(k); k = 2 fk 1 ; :::; k s g; ; 9j 2 f1; :::; sg; k = k j :

Example 34 .

 34 We consider the sequence of distinct time instantsk j 2 N _ n b T b x ; j 2 N _ . We de…ne b y 2 b S (n) by 8k 2 N _ ; b y(k) = b x(k); 8j 2 N _ ; k 6 = k j ; ; 9j 2 N _ ; k = k jmeaning that we have constructed b y by addition to b

(

  x(t); t = 2 t 0 0 [ t 0 1 [ t 0 2 [ ::: j ; 9j 2 N; t 2 t 0 j : Notation 1, page 1 N; Z; R, N _ ; Notation 2, page 1 d Seq; Seq; Notation 3, page 1 A ; Notation 4, page 2 b S (n) ; S (n) ; Notation 2, page 2 x(t 0); x(t + 0); Notation 3, page 3 x( 1 + 0); lim

t! 1 x

 1 (t); Notation 5, page 4I x ; Notation 6, page 4 b x(1 0); lim k!1 b x(k); x(1 0); lim

t! 1 x;

 1 (t); Notation 7, page 4 b F b x ; F x ; Notation 8, page 4 b k 0 , t 0 ; De…nition 8, page 6 c Or(b x); Or(x); De…nition 9, page 7 b !(b x); !(x); De…nition 10, page 7 b T b x ,T x ; Notation 11, page 8 b P b x ; P x ; Notation 9, page 11 b L b x ; L x ; Notation 10, page 11 b P b x ,P x ; Notation 11, page 13 b L b x ; L x ; Notation 12, page 13 b 0 n ; 0 n ; De…nition 21, page 139 I ; De…nition 23, page 139 d Seq 0 ; Notation 13, page 139 c Or( ),Or( ); De…nition 24, page 140 b !( ),!( ); De…nition 25, page 140 b P ; P ; Notation 14, page 141 b L ; L ; Notation 15, page 141 b k 0 ; t 0 ; De…nition 29, page 143 b n ; n ; De…nition 30, page 146 De…nition 25, page 140 0 ::: k ; De…nition 32, page 151 b ( ; ), ( ; ); De…nition 33, page 151 I ; Notation 16, page 153 c Or ( ); Or ( ); Notation 17, page 153 b ! ( ); ! ( ); Notation 18, page 153 b T ; 0 ; T ; 0 ; Notation 19, page 153 supp ; supp ; Notation 20, page 158 ; De…nition 37, page 163 195 b ( ; b u; k); b ( ; b u; k), ( ; u; t); ( ; u; t); De…nition 38, page 163 P (H); Notation 22, page 164 b , ; De…nition 41, page 164 b i 0 (b u),i 0 (u); De…nition 42, page 165 b P ; 0 ; P ; 0 ; Notation 24, page 180 b P ; P ; Notation 25, page 181 APPENDIX B Index A asynchronous system, De…nition 40, page 164 autonomous system, De…nition 46, page 166 C computation function, De…nition 21, page 139 D deterministic system, De…nition 45, page 166 double eventually periodic ‡ow, De…nition 49, page 184 double periodic ‡ow, De…nition 50, page 188 E equilibrium point (of a ‡ow), De…nition 48, page 175 equivalent computation functions, De…nition 36, page 161 eventually constant signal, De…nition 18, page 18 eventually equilibrium point (of a ‡ow), De…nition 47, page 171 eventually …xed point (of a Boolean function), De…nition 47, page 171 eventually periodic computation function, De…nition 26, page 141 eventually periodic point, De…nition 12, page 11 eventually periodic signal, De…nition 14, page 13 eventually rest point (of a ‡ow), De…nition 47, page 171 evolution function, De…nition 33, page 151 evolution function, De…nition 38, page 163 F …nal time instant (of a signal), De…nition 7, page 4 …nal value (of a signal), De…nition 6, page 4 …xed point (of a Boolean function), De…nition 48, page 175 ‡ow, De…nition 34, page 152 and De…nition 39, page 164 forgetful function, De…nition 8, page 6 forgetful function, De…nition 29, page 143 G generator function (of a system), De…nition 43, page 165 H hypothesis P , De…nition 19, page 91 I initial value (of a computation function), De…nition 22, page 139 initial value (of a signal), De…nition 4, page 4 initial state function (of a system), De…nition 42, page 165 initial time instant (of a computation function), De…nition 23, page 139 initial time instant (of a signal), De…nition 5, page 4 initialized system, De…nition 44, page 165 L (left) limit function (of a real time signal), De…nition 3, page 3 (right) limit function (of a real time signal), De…nition 3, page 3 limit of constancy, De…nition 18, page 18 limit of equilibrium, De…nition 18, page 18 limit of periodicity (of a computation function), De…nition 26, page 141 limit of periodicity (of a point), De…nition 12, page 11 limit of periodicity (of a signal), De…nition 14, page 13 N next state function, De…nition 33, page 151 O orbit (of a computation function), De…nition 24, page 140 orbit (of a signal), De…nition 9, page 7 omega limit point, De…nition 10, page 7 omega limit set, De…nition 10, page 7 omega limit set (of a computation function), De…nition 25, page 140 P period (of a computation function), De…nition 26, page 141 period (of a point), De…nition 12, page 11 period (of a signal), De…nition 14, page 13 periodic computation function, De…nition 28, page 141 periodic point, De…nition 16, page 14 periodic signal, De…nition 17, page 15 prime limit of periodicity (of a computation function), De…nition 27, page 141 prime limit of periodicity (of a point), De…nition 13, page 11 prime limit of periodicity (of a signal), De…nition 15, page 13 prime period (of a computation function), De…nition 27, page 141 prime period (of a point), De…nition 13, page 11 prime period (of a signal), De…nition 15, page 13 progressive computation function, De…nition 30, page 146 R regular system, De…nition 43, page 165 rest point (of a ‡ow), De…nition 48, page 175 S semi- ‡ow, De…nition 34, page 152 signal, De…nition 2, page 2 support set, De…nition 11, page 8 T (state) transition function, De…nition 33, page 151 U universal regular asynchronous system, De…nition 41, page 164 APPENDIX C

Lemma 1 .

 1 Let the signals b x 2 bS (n) ; x 2 S (n) and we consider the following statements: 0 ; k 0 + 1; k 0 + 2; :::g 6 = ?;(0.34) 8k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g; fk + zpjz 2 Zg \ fk 0 ; k 0 + 1; k 0 + 2; :::g b T bx ; T x \ [t 0 ; 1) 6 = ?;(0.38) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ;where k 0 2 N _ and t 0 2 R: We have the equivalencies:(0.39) ((0:31) and (0:33) and (0:34)) () ((0:32) and (0:34)); (0.40) ((0:35) and (0:37) and (0:38)) () ((0:36) and (0:38)): Proof. If (0.31) and (0.33) and (0.34) hold, we can take some k 2 b T b x \fk 0 ; k 0 + 1; k 0 + 2; :::g arbitrarily. From (0.34) we get k; k + p; k + 2p; ::: 2 b T b x ; thus b T b x is in…nite and 2 b !(b x): Conversely, we suppose that (0.32) and (0.34) hold. (0.31) is trivially ful…lled and as far as b T b x is in…nite, (0.33) is true also. (0.39) is proved and the proof of (0.40) is similar. Remark 210. Equivalent forms of Lemma 3, Lemma 4, Lemma 5, Lemma 8, and Lemma 10 exist, due to Lemma 1; we can replace in their hypothesis 2 b !(b x) with 2 c Or(b x); b T b

Lemma 4 .

 4 a) Let b x; 2 b !(b x) that is an eventually periodic point of b x with the period p 1 and the limit of periodicity k 0 2 N _ and let also k 2 b T b x \ fk 0 ; k 0 + 1; k 0 + 2; :::g: Then fk; k + p; k + 2p; :::g b T bx :

wherefrom t 2

 2 T x : (0.43) is proved. Lemma 5. a) b x 2 b S (n) ; 2 b !(b x) are given with the property that is eventually periodic with the period p 1 and the limit of periodicity k 0 2 N _ : If k 1 k 0 and (0.45) b x(k 1 ) 6 = ; then 8k 2 N; (0.46) b x(k 1 + kp) 6 = :

then 8k 2 1 +

 21 kT 0) 6 = ; if t 2 t 0 and (0.49) x(t 2 ) 6 = ; then 8k 2 N; (0.50) x(t 2 + kT ) 6 = : Proof. a) The hypothesis states the truth of (0.51) 8k 2 b T b

  have from the hypothesis that (0.52)8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x

b x 2 [b x 1 \

 21 7. a) Let b x that is not eventually constant and 2 b !(b x): Then 8k 2 N; 9k 0 > k; b x(k 0 1) 6 = b x(k 0 ) = : b) We suppose that x is not eventually constant and we take 2 !(x): We have 8t 2 R; 9t 0 > t; x(t 0 0) 6 = x(t 0 ) = : Proof. a) We suppose that b !(b x) = f 1 ; :::; s g; s 2; that = 1 and let k 2 N _ arbitrary. b T b x 1 ; :::; b T b x s are all in…nite and we de…ne k 1 = min( b T ::: [ b T b x s ) \ fk; k + 1; k + 2; :::g; k 0 = min b T fk 1 ; k 1 + 1; k 1 + 2; :::g: We have k 0 > k 1 k and f 2 ; :::; s g 3 b x(k 0 1) 6 = b x(k 0 ) = 1 : b) We put !(x) under the form !(x) = f 1 ; :::;2 g; where s 2 and = 1 : Let t 2 R arbitrary. The support sets T x 1 ; :::; T x s are all superiorly unbounded and we de…ne: t 1 = min(T x 2 [ ::: [ T x s ) \ [t; 1); t 0 = min T x 1 \ [t 1 ; 1): The sets (T x 2 [ ::: [ T x s ) \ [t; 1); T x 1 \ [t 1 ; 1) are of the form [a; b) [ [c; d) [ ::

8 2 (

 2 T k "; T k ); x( ) (0:65);(0:68) = x(T ); thus (0.69) x(T k 0) = x(T ) and on the other hand that (0.70) x(T k ) By comparing (0.69) with (0.70) we infer (0.64). Remark 212. In Lemma 9 T k > 0; k 2 N and T 0 are not necessarily related with any property of periodicity of x. Lemma 10. a) We consider b x; p 1; k 0 2 N _ and 2 b !(b x) such that (0.71) 8k 2 b T b

we have k 1 = p 1 and [ k2N fn 1 +[ z2Z fn 0 1 +([a 1 +([a 0 1 +

 11111 kp; n 2 + kp; :::; n k1 + kpg = = zp; n 0 2 + zp; :::; n 0 k1 + zpg \ fk 0 ; k 0 + 1; k 0 + 2; :::g:b) Let x; T > 0; t 0 2 R and 2 !(x) with (0.74) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x :The disjoint intervals [a 1 ; b 1 ); [a 2 ; b 2 ); :::; [a k1 ; b k1 ); k 1 1 are de…ned by(0.75) [a 1 ; b 1 ) [ [a 2 ; b 2 ) [ ::: [ [a k1 ; b k1 ) = T x \ [t 0 ; t 0 + T ):For any t 00 t 0 ; we de…ne the disjoint intervals [a 0 1 ; b 0 1 ); [a 0 2 ; b 0 2 ); :::; [a 0 p1 ; b 0 p1 ); p 1 1; by(0.76) [a 0 1 ; b 0 1 ) [ [a 0 2 ; b 0 2 ) [ ::: [ [a 0 p1 ; b 0 p1 ) = T x \ [t 00 ; t 00 + T ):Then we have [k2N kT; b 1 + kT ) [ [a 2 + kT; b 2 + kT ) [ ::: [ [a k1 + kT; b k1 + kT )) = = [ z2Z zT; b 0 1 + zT ) [ [a 0 2 + zT; b 0 2 + zT ) [ ::: [ [a 0 p1 + zT; b 0 p1 + zT )) \ [t 0 ;1): Proof. a) Let k 00 k 0 arbitrary. As 2 b !(b x); we get that b T b x is in…nite, thus b T b

[ z2Z fn 0 1 + zp; n 0 2 + 1 +

 121 :: belongs to b T b x \ fk 0 ; k 0 + 1; :::; k 0 + p 1g is proved similarly with the proof of existence of b and let this term be n 0 j 0 kp = n j : Obviously b (n j ) = n 0 j 0 : It has resulted that b is bijective and k 1 = p 1 : We prove [ k2N fn 1 +kp; n 2 +kp; :::; n k1 +kpg [ z2Z fn 0 1 +zp; n 0 2 +zp; :::; n 0 k1 +zpg\ fk 0 ; k 0 + 1; k 0 + 2; :::g and let e k 2 [ k2N fn 1 + kp; n 2 + kp; :::; n k1 + kpg arbitrary. Some k 2 N and some j 2 f1; :::; k 1 g exist with e k = n j + kp: But kp 0 and e k n j k 0 : Some j 0 2 f1; :::; k 1 g and some k 2 N exist such that b (n j ) = n j + kp = n 0 j 0 ; in other words e k = n 0 j 0 kp + kp: We have proved that e k 2 zp; :::; n 0 k1 + zpg \ fk 0 ; k 0 + 1; k 0 + 2; :::g: We prove that [ z2Z fn 0 zp; n 0 2 + zp; :::; n 0 k1 + zpg \ fk 0 ; k 0 + 1; k 0 + 2; :::g [ k2N fn 1 + kp; n 2 + kp; :::; n k1 + kpg and let for this e k 2 [ z2Z fn 0 1 + zp; n 0 2 + zp; :::; n 0 k1 + zpg \ fk 0 ; k 0 + 1; k 0 + 2; :::g arbitrary. Some j 0 2 f1; :::; k 1 g and some z 2 Z exist with e k = n 0 j 0 + zp k 0 : We have the existence of j 2 f1; :::; k 1 g and k 2 N with n 0 j 0 kp = b 1 (n 0 j 0 ) = n j ; thus e k = n j + (k + z)p: As n j p k 0 1; the condition n j + (k + z)p k 0 implies k + z 2 N; in other words e k 2 [ k2N fn 1 + kp; n 2 + kp; :::; n k1 + kpg: b)

We prove [ k2N ([a 1

 k2N1 +kT; b 1 +kT )[[a 2 +kT; b 2 +kT )[:::[[a k1 +kT; b k1 +kT )) [ z2Z ([a 0 1 + zT; b 0 1 + zT ) [ [a 0 2 + zT; b 0 2 + zT ) [ ::: [ [a 0 p1 + zT; b 0 p1 + zT )) \ [t 0 ; 1) and let

  Let now k 2 ; k 3 2 N with the property that[t 1 + k 2 T; t 2 + k 2 T ) \ [t 3 + k 3 T 0 ; t 4 + k 3 T 0 ) 6 = ?:We have the following non-exclusive cases, that cover all the possibilities.Caset 1 + k 2 T = t 3 + k 3 T 0 As T 0 < t 2 t 1 ; we have t 3 + (k 3 + 1)T 0 2 (t 1 + k 2 T; t 2 + k 2 T ); contradiction with (4.45).Case t 1 + k 2 T 2 (t 3 + k 3 T 0 ; t 4 + k 3 T 0 );

	From the fact that T 0 < t 2 t 1 and from Lemma 6, page 201 we have that
	? 6 = ([t 1 ; t 2 ) [ [t 1 + T; t 2 + T ) [ [t 1 + 2T; t 2 + 2T ) [ :::)\ \([t 3 ; t 4 ) [ [t 3 + T 0 ; t 4 + T 0 ) [ [t 3 + 2T 0 ; t 4 + 2T 0 ) [ :::) T x \ T x wherefrom = 0 :	0
	contradiction with (4.40).		
	Case t 2 + k 2 T 2 (t 3 + k 3 T 0 ; t 4 + k 3 T 0 ); contradiction with (4.41).	
	Case t 3 + k 3 T 0 2 (t 1 + k 2 T; t 2 + k 2 T ); contradiction with (4.45).	
	Case t 4 + k 3 T 0 2 (t 1 + k 2 T; t 2 + k 2 T ); contradiction with (4.46).	
	t 3 < t 4 ; [t 3 ; t 4 ) T x (4.44) [t 3 ; t 4 ) [ [t 3 + T 0 ; t 4 + T 0 ) [ [t 3 + 2T 0 ; t 4 + 2T 0 ) [ ::: T x 0 ; x(t 3 0) 6 = 0 ; x(t 4 ) 6 = 0 and	0	00 1 g <
	and for any k 2 N we have (4.45)	x(t 3 + kT 0 0) 6 = 0 ;	
	(4.46)	x(t 4 + kT 0 ) 6 = 0 :	

  3.30), 2 !(x): In both situations: t 000 2 [t 0 ; t 0 ) and t 000 t 0 ; we have the existence of t 1 ; t 2 2 R with the properties t 0 t 1 < t 2 ; [t 1 ; t 2 ) T x and at least one of x(t 1 0) 6 = ; x(t 2 ) 6 = is true. We note from Lemma 4, page 200 that in this situation the inclusion (3.31) [t 1 ; t 2 ) [ [t 1 + T; t 2 + T ) [ [t 1 + 2T; t 2 + 2T ) [ ::: T x holds. Moreover, Lemma 5, page 200 shows that 8k 2 N; one of x(t 1 + kT 0) 6 = ; x(t 2 + kT ) 6 = is also ful…lled. Let now T 0 2 (0; t 2 t 1 ): From the hypothesis (3.12), 0 2 Or(x) exists such that

		8 > <
	(3.32)	> :

  The request (3.3) allows de…ning t 00 = min T x \ [t 0 ; 1): We show that t 00 2 T x \ [t 0 ; t 0 + T ): If, against all reason, this would not be true, then we would have t 00 t 0 + T: This means that t 00 T t 0 ; thus t 00 T 2 ft 00 + zT jz 2 Zg \ [t 0 ; 1)

	+ 1; :::; k + p 1g 6 = ?: b) We have from the hypothesis that (3.3) T (3:4)

x \ [t 0 ; 1) 6 = ?;

(3.4) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x

are ful…lled.

  k1 + kT )) arbitrary: Some j 2 f1; :::; k 1 g and some k 2 N exist such that t 2 [a j + kT; b j + kT ); wherefrom t kT 2 [a j ; b j ) T x \ [t 0 ; 1): We can write t 2 ft kT + zT jz 2 Zg \ [t 0 ; 1) Remark 82. Let us see what happens if in the hypothesis of the previous Theorem x would have been eventually constant; in this case !

		(10:4)	T x :
	Since t t 0 ; (10.6) is proved.
	We prove	[

and let t 2 T x \ [t 0 ; 1) arbitrary. A …nite sequence t; t T; t 2T; :::; t kT 2 T x exists, from

(10.4)

, such that t kT 2 [t 0 ; t 0 + T ); where k 2 N: This implies the existence of j 2 f1; :::; k 1 g such that t kT 2 [a j ; b j ); i.e. t 2 [a j +kT; b j +kT ) [ k2N ([a 1 +kT; b 1 +kT )[[a 2 +kT; b 2 +kT )[:::[[a k1 +kT; b k1 +kT )): k2N ([a 1 +kT; b 1 +kT )[[a 2 +kT; b 2 +kT )[:::[[a k1 +kT; b k1 +kT )) T x \ [t 0 ; 1) and let t 2 [ k2N ([a 1 + kT; b 1 + kT ) [ [a 2 + kT; b 2 + kT ) [ ::: [ [a k1 + kT; b

  true. If in (7.3) we have T 2 (0; h) [ (h; 2h) [ ::: [ (qh; (q + 1)h) [ ::: then, from Theorem 44, page 81, 2 b !(b x) = !(x) and k 0 2 N _ exist such that 8k k 0 ; b x(k) = resulting a contradiction with the hypothesis, stating that bx; x are not eventually constant. We suppose from now that T 2 fh; 2h; 3h; :::g: We denote p = T

	Example 19. We de…ne b x 2 b S (1) by
	8k 2 N _ ; b x(k) =	1; if k 2 f 1; 2; 4; 6; 8; :::g 0; otherwise
	and x 2 S (1) respectively by	

h ; p 1: As far as for any t 00 t 0 we have

(7.4) 

8t t 00 ; x(t) = x(t + T );

we can suppose without loosing the generality the existence of k 0 2 N _ with t 00 = t 0 +k 0 h: In this situation for any k k 0 and any t t 00 with t 2 [t 0 +kh; t 0 +(k+1)h) we have

t + T 2 [t 0 + kh + ph; t 0 + (k + 1)h + ph) = [t 0 + (k + p)h; t 0 + (k + 1 + p)h)

and we can write b x(k) = x(t) (7:4) = x(t + T ) = b x(k + p); thus (7.2) is true.

  since by supposing against all reason that this is not true we get a contradiction, thusT x [t 0 ; t 2 ) [ [t 0 + T; t 2 + T ) [ [t 0 + 2T; t 2 + 2T) [ ::: and let k 2 N with t 2 [t 0 + kT; t 2 + kT ): This means that, on one hand t t 0 > t 0 and on the other hand t + ( k 1)T < t 2 T t 0 < t 0 t kT < t 2 ;

thus ft + zT jz 2 Zg \ [t 2 T; 1) = ft + ( k)T; t + ( k + 1)T; t + ( k + 2)T; :::g

  T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x are ful…lled. b) Let t 00 2 [b 1 T; t 0 ) arbitrary. For any T 0 > 0 such that (12.13) 8t 2 T x \ [t 00 ; 1); ft + zT 0 jz 2 Zg \ [t 00 ; 1) T xis true, we have T 0 2 fT; 2T; 3T; :::g:Proof. a) This is a special case of Theorem 73, page 108, written for k 1 = 1: b) We suppose against all reason now that T 0 < T: Let us notice the truth ofmaxfa 1 ; b 1 T 0 g < minfb 1 ; a 1 + T T 0 g:We infer that t 2 [maxfa 1 ; b 1 T 0 g; minfb 1 ; a 1 + T T 0 g) satis…es t 2 [a 1 ; b 1 ) T x \ [t 00 ; 1) and t + T 0 2 ft + zT 0 jz 2 Zg \ [t 00 ; 1)

		) [ :::
	hold:	
	a) For any t 0 2 [b 1 T; t 0 ); the following properties: t 0 2 I x ;
	(12.12)	8t 2 (12:13)

  prove P x PWe must show that 2 Or( e t (x)) and t 00 2 I

			e t (x) : Let T 2 P x arbitrary; thus t 0 2 I x exists such that
	(13.6)	8t 2 T e t (x) exists such that
	(13.7)	8t 2 T	e t (x) \ [t 00 ; 1); ft + zT jz 2 Zg \ [t 00 ; 1) T	e t (x) :

x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x :

  2 T e t (x) \ [t 00 ; 1) and z 2 Z arbitrary, with t + zT t 00 : We have t 2 T x ; t t 00 > t 0 > t 0 and t + zT t 00 > t 0 > t 0 thus (13.6) can be applied. We get t + zT 2 T x : As far as = x(t + zT ) = e t (x)(t + zT ); we conclude that Let T 2 P x arbitrary; thus t 0 2 I x exists with (13.6) ful…lled. We suppose against all reason that P

	e t (x) : We prove P t + zT 2 T P x exists. This means the existence of t 00 2 I e t (x) P e t (x) e t (x) with P x is false, i.e. T 0 2 P	e t (x) r
	(13.10)	8t 2 T

x : e t (x) \ [t 00 ; 1); ft + zT 0 jz 2 Zg \ [t 00 ; 1) T e t (x) ;

  T x \ [t 00 ; 1); ft + zT 0 jz 2 Zg \ [t 00 ; 1) T x

	2 R such that (13.15) 8t 2 T (13.16) 8t 2 are true, then P t 0

x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ;

  1.7) 8 2 Or(x); 9t 0 2 I x ; 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ;

	(1.8) (1.9)	(	8 2 Or(x); 9t 0 2 I x ; t 0 ; 8t 2 T x \ [t 0 1 ; 1); ft + zT jz 2 Zg \ [t 0 1 ; 1) T x ; t 00 (x) ; 8 2 Or(x); 8t 00 2 R; 9t 0 2 I 8t 2 T 8t 0 1 t 00 (x) \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T t 00 (x) ;

  :::; sg exists such that x(t) = i ; for which we can writet + T 2 ft + zT jz 2 Zg \ [t 0 ; 1)

	7) we have the
	existence 8i 2 f1; :::; sg of t 0 i 2 I x with (2.8) 8t 1 2 T x i \ [t 0 i ; 1); ft 1 + zT jz 2 Zg \ [t 0 i ; 1) T x ful…lled. With the notation t 0 = maxft 0 1 ; :::; t 0 s g; we get the truth of t 0 2 I x ; i (2.9) 8t 2 T x i i \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x t 0 arbitrary. Some for any i 2 f1; :::; sg; see Lemma 3, page 200: Let now t i 2 f1; (2:9)

  (4.21) de…ne t 2 ,...,(4.22), (4.23) de…ne t s : The bounds [t 0 0 ; t 0 ) of the initial time= limit of periodicity of x and the bounds [t 1 T; t 0 ); [t 2 T; t 0 ); :::; [t s T; t 0 ) of the initial time of x=limits of periodicity of 1 ; 2 ; :::; s ; considered as periodic points of x with the period T ful…ll) = [t 1 T; t 0 ) = [t 1 T; t 0 ) \ [t 2 T; t 0 ) \ ::: \ [t s T; t 0 ):Proof. (4.14), (4.15) coincide with (4.4) page 121 , (4.5) page 121 and (4.16), (4.17) coincide with (4.9) page 121 , (4.10) page 121 from Theorem 85, page 121. From the Theorem we have that [t 0 0 ; t 0 ) gives the bounds of the initial time=limit of periodicity of x. The periodicity of x with the period T implies the periodicity of its values 1 ; 2 ; :::; s with the period T and the bounds of the initial time=limits of periodicity are given by [t 1 T; t 0 ); [t 2 T; t 0 ); :::; [t s T; t 0 ); where (4.18), (4.19) coincide with (4.22) page 100 , (4.23) page 100 , while (4.20), (4.21),...,(4.22), (4.23) coincide with (4.25) page 100 , (4.24) page 100 from Corollary 3, page 100. We note also the coincidence of (4.14), (4.15) with (4.20) page 100 , (4.21) page 100 : The truth of (4.24) results from the remark that t 1 = maxft 1 ; t 2 ; :::; t s g and t 0 0 + T = t 1 (the last equality results from (4.16), (4.17) and (4.18), (4.19)).

	4.14) (4.15) (4.16) (4.17) (4.18) (4.19) (4.20) (4.21) (4.22) (4.23) x(t s 0) = (4.24) 8t < t 0 ; x(t) = x( 1 + 0); x(t 0 ) 6 = x( 1 + 0); 8t 2 [t 0 0 + T; t 0 + T ); x(t) = x( 1 + 0); x(t 0 0 + T 0) 6 = x( 1 + 0); [t 1 ; t 0 + T ) T x 1 ; x(t 1 0) 6 = 1 ; [t 2 ; t 0 + T ) \ T x 2 = ?; x(t 2 0) = 2 ; ::: [t s ; t 0 + T ) \ T x s = ?; [t 0 0 ; t 0

s ; (4.14), (4.15) de…ne t 0 , (4.16), (4.17) de…ne t 0 0 , (4.18), (4.19) de…ne t 1 , (4.20),

  In this situation we have k 0 = k 1 : Let us take some arbitrary, …xed k k 0 :

		p);
	thus (7.6) is true and (7.7) is also true.
	Case k 1	1:
		We
	can write	
	(7.9)	t 0 + kh t 0 + (k k 1 )h < t 0 + (k + 1)h;
	(7.10)	t

0 + (k + p)h t 0 + (k k 1 + p)h < t 0 + (k + p + 1)h;

where

(7.11) 

  = [t s 2 ; t s 1 ) [ [t s 2 + T; t s 1 + T ) [ [t s 2 + 2T; t s 1 + 2T ) [ ::: a) For any t 0 2 [t s 1 T; t 0 ); the properties t 0 2 I x ; Proof. Item a) is a special case of Theorem 96, page 129. By de…nition we have t 0
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	(12.7)	T x	
	(12.8) are ful…lled.	8i 2 f1; :::; sg; 8t 2 T x	i \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x	i
	b) Let t 00 2 [t s 1 T; t 0 ) arbitrary. For any T 0 > 0 such that (12.9) 8i 2 f1; :::; sg; 8t 2 T x i \ [t 00 ; 1); ft + zT 0 jz 2 Zg \ [t 00 ; 1) T x we have T 0 2 fT; 2T; 3T; :::g:	i ;
				t s 1 + 2T; t 0 + 3T ) [ :::
	(12.6)		T x	

2 = [t 0 ; t 1 ) [ [t 0 + T; t 1 + T ) [ [t 0 + 2T; t 1 + 2T ) [ ::: ::: s

  prove P x P If x is constant, then e t (x) = x and t 00 2 I

		e t (x) , (13.7) are trivially true for
	any t 00 2 R so that we shall suppose from now that x is not constant. Some t 0 2 R exists with
	(13.8)	8t < t 0 ; x(t) = x( 1 + 0);
	(13.6)	e t (x) : Let T 2 P x arbitrary; for which t 0 2 I x exists such that 8t t 0 ; x(t) = x(t + T )

holds. We must prove the existence of t 00 2 I e t (x) making (13.7) 8t t 00 ; e t (x)(t) = e t (x)(t + T ) true.

  Or(x); 9t 0 2 I x ; 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ; T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ; T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x are also equivalent.

	(14.4) 9T > 0; 8 2 (14.5) 9t 0 2 I x ; 8 2 Or(x); 9T > 0; 8t 2 (14.6) 8 2 Or(x); 9T > 0; 9t 0 2 I x ; 8t 2

3) 9T > 0; 9t 0 2 I x ; 8 2 Or(x); 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x ;

  ( 1; t 0 ) [ [t 1 ; t 0 + e T ) [ [t 1 + e

	T ; t 0 + 2 e T ) [ [t 1 + 2 e T ; t 0 + 3 e T ) [ :::
	P x = f e T ; 2 e T ; 3 e T ; :::g:

  The hypothesis states that (0.41) 8t 2 T x \ [t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x is true and we must prove (0.42) 8t 2 T x \ [t 00 ; 1); ft + zT jz 2 Zg \ [t 00 ; 1) T x

  2 ful…ll [t 1 ; t 2 ) T

	Proof. b) We have the truth of
	(0.44)	8t 2 T

x \ [t 0 ; 1 _ ). Then (0.43) [t 1 ; t 2 ) [ [t 1 + T; t 2 + T ) [ [t 1 + 2T; t 2 + 2T ) [ ::: T x : x \ [

t 0 ; 1); ft + zT jz 2 Zg \ [t 0 ; 1) T x : Let k 2 N and t 2 [t 1 + kT; t 2 + kT ) arbitrary. We infer t kT 2 [t 1 ; t 2 ); thus = x(t kT )

  0 t 1 + kT " 2 t 1 + kT " < t 00 < t 1 + kT; " 1 t 1 " < t 00 kT < t 1 ;

	(0.56)	= x(t 00 )	(0:54);(0:55) =	x(t 1 + kT 0);
	(0.57) t 0 t 1 (0.58) = x(t 00 ) (0:52);(0:55);(0:57) =	x(t 00 kT )	(0:53);(0:57) =	x(t 1 0)	(0:47) 6 =	;

contradiction. We have obtained that 8t 2 (t 1 + kT "; t 1 + kT ); x(t) 6 = ; i.e. (0.48) holds.

Furthermore, if (0.50) is false, against all reason, then we get = x(t 2 + kT )

  2 t 1 ): Then ([t 1 ; t 2 ) [ [t 1 + T; t 2 + T ) [ [t 1 + 2T; t 2 + 2T ) [ :::)\ Proof. Let k 1 2 N such that t 1 + k 1 T > t 0 1 :In the sequence t 0 1 ; t 0 1 + T 0 ; t 0 1 + 2T 0 ; ::: some k 2 2 N exists with (0.59)t 0 1 + k 2 T 0 < t 1 + k 1 T; + (k 2 + 1)T 0 (0:59) < t 1 + k 1 T + T 0 < t 1 + k 1 T + t 2 t 1 = t 2 + k 1 T:From (0.60) and (0.61) we infer that t 0 1 + (k 2 + 1)T 0 2 [t 1 + k 1 T; t 2 + k 1 T ): Lemma

	(0.60)	t 0 1 + (k 2 + 1)T 0 t 1 + k 1 T:
	We get from here that
	(0.61)	t 0 1
		\([t 0 1 ; t 0

2 ) [ [t 0 1 + T 0 ; t 0 2 + T 0 ) [ [t 0 1 + 2T 0 ; t 0 2 + 2T 0 ) [ :::) 6 = ?:

PRELIM INARIES

It is not the purpose of this monograph to address the stability of the systems.

The statement that we prove is stronger than (3.9).

EVENTUALLY CONSTANT SIGNALS

The fact that (5.6) implies b !(b x) = !(x) was proved at Theorem 6, page 9.

if t < t 0 ; the other way of negating t = t 0 ; then from 8t t; x(t) = ; we can write 8t t 0 ; x(t) = ; i.e. …nally we can take t = t 0 :

This Theorem is partially without proof.

The fact that (5.6) implies c Or(b x) = Or(x) is proved at Theorem 6 a), page 9.

Note that at (1.7) we have the order of the quanti…ers 8

Or(x); 9t 0 2 I x but in the proof (1.7)=)(2.4) from Theorem 80, page 117 we could make use of 9t 0 2 I x ;8 2 Or(x), thus the previous argument is correct. We shall refer again to the possibility of changing the order of some quanti…ers in stating periodicity properties in Section 14 of this Chapter.

b) We suppose that t 0 2 R; h > 0 exist such that (5.3) holds and also that t 0 2 R; T 2 (0; h) [ (h; 2h) [ ::: [ (qh; (q + 1)h) [ ::: exist such that (5.4) is true. Furthermore, 2 !(x) implies T x \[t 0 ; 1) 6 = ?; since T x is unbounded from above.

We show …rst the existence of t 2 R such that (5.7) 8t t; x(t) = is true.

We have the existence of k 0 2 N _ such that t 0 + k 0 h t 0 ; x(t 0 + k 0 h) = and

(5.8) 8t 2 [t 0 + k 0 h; t 0 + (k 0 + 1)h); x(t) = :

Case T 2 (0; h); when (5.9) t 0 + k 0 h < t 0 + (k 0 + 1)h T < t 0 + (k 0 + 1)h;

(5.10)

= x(t 0 + (k 0 + 1)h T )

(5:4)

= x(t 0 + (k 0 + 1)h);

(5.11) 8t 2 [t 0 + (k 0 + 1)h; t 0 + (k 0 + 2)h); x(t)

(5:10) = ;

(5.12) t 0 + (k 0 + 1)h < t 0 + (k 0 + 2)h T < t 0 + (k 0 + 2)h;

(5.13)

= ;

::: Thus the statement (5.7) holds, from (5.8), (5.11), (5.14),... for t = t 0 + k 0 h: Case T 2 (h; 2h); when (5.15)

(5.16)

(5.17) 8t 2 [t 0 + (k 0 + 1)h; t 0 + (k 0 + 2)h); x(t)

(5:16) = ;

(5.18)

(5.19)

= ;

::: The statement (5.7) holds, from (5.8), (5.17), (5.20),... for t = t 0 + k 0 h: Case T 2 (2h; 3h): In this situation (5.21)

(5.22)

(5.23) 8t 2 [t 0 + (k 0 + 2)h; t 0 + (k 0 + 3)h); x(t)

(5:22) = ;

(5.24) t 0 + (k 0 + 4)h < t 0 + (k 0 + 2)h + T < t 0 + (k 0 + 5)h;

(5.25)

= x(t 0 + (k 0 + 4)h);

(5.26) 8t 2 [t 0 + (k 0 + 4)h; t 0 + (k 0 + 5)h); x(t)

(5:25) = ;

(5.27) t 0 + (k 0 + 6)h < t 0 + (k 0 + 4)h + T < t 0 + (k 0 + 7)h;

:::

(5.30)

(5:30) = ;

(5.32)

::: and we prove that

similarly with (5.21),...,(5.28), starting from x(t 0 + (k 0 + 1)h)

= : From (5.28), (5.33) we infer that the statement (5.7) is true for t = t 0 + k 0 h: Case T 2 (3h; 4h);

(5.34)

(5.35)

= ;

(5.37)

(5.38)

(5:38) = ;

(5.40)

:::

(5.43) 

); L x 00 = [ 2; 1); L x = [ 1; 1); P x = f6; 12; 18; :::g; P x 0 = f3; 6; 9; :::g; P x 00 = f6; 12; 18; :::g; P x = f6; 12; 18; :::g: We notice the falsity of (4.1) in the real time case, expressed under the form L x 6 = L x 00 :

(10.6)

and for any i 2 f2; :::; sg;

(10.9)

are ful…lled.

Proof. As x is non constant, periodic with the period T; all of 1 ; :::; s are periodic, with the period T . Theorem 69, page 105 shows then the existence of t 0 ; a 1 1 ; b 1 1 ; a 1 2 ; b 1 2 ; :::; a 1 k1 ; b 1 k1 2 R, k 1 1 such that (10.2),...,(10.6) are true. The existence of t 0 ; a i 1 ; b i 1 ; a i 2 ; b i 2 ; :::; a i ki ; b i ki 2 R, k i 1 for i 2 f2; :::; sg such that (10.2), (10.3), (10.7),..., (10.9) hold results from Theorem 70, page 106.

Example 28. The periodic signal x 2 S (1) ;

11. Su¢ ciency conditions of periodicity

Or(b x) = f 1 ; :::; s g and p 1: We suppose that 8i 2 f1; :::; sg; n i 1 ; n i 2 ; :::; n i ki 2 f 1; 0; :::; p 2g; k i 1 exist such that Then 8i 2 f1; :::; sg;

Proof. If 8i 2 f1; :::; sg; n i 1 ; n i 2 ; :::; n i ki 2 f 1; 0; :::; p 2g; k i 1 exist such that (11.1) holds, we infer from Theorem 71, page 107 that all of 1 ; :::; s are periodic with the period p, i.e. b

x is periodic with the period p.

Theorem 96. The signal x 2 S (n) is given, such that Or(x) = f 1 ; :::; s g; s 2 and we suppose that the initial value of x is 1 : We ask that T > 0 and the points t 0 ; a i 1 ; b i 1 ; a i 2 ; b i 2 ; :::; a i ki ; b i ki 2 R; k i 1 exist, i 2 f1; :::; sg such that (11.3)

and for any i 2 f2; :::; sg;

We get the existence of k 2 N and j 2 f1; :::; k 1 g such that e t 2 [a j + kT; b j + kT ); thus e t kT 2 [a j ; b j ) and e t kT t 0 : Furthermore, a unique k 2 N exists with the property ( e t kT ) = e t kT + kT 2 T x \ [t 00 ; t 00 + T ) and a unique j 0 2 f1; :::; p 1 g exists also with e t kT + kT 2 [a 0 j 0 ; b 0 j 0 ); i.e. e t 2 [a 0 Example 53. We show that in the previous Lemma, item b) we have in general k 1 6 = p 1 (unlike item a)) and we consider x 2 S (1) ; k ft k g (t) ::: We notice …rst that the set ft k jk 2 N; t k 2 [a; b)g is …nite (we consider that the empty set is …nite). Indeed, if we suppose against all reason that ft k jk 2 N; t k 2 [a; b)g is in…nite, as (t k ) is strictly increasing, we infer that 8k 2 N; t k < b; contradiction with the fact that (t k ) is superiorly unbounded.

We can infer now, as far as the right hand set of the following inclusion