
HAL Id: hal-01112926
https://hal.science/hal-01112926

Submitted on 4 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Near Real-Time Algorithm for Autonomous
Identification and Characterization of Honeypot Attacks

Philippe Owezarski

To cite this version:
Philippe Owezarski. A Near Real-Time Algorithm for Autonomous Identification and Characterization
of Honeypot Attacks. ACM Symposium on Information, Computer and Communications Security
(ASIACCS), Apr 2015, Singapour, Singapore. 12p. �hal-01112926�

https://hal.science/hal-01112926
https://hal.archives-ouvertes.fr

A Near Real-Time Algorithm for Autonomous Identification
and Characterization of Honeypot Attacks

Philippe Owezarski
CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

Université de Toulouse, LAAS, F-31400 Toulouse, France
owe@laas.fr

ABSTRACT
Monitoring communication networks and their tra�c is of
essential importance for estimating the risk in the Internet,
and therefore designing suited protection systems for com-
puter networks. Network and tra�c analysis can be done
thanks to measurement devices or honeypots. However, an-
alyzing the huge amount of gathered data, and characteriz-
ing the anomalies and attacks contained in these traces re-
main complex and time consuming tasks, done by network
and security experts using poorly automatized tools, and are
consequently slow and costly. In this paper, we present an
unsupervised algorithm - called UNADA for Unsupervised
Network Anomaly Detection Algorithm - for identification
and characterization of security related anomalies and at-
tacks occurring in honeypots. This automatized method
does not need any attack signature database, learning phase,
or labeled tra�c. This corresponds to a major step towards
autonomous security systems. This paper also shows how it
is possible from anomalies characterization results to infer
filtering rules that could serve for automatically configuring
network routers, switches or firewalls. The performances of
UNADA in terms of attacks identification accuracy are eval-
uated using honeypot tra�c traces gathered on the honeypot
network of the University of Maryland. The time latency
for producing such accurate results are also presented, es-
pecially showing how the parallelization capabilities of the
algorithm help reducing this latency.

Keywords
Honeypot attack identification, Anomaly characterization,
unsupervised machine learning, big tra�c data, autonomous
security systems.

1. INTRODUCTION
Monitoring communication networks and their tra�c is an

important advance for protecting computers systems. Sev-
eral methods exist. For example, using monitoring devices
at the interconnection points of networks allows the analysis

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

of all incoming and outgoing flows. Another method consists
in installing honeypots in the network. Honeypots provide
more or less emulated services (according to the expected
interaction level with the attackers), and allows supervising
the use of the provided services by attackers. Thus, gathered
data allows security experts on one hand to detect and ana-
lyze computer systems weaknesses, and on the other hand to
collect useful information on the attacker activities that al-
lows the analysis of their attacking methods, objectives, and
strategies. Estimating and analyzing the risk related to ille-
gitimate activities on the Internet are essential for security
experts to design and develop adapted and e�cient defense
and protection systems with regard to the actual risk.

Characterizing and classifying current anomalies and at-
tacks of the Internet are very complex and time consuming
tasks, done by experts. Such tasks are therefore slow and
costly. The main di�culty related to the identification and
analysis of the di↵erent classes of illegitimate tra�c is their
fast evolution, amplification, and renewing capabilities. De-
signing autonomous identification and characterization pro-
cesses is crucial for easy to deploy and to use defense sys-
tems. Hence, modern identification and classification sys-
tems must not rely on human expert knowledge, and must
be able to autonomously adapt to the evolution of all tra�c
components, be they legitimate or not (this paper obviously
focuses on illegitimate ones). For this purpose, we propose
to take advantage of unsupervised machine learning tech-
niques that do not require the help of any human expert. In
this paper we then present an unsupervised method for iden-
tifying and characterizing anomalies and attacks contained
in tra�c gathered on honeypot networks. This method does
not take advantage of any attack signature, learning stage,
or labeled tra�c, what constitutes a major advance towards
autonomous security systems. This approach uses robust
clustering techniques, as sub-space clustering, density-based
clustering, and evidence accumulation for classifying flow
ensembles in tra�c classes, and builds easily understand-
able associated signatures. This method was first proposed
in our previous work [19] that aims at detecting, classify-
ing and characterizing anomalies in the full network traf-
fic. This method has been adapted and extended in order
to cope with the specific honeypot network tra�c. Indeed,
honeypot network tra�c only contains illegitimate tra�c
(attacks, anomalies, intrusion attempts, ...) what signifi-
cantly changes the way classification and characterization
can be done. This paper mainly deals with taking into ac-
count the illegitimate nature of tra�c to be analyzed, and
designing adapted and optimized identification and charac-

Philippe Owezarski

Philippe Owezarski

Philippe Owezarski

Philippe Owezarski

Philippe Owezarski

Philippe Owezarski

Philippe Owezarski

terization algorithms.
These algorithms are illustrated by the analysis of honey-

pot tra�c gathered at the University of Maryland, at the
Netflow format [3]. The University of Maryland put mea-
surement devices on routers at the border of the honeypots
networks. This allows the capture of the tra�c exchanged
between honeypots and the Internet by monitoring only very
few network devices. We nevertheless do not have the com-
munication traces between the honeypots of the same net-
work. The tra�c traces we have been working on have been
captured on a duration of more than one year.

The rest of the paper is as follows: section 2 presents
related work in the domain of attack and anomalies detec-
tion and characterization, covering the full set of approaches
from signature to statistical profile based, and finishing with
approaches based on data mining and machine learning, es-
pecially unsupervised ones. This section also presents super-
vised and semi-supervised classification methods. Section 3
presents our previous unsupervised anomaly detection algo-
rithm. This algorithm has already been published in [19].
We nevertheless add a presentation of this algorithm in this
paper to make it self-contained. Interested readers can find
an extended version of the algorithms description in [18].
However this algorithm originally works on full tra�c, i.e.
normal tra�c on Internet links, and the objective is then
to detect anomalies and attacks. Given the nature of the
tra�c we are considering in this paper - i.e. tra�c between
honeypots and the Internet - we know that it is completely
illegitimate. This is a strong hypothesis that can help go-
ing further for characterizing and identifying the di↵erent
component of this illicit tra�c, and estimating the risk in
the Internet. This section 3 then presents the sub-space
clustering approach that aims at increasing the robustness
of clustering algorithms, limiting its sensitivity, etc. It also
presents the recombination mechanisms based on evidence
accumulation and inter-clustering associations. As a strong
improvement of the previous algorithm, section 4 describes
how we can show correlation existing between clusters in
di↵erent subspaces, these correlations exhibiting that such
clusters could correspond to the same attack or anomaly.
This is a strong help for more accurately and completely
identifying and characterizing all attacks contained in the
honeypots tra�c. Section 5 then proposes a way to auto-
matically characterize the identified anomalies and attacks.
It relies on the clustering and correlation results. Section
6 proposes a method for ranking the risk an attack repre-
sents. Such ranking is aimed at helping security experts or
network operators to prioritize their work, focusing first on
the most dangerous ones. Section 7 illustrates the results of
this characterization algorithm by showing a set of attacks
and anomalies that have been identified in the real tra�c
traces of the University of Maryland, and the characterizing
signatures that have been issued. Section 8 presents the per-
formance evaluation of our algorithm in terms of good iden-
tification, especially comparing it with other unsupervised
methods. Section 9 then explains the parallelization capabil-
ities of our identification algorithm, and exhibits its strong
performance in terms of low latencies, especially when com-
putings can be e↵ectively parallelized on multi-processor or
multi-core machines. Last, section 10 concludes this paper.

2. RELATED WORK
The problem of network anomaly detection has been ex-

tensively studied during the last decade. Most of the ap-
proaches analyze statistical variations of tra�c volume (e.g.
number of packets, bytes or new flows) and/or tra�c fea-
tures (e.g. IP addresses and ports), using either single-link
measurements or network-wide data. A non-exhaustive list
of standard methods includes the use of signal processing
techniques (e.g. ARIMA - Autoregressive Integrated Mov-
ing Average - modeling, wavelets-based filtering) on single-
link tra�c measurements [2,4], PCA (Principal Component
Analysis) for network-wide anomaly detection [13–15], and
Sketches applied to IP-flows [12,17].

The simultaneous detection and characterization of traf-
fic anomalies has also received quite a lot of attention in
the past, but results are few and present important limita-
tions, either because they rely on some kind of training data
and/or anomaly signatures, or because they do not provide
meaningful and tractable information to a human network
operator, who has to take the final decision about the na-
ture of the detected problem. Authors in [13] characterize
network-wide anomalies in highly aggregated tra�c (Origin-
Destination flows or OD flows for short), using PCA and the
sub-space approach [15]. An important limitation of this
approach is that the information obtained from OD flow
data is too coarse-grained to provide meaningful informa-
tion to the network operator. Papers like Lakhina et al. [14]
and Biang et al. [17] detect and characterize anomalies us-
ing finer-grained tra�c information, basically applying the
same PCA approach to the sample entropy of the empirical
distribution of specific tra�c features. One clear limitation
of these approaches is that the information they provide is
not immediately usable and easy-to-understand by the net-
work operator, who may not even be familiar with concepts
distant from his tasks such as sample entropy. Besides, the
PCA approach is highly sensitive to noise when used for
anomaly detection [6,22], requiring in practice a fine-tuning
and data-dependent calibration step to work.

UNADA (Unsupervised Network Anomaly detection Al-
gorithm) [5] falls within the unsupervised anomaly detection
domain, a novel research area that has drawn quite a lot of
interest in the research community, but that still represents
a rather immature field. Most work on unsupervised net-
work anomaly detection has been devoted to the IDS field,
generally targeting the detection of network intrusions in
the very well known KDD’99 dataset. The great major-
ity of the detection schemes proposed in the literature are
based on clustering techniques and outliers detection, be-
ing [8, 16, 21] some examples. The objective of clustering is
to partition a set of unlabeled patterns into homogeneous
groups of “similar” characteristics, based on some similar-
ity measure. Outliers detection consists in identifying those
patterns that do not belong to any of these clusters. In [21],
authors use a simple single-linkage hierarchical clustering
method to cluster data from the KDD’99 dataset, based on
the standard Euclidean distance for inter-pattern similarity.
Eskin et al. [8] reports improved results in the same dataset,
using three di↵erent clustering algorithms: the Fixed-Width
clustering algorithm, an optimized version of the k-NN al-
gorithm, and the one class SVM algorithm. Leung and
Leckie [16] present a combined density-based and grid-based
clustering algorithm to improve computational complexity,
obtaining similar detection results.

Previous work of our own permits to automatically charac-
terize network tra�c anomalies [9], but using a-priori well-

defined anomaly signatures. Closer to our current work,
authors in [23] present URCA (Unsupervised Root Cause
Analysis), a two-steps algorithm to characterize network
anomalies in an unsupervised fashion. URCA uses as in-
put the tra�c in the anomalous time slots detected by any
generic time-slot-based detection algorithm [7]. In the first
step, it identifies the anomaly by iteratively removing from
the anomalous time slots those flows that seem normal. In
the second step, the algorithm uses a hierarchical cluster-
ing method to characterize the particular flows identified as
anomalous. We identify some serious drawbacks and omis-
sions in URCA: authors claim that the approach is unsuper-
vised, which is not true, simply because it uses previously
labeled anomalous events for the characterization. As in pre-
vious works, the algorithm uses di�cult-to-interpret tra�c
descriptors for the clustering step (e.g. sample entropy of
the distribution of IP addresses, aggregated at di↵erent lev-
els), obscuring the comprehension of the network operator.
Finally, the algorithm removes those flows that seem normal
before the characterization step, which drags possible errors
to the clustering step.

Our Unsupervised Anomaly Detection and Characteriza-
tion algorithm [19] presents several advantages w.r.t. cur-
rent state of the art. First and most important, it works in
a completely unsupervised fashion, which means that it can
be directly plugged into any monitoring system and start
to work from scratch. Secondly, we perform anomaly de-
tection based not only on outliers detection, but also by
identifying small-clusters. This is achieved by using dif-
ferent levels of tra�c aggregation, both at the source and
destination of the tra�c; this additionally permits to dis-
cover low-intensity and distributed anomalies. Thirdly, we
avoid the lack of robustness of general clustering approaches,
by combining the notions of Sub-Space Clustering [20] and
multiple Evidence Accumulation [10]. In particular, our al-
gorithm is immune to general clustering problems like sensi-
tivity to initialization, specification of number of clusters, or
structure-masking by irrelevant features. Fourthly, the algo-
rithm performs clustering in low-dimensional feature spaces,
using simple tra�c descriptors like number of source IP ad-
dresses or fraction of SYN packets. This simplifies the char-
acterization of the anomaly, and avoids well-known cluster-
ing problems when working with high-dimensional data [11].
Our algorithm ranks the multiple evidence of an anomaly
detected in di↵erent sub-spaces, combining the most rele-
vant tra�c descriptors into a compact and easy-to-interpret
signature that characterizes the problem. This permits to
reduce the time spent by the network operator to under-
stand the nature of the anomaly. Finally, this algorithm
is designed to work in an on-line fashion, analyzing tra�c
from consecutive time slots in near real time. This is possible
even when working with large number of tra�c descriptors,
because the sub-space clustering and the evidence accumu-
lation algorithms are perfectly adapted for parallelization
(see [19]).

To the best of our knowledge, there is no paper in the
literature on the use of unsupervised classification and char-
acterization algorithms on honeypot tra�c, or for intrusion
or attacks characterization on big data sets of attack traces.
Some very recent work exists, especially by Symantec and
the TRIAGE project (Data Analytics Framework for Intel-
ligence Analysis) that aims to use autonomous data mining
techniques for the analysis of all the gathered traces of at-

tacks. However, TRIAGE aims at designing visualization
techniques for the experts to make decision, while in this
paper we propose to autonomously apply countermeasures
for cheaper and faster defense.

3. UNSUPERVISED ANOMALY DETECTION
Our anomaly detection works on single-link packet-level

tra�c captured in consecutive time-slots of fixed length �
T

.
The first analysis stage consists in change detection. At
each time-slot, tra�c is aggregated in 9 di↵erent flow lev-
els l

i

. These include (from finer to coarser-grained resolu-
tion): source IPs (l

1

: IPsrc), destination IPs (l
2

: IPdst),
source Network Prefixes (l

3,4,5

: IPsrc/24, /16, /8), destina-
tion Network Prefixes (l

6,7,8

: IPdst/24, /16, /8), and tra�c

per Time Slot (l
9

: tpTS). Time series Zli
t

are built for basic
tra�c metrics such as number of bytes, packets, and IP flows
per time slot, using the 9 flow resolutions l

1...9

. Analyzing
honeypot tra�c at multiple aggregation levels permits to de-
tect both single source-destination and distributed attacks
of very di↵erent intensities.

The unsupervised anomaly detection stage takes as input
all the flows in the time slot flagged as anomalous, aggre-
gated according to one of the di↵erent levels used in the
first stage. An anomaly will generally be detected in di↵er-
ent aggregation levels, and there are many ways to select a
particular aggregation to use in the unsupervised stage; for
the sake of simplicity, we shall skip this issue, and use any of
the aggregation levels in which the anomaly was detected.
Without loss of generality, let Y = {y

1

, ..,y
F

} be the set
of F flows in the flagged time slot, referred to as patterns
in more general terms. Each flow y

f

2 Y is described by
a set of A tra�c attributes or features. In this paper, we
use a list of common tra�c attributes. The list includes
A = 9 tra�c features: number of source/destination IP ad-
dresses and ports, ratio of number of sources to number of
destinations, packet rate, ratio of packets to number of desti-
nations, and fraction of ICMP and SYN packets. According
to our previous work on signature-based anomaly charac-
terization [9], such simple tra�c descriptors permit char-
acterization of general tra�c anomalies in easy-to-interpret
terms. The list is therefore by no means exhaustive, and
more features can be easily plugged-in to improve results.
Let x

f

= (x
f

(1), .., x
f

(A)) 2 RA be the corresponding vec-
tor of tra�c features describing flow y

f

, and X = (x
1

; ..;x
F

)
the complete matrix of features, referred to as the feature
space.

The unsupervised detection algorithm is based on cluster-
ing techniques applied to X. The objective of clustering is
to partition a set of unlabelled patterns into homogeneous
groups of similar characteristics, based on some measure
of similarity. Table 1 explains the characteristics of each
anomaly in terms of type, distributed nature, aggregation
type and netmask used, and impact on tra�c features. On
one hand, a SYN DDoS which targets one machine from a
high number of hosts located in several /24 addresses will
constitute a cluster if flows are aggregated in l

3

. In fact,
each of these /24 addresses will have tra�c attributes val-
ues di↵erent from the ones of normal tra�c: a high number
of packet, a single destination and many SYN packets. It is
the whole set of these flows that will create a cluster. On
the other hand, if flows are aggregated in l

6

, the only des-
tination address will be an outlier characterized by many
sources and a high proportion of SYN packets.

Table 1: Feature used for the detection of DoS, DDoS, network/port scans, and spreading worms. Anomalies of distributed

nature 1-to-N or N-to-1 involve several /24 (source or destinations) addresses contained in a single /16 address.

Anomaly Distributed nature Aggregation type Clustering result Impact on tra�c features

DoS (ICMP _ SYN)
1-to-1 IPsrc/⇤ Outlier nSrcs = nDsts = 1, nPkts/sec > �1, avgPktsSize < �2,

IPdst/⇤ Outlier (nICMP/nPkts > �3 _nSYN/nPkts > �4).

DDoS (ICMP _ SYN)
N-to-1

IPsrc/24 (l3) Cluster nDsts = 1, nSrcs > ↵1, nPkts/sec > ↵2, avgPktsSize < ↵3,

to several @IP/24
IPsrc/16 (l4) Outlier (nICMP/nPkts > ↵4 _ nSYN/nPkts > ↵5).

IPdst/⇤ Outlier

Port scan 1-to-1
IPsrc/⇤ Outlier nSrcs = nDsts = 1, nDstPorts > �1, avgPktsSize < �2,
IPdst/⇤ Outlier nSYN/nPkts > �3.

Network scan to
1-to-1

IPsrc/⇤ Outlier
nSrcs = 1, nDsts > �1, nDstPorts > �2, avgPktsSize < �3,

several @IP/24
IPdst/24 (l6) Cluster

nSYN/nPkts > �4.IPdst/16 (l7) Outlier

Spreading worms to
1-to-N

IPsrc/⇤ Outlier
nSrcs = 1, nDsts > ⌘1, nDstPorts < ⌘2, avgPktsSize < ⌘3,

several @IP/24
IPdst/24 (l6) Cluster

nSYN/nPkts > ⌘4.IPdst/16 (l7) Outlier

Our particular goal is to identify and to isolate the dif-
ferent flows that compose the anomaly flagged in the first
stage, both in a robust way. Unfortunately, even if hundreds
of clustering algorithms exist [11], it is very di�cult to find
a single one that can handle all types of cluster shapes and
sizes, or even decide which algorithm would be the best for
our particular problem. Di↵erent clustering algorithms pro-
duce di↵erent partitions of data, and even the same cluster-
ing algorithm provides di↵erent results when using di↵erent
initializations and/or di↵erent algorithm parameters. This
is in fact one of the major drawbacks in current cluster anal-
ysis techniques: the lack of robustness.

To avoid such a limitation, we have developed a divide
and conquer clustering approach, using the notions of clus-
tering ensemble [24] and multiple clusterings combination.
A clustering ensemble P consists of a set of N partitions
P
n

produced for the same data with n = 1, .., N . Each
of these partitions provides a di↵erent and independent evi-
dence of data structure, which can be combined to construct
a global clustering result for the whole feature space. There
are di↵erent ways to produce a clustering ensemble. We use
Sub-Space Clustering (SSC) [20] to produce multiple data
partitions, applying the same clustering algorithm to N dif-
ferent sub-spaces U

n

⇢ X of the original space.

3.1 Clustering Ensemble and Sub-Space Clus-
tering

Each of the N sub-spaces U

n

⇢ X is obtained by select-
ing R features from the complete set of A attributes. The
number of sub-spaces N hence is equal to R-combinations-
obtained-from-A. To set the sub-space dimension R, we
take a very useful property of monotonicity in clustering
sets, known as the downward closure property: “if a collec-
tion of points is a cluster in a d-dimensional space, then
it is also part of a cluster in any (d � 1) projections of
this space” [1]. This directly implies that, if there exists
any evidence of density in X, it will certainly be present
in its lowest-dimensional sub-spaces. Using small values
for R provides several advantages: firstly, doing cluster-
ing in low-dimensional spaces is more e�cient and faster
than clustering in bigger dimensions. Secondly, density-
based clustering algorithms provide better results in low-
dimensional spaces [1], because high-dimensional spaces are
usually sparse, making it di�cult to distinguish between
high and low density regions. We shall therefore use R = 2
in our SSC algorithm, which gives N = CA

R

= A(A � 1)/2
partitions.

3.2 Combining Multiple Partitions
Having produced the N partitions, we now explore di↵er-

ent methods to combine these partitions in order to build
a single partition where anomalous flows are easily distin-
guishable from normal-operation tra�c: the classical Evi-
dence Accumulation (EA) and the new Inter-Clustering Re-
sult Association (ICRA) method.

3.2.1 Combining Multiple Partitions using Evidence

Accumulation

A possible answer is provided in [10], where authors in-
troduced the idea of multiple-clusterings Evidence Accumu-
lation (EA). By simple definition of what it is, an anomaly
may consist of either outliers or small-size clusters, depend-
ing on the aggregation level of flows in Y (cf table 1). EA
then uses the cluster ensemble P to build two inter-pattern
similarity measures between the flows in Y. These similar-
ity measures are stored in two elements: a similarity matrix
S to detect small clusters and a vector D used to rank out-
liers. S(p, q) represents the similarity between flows p and
q. This value increases when the flows p and q are in the
same cluster many times and when the size of this cluster
is small. These two parameters allows the algorithm to tar-
get small clusters. D(o) represents the abnormality of the
outlier o. This value increases when the outlier has been
classified as such several times and when the separation be-
tween the outlier and the normal tra�c is important. As we
are only interested in finding the smallest-size clusters and
the most dissimilar outliers, the detection consists in find-
ing the flows with the biggest similarity in S and the biggest
dissimilarity in D. Any clustering algorithm can then be ap-
plied on the matrix S values to obtain a final partition of
X that isolates small-size clusters of close similarity values.
A variable detection threshold over the values in S is also
able to detect small-size cluster. Concerning dissimilar out-
liers, they can be isolated though a threshold applied on the
values in D.

3.2.2 Combining Multiple Partitions using Inter-Clustering

result Association

However, by reasoning over the similarities between pat-
terns (here flows), EA introduces several potential errors.
Let us consider two pattern sets P

i

and P
j

, if the cardinal-
ity of these pattern sets is close and if they are present in a
similar number of sub-spaces, then EA will produce a very
close (potentially the same) similarity value for both flow
sets. They will then likely be falsely considered as belong-

ing to the same cluster. This possibility has to be consid-
ered very seriously as it can induce a huge error: di↵erent
anomalies will be merged together and will then likely be
wrongly identified and characterized. Another source of po-
tential error when using a clustering algorithm over S values
is the algorithm sensitivity to wrong parameters. Further-
more, the use of a threshold over S and/or D can decrease
the system performance in case of a wrong value used.

In order to avoid the previously exposed sources of er-
ror, we introduce a new way of combining clustering results
obtained from sub-spaces: Inter-Clustering Results Associ-
ation. The idea is to address the problem in terms of clus-
ter of flows and outlier of flow similarity instead of pattern
(or flow) similarity. Hence, we shift the similarity measure
from the patterns to the clustering results. The problem
can then be split in two sub-problems: correlate clusters
through Inter-CLuster Association (ICLA), and correlate
outlier through Inter-Outlier Association (IOA).

In each case, a graph is used to express similarity between
either clusters or outliers. Each vertex is a cluster/outlier
from any sub-space U

n

and each edge represents the fact
that two connected vertices are similar. The underlying idea
is straightforward: identify clusters or outliers present in dif-
ferent sub-spaces that contain the same flows. To do so, we
first define a cluster similarity measure called CS between
two clusters C

r

and C
s

: CS(C
r

, C
s

) = card(Cr\Cs)

max(card(Cr),card(Cs)
,

card being the function that associates a pattern set with
its cardinality, and C

r

\ C
s

the intersection of C
r

and C
s

.
Each edge in the cluster similarity graph between two C

r

and C
s

means CS(C
r

, C
s

) > 0.9, being this an empirically
chosen value. The value 0.9 guarantees that the vast ma-
jority of patterns are located in both clusters with a small
margin of error. IOA uses an outlier similarity graph built
by linking every outlier to every other outlier that contains
the same pattern. Once these graphs are built, we need to
find cluster sets where every cluster contains the same flows.
In terms of vertices, we need to find vertex sets where every
vertex is linked to every other vertex. In graph theory, such
vertex set is called a clique. The clique search problem is
a NP-hard problem. Most existing solutions use exhaustive
search inside the vertex set which is too slow for our appli-
cation. We then make the hypothesis that a vertex can only
be part of a single clique. A greedy algorithm is then used to
build each clique. Anomalous flow set are finally identified
as the intersection of all the flow sets present in the clusters
or outliers within each clique.

4. CORRELATING ANOMALOUS TRAFFIC
CLASSES

4.1 Address related correlation
Thanks to previous algorithm, we can detect several classes

of illegitimate tra�c, but these classes can appear in di↵er-
ent aggregation levels. We know that such classes present
at di↵erent levels can be related to each other. Indeed, two
tra�c classes in two di↵erent aggregation levels are related
for example when their flows come from the same sources
and go towards the same destinations. For a better char-
acterization of tra�c classes, it is then important to link
classes corresponding to the same single anomaly. Correlat-
ing illegitimate tra�c classes is a solution for that purpose;
it is able to determine the similarity between classes at each

aggregation level, for possibly grouping them if they belong
to the same anomaly.

For estimating the similarity between two illegitimate traf-
fic classes on two di↵erent aggregation levels, we use a com-
parison function. It relies on IP addresses comparison [19].
The comparison method then uses the IP source and des-
tination addresses of the di↵erent tra�c classes a

1

and a
2

.
It then compares source IP addresses with each other, and
destination IP addresses with each other, using function (1).

Sim
@

(@
1

,@
2

) =
|@

1

\@
2

|
max(|@

1

|, |@
2

|) (1)

where @
n

is a set of IP addresses, and |@
n

| the number of
addresses in this set.

It exists a similarity between two illegitimate tra�c classes
if equation (2) is true. tTSAddrSims is a threshold to be
defined.

Sim
src

(@
1

,@
2

) > tTSAddrSims ^ Sim
dest

(@
1

,@
2

)

> tTSAddrSims (2)

This method as defined in our previous work [19] has some
lacks, and especially because it does not consider time. It
appears when testing this method on the Maryland data
that some flows of the same class are separated in time by
several months. It is then clear that it is not satisfactory to
consider only IP addresses. For example, illegitimate tra�c
classes detailed in tables 2 and 3 are completely di↵erent
from a behavior point of view. For the first class, the num-
ber of sent packets in each flow is around 54, whereas it
is around 4 in the second class. In addition, the time dif-
ference between these sendings is around two months. The
only similarity between these two classes is related to their
source IP addresses (saddr), and destination IP addresses
(daddr). In this case the similarity value between the two
classes with the previous function is 66%, what is signifi-
cantly high, and would indicate a strong link between them.
Given the time at which they happened it is certainly not
true, and malware infecting the machines are certainly not
the same. As a consequence, we added temporal features to
the correlation function.

Let us consider two illegitimate tra�c classes a
1

and a
2

.
T
1

and T
2

are the set of time intervals in which traces of
a
1

and a
2

appear. @n

1

and @n

2

are the set of source and
destination IP addresses of classes a

1

and a
2

for the interval
t
n

2 T
1

. The new similarity function is then defined as:

SimTime
@

=
X

t2T1

Sim
@

(@t

1

,@t

2

)
max(|@t

1

|, |@t

2

|) (3)

However, if it exists time intervals between two classes,
the similarity function equals a value very close from zero,
whereas these two classes can be highly similar for other
features. We then still need to keep in the computing of the
similarity function the IP addresses of the anomaly classes a

1

and a
2

. But the addresses must be computed intependentely
from any temporal feature.

SimGlobal
@

=
Sim

@

(@
1

,@
2

)
max(|@

1

|, |@
2

|) (4)

We then obtain the simlarity function defined by equation
(5).

month day hour min saddr daddr nPkts nBytes nSyn/nPkts
02 01 02 4 192.168.0.1, 192.168.0.2 172.16.4.16, 172.16.4.21 54 4726 0.1481481
02 01 03 40 192.168.0.1, 192.168.0.3 172.16.4.16, 172.16.4.21 54 4869 0.1481481
02 01 18 05 192.168.0.1, 192.168.0.3 172.16.4.16, 172.16.4.21 53 3996 0.0754717
02 01 19 55 192.168.0.1, 192.168.0.2 172.16.4.16, 172.16.4.21 54 4545 0.1481481

Table 2: First example of an illegitimate tra�c class (IP addresses have been anonymised)

month day hour min saddr daddr nPkts nBytes nSyn/nPkts
04 10 01 30 192.168.0.1, 192.168.0.2 172.16.4.16, 172.16.4.21 5 20 1
04 11 01 30 192.168.0.1, 192.168.0.3 172.16.4.16, 172.16.4.21 4 160 1
04 12 01 30 192.168.0.1, 192.168.0.2 172.16.4.16, 172.16.4.21 5 20 1
04 13 01 30 192.168.0.1 172.16.4.16, 172.16.4.21 4 160 1

Table 3: Second example of an illegitimate tra�c class (IP addresses have been anonymised)

SimAnomalies(a1, a2) = (SimTime
Src

(a
1

, a
2

) > �
1

)

^ (SimTime
Dest

(a
1

, a
2

) > �
1

)

^ (SimGlobal
Src

(a
1

, a
2

) > �
2

)

^ (SimGlobal
Dest

(a
1

, a
2

) > �
2

) (5)

The result of this function is a boolean value which is true
if a

1

and a
2

are similar.

4.2 Time related correlation
Let’s take again the examples of classes detailed in tables

2 and 3. It is clear that there is no link between these two
classes because they happened at very di↵erent times. Let’s
apply equation (5). Let’s consider IP addresses of the first
class on February 1st at 2h40 am. Source IP addresses are
192.168.0.1 and 192.168.0.2. At that time, the second class is
empty (it happened on April 10th to 13th). The similarity is
then correctly estimated as false. By continuing with other
times and the same method, we always obtain a false value
for the similarity. The new similarity function then correctly
does not find any similarity between these two illegitimate
tra�c classes.

Nevertheless, it is required with this new method to fix
correct threshold values. If thresholds are not well selected
returned values could be erroneous. With a small �

1

value,
each time a small temporal similarity will appear between
two illegitimate classes, it will be the global similarity value
that will determine the final similarity result between the
two classes. If �

1

is high, the two classes will be considered as
similar if they sent packet almost at the same time, from the
same source and to the same destinations. This is a strong
constraint and forbids any time di↵erence in the sendings.
The global similarity will then be of less importance. Based
on our experience with the traces of University or Maryland,
we empirically recommend to select for �

1

a low threshold
value, between 10% and 30%, and for �

2

a threshold value
greater than 25%.

Illegitimate tra�c classes that appear as di↵erent after
the sub-space clustering phase can then be grouped, as it is
shown that they correspond to the same anomaly.

5. AUTOMATIC CHARACTERIZATION OF
ANOMALIES

At this stage, the global tra�c from and towards honey-
pots has been decomposed into tra�c classes that exhibit

di↵erent behaviors. Classification techniques of the Inter-
net tra�c have now to identify the type of each of these
tra�c classes, the generating application, or the type of at-
tack or anomaly, each of these clusters is related to. Most
advanced classification techniques, i.e. semi-supervised tech-
niques, take advantage of signatures that specifically identify
one of the possible tra�c families, applications, or attacks.
These signatures come either from a previous knowledge or
expertise in this domain, either on a training stage on a
known tra�c, whose application components have already
been labeled. This is obviously a strong requirement for
classification purposes, but it remains a severe limit for de-
signing a fully autonomous method.

However, in this work, at the opposite of what has been
already done in the research area of autonomous tra�c clas-
sification, this constraint does not exist because of the tra�c
nature that we have to analyze: illegitimate tra�c. It is thus
not needed to perfectly identify the anomaly kind (or at-
tack), or to name it. Indeed, all tra�c classes that have been
isolated by the sub-space clustering algorithm, and evidence
accumulation are anomalies or attacks. Therefore, the com-
puting to be performed for each tra�c anomaly or attack,
in fine, consists in discarding them, after having identified
any necessary feature required for instance for estimating
the risk they represent in the Internet.

We then propose for this purpose to automatically gener-
ate the rules characterizing the anomaly classes. Based on
these rules, it is easy to understand the anomalies charac-
teristics and to infer the countermeasures to be performed
(and of course, this can be done by a computer process).

At this stage, the sub-space clustering / evidence accu-
mulation / correlation algorithm has identified several cor-
related anomalies containing a set of tra�c flows in Y far
out the rest of the tra�c. The following task is to produce
the appropriate filtering rules to correctly isolate and char-
acterize each of these anomalies.

In order to produce filtering rules, the algorithm selects
those sub-spaces U

n

where the separation between the con-
sidered anomalous flows and the rest of the tra�c is the
biggest. We define two di↵erent classes of filtering rule: ab-
solute rules FR

A

(Y) and relative rules FR
R

(Y). Absolute
rules do not depend on the separation between flows, and
correspond to the presence of dominant features in the con-
sidered flows. An absolute rule for a certain feature j char-
acterizing a certain flow set Y

g

has the form
FR

A

(Y
g

, a) = {8y
f

2 Y

g

⇢ Y : x
f

(a) == �}.
For example, in the case of an ICMP flooding attack, the

Figure 1: The di↵erent filtering rules for sub-spaces

(nSyn/nPkts, nDi↵DestAddr)

vast majority of the associated flows use only ICMP pack-
ets, hence the absolute filtering rule {nICMP/nPkts == 1}
makes sense. On the contrary, relative filtering rules depend
on the relative separation between anomalous and normal-
operation flows. Basically, if the anomalous flows are well
separated from the normal cluster in a certain partition P

n

,
then the features of the corresponding sub-space U

n

are
good candidates to define a relative filtering rule. A relative
rule has the form

FR
R

(Y
g

, a) = {8y
f

2 Y

g

⇢ Y : x
f

(a) < � _ x
f

(a) > �}.
We shall also define a covering relation between filtering

rules: we say that rule f
1

covers rule f
2

, f
2

(Y) ⇢ f
1

(Y).
If two or more rules overlap (i.e., they are associated to the
same feature), the algorithm keeps the one that covers the
rest.

In order to construct a compact signature of the anomaly,
we have to devise a procedure to select the most discrimi-
nant filtering rules. Absolute rules are important, because
they define inherent characteristics of the anomaly. As re-
gards relative rules, their relevance is directly tied to the
degree of separation between anomalous and normal flows.
In the case of outliers, we select the K features for which
the Mahalanobis distance to the normal-operation tra�c is
among the top-K biggest distances. In the case of small-size
clusters, we rank the relatives rules according to the degree
of separation to the normal anomaly using the well-known
Fisher Score (FS) which uses the variance in each cluster
(normal and anomalous). To finally construct the signature,
the absolute rules and the top-K relative rules are combined
into a single inclusive predicate, using the covering relation
in case of overlapping rules.

What follows gives a real example of the generation of
filtering rules based on an anomaly characterization. It is
depicted on Figure 1. Clusters 2 and 3 have their value
nSyn/nPkts always equal to 1. It then exists for them an
absolute rule {nSyn/nPkts == 1}.

On Figure 1, there exists a relative rule between cluster
1 and cluster 4. For generating it, we draw the median
between clusters 1 and 4. Based on this median value, we

can create the relative rule {nDiffDestAddr < 9}.

6. RISK BASED ANOMALIES RANKING
Estimating the risk related to an anomaly can help a se-

curity expert, in the general case, selecting the tra�c classes
that require to be computed in priority. In our specific
case where all tra�c classes identified are illegitimate, it
can help to distinguish for instance between anomalies that
are real attacks from scanning which in general just serves
for preparing a possible future attack. In that case, the risk
ranking can help superposing relative filtering rules, target-
ing in priority the most risky one.

The way our risk ranking is done depends on the amount
of communication; the more communication in an anomaly
or attack, the more risky. In addition, anomalies that appear
in many sub-spaces are considered as more dangerous than
the ones appearing in a single or on very few sub-spaces.
Three features are considered for estimating the risk related
to an anomaly. The first one is the number of packets of
the anomaly, because, if there are many packets exchanged
between the attacking and the victim machines, there exist
potentially machines infected by a virus, or a flooding at-
tack attempt. The second feature is the amount of bytes
exchanged in the anomaly, because, even if the number of
exchanged packets is reduced, a large amount of bytes could
have been exchanged. This may correspond to the down-
load of information from a victim machine by an attacker,
or the upload of viruses on several victim machines from the
attacker machine. Last, the third feature is the communi-
cation duration between the attacker and a target machine.
The longer the communication duration, the more probable
an attacker performing a download, or having an open shell
on the victim machine.

The formula used for the risk estimation is:

risk = C ⇤ (log(nPkts) + log(nBytes) + log(duration+ 1))
(6)

where C is the number of sub-spaces in which the anomaly
appears, nPkts is the number of exchanged packets in the
anomaly, nBytes is the number of exchanged bytes, and
duration is the duration of the anomaly. +1 appears in
log(duration + 1) for avoiding some errors as duration 2
R

+

whereas (nPkts, nBytes) 2 R⇤
+

. The communication
duration can be assimilated as zero because it can be so
small that measurement devices can measure it as zero. On
the other side, the number of packets or bytes are necessarily
greater or equal to 1.

7. EXPERIMENTAL EVALUATION IN REAL
TRAFFIC

We run the algorithm described in this paper on the hon-
eypot tra�c traces gathered at the University of Maryland.
For obvious privacy reasons, as well as space limit, we will
not present the complete set of attacks evidenced. But we
will show on an example how the algorithm behaves, and
how it succeed in classifying attacks and anomalies, how
it builds the anomaly classes characteristics based on sub-
space clustering, evidence accumulation, and anomaly cor-
relation. It also presents the filtering rules that have been
autonomously generated and that can serve for automat-
ically configuring security devices as filtering functions of
routers, or firewalls.

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0
50
0

10
00

15
00

testl1−26: eps=10 MinPts=5

nSyn_nPkts

nP
kt
sT
cp

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

testl1−36: eps=5 MinPts=5

nSyn_nPkts

nB
yt
es
_n
Fl
ow

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

testl1−41: eps=5 MinPts=5

nRst_nPkts

nB
yt
es
_n
Fl
ow

(d)

0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

testl2−20: eps=1 MinPts=5

nDiffDestAddr

nR
st
_n
Pk
ts

(e)

0.0 0.2 0.4 0.6 0.8 1.0

0
20
00

40
00

60
00

80
00

10
00
0

testl2−41: eps=5 MinPts=5

nRst_nPkts

nB
yt
es
_n
Fl
ow

Figure 2: Sub-spaces in which anomalies [44], [224], and [327] appear. These sub-spaces correspond to

di↵erent IP address aggregation levels and di↵erent temporal granularities

Figure 3: Two levels of cliques appearing when correlating anomalies in di↵erent sub-spaces

This section starts by showing the complete behavior of
the algorithm applied on a single anomaly (designated as
anomaly [327]). Figure 2 shows 5 sub-spaces in which anoma-
lies mentioned in this section appear (all sub-spaces in which
the anomaly appears are not depicted on figure 2 for space
limit reason). On each of these sub-spaces, clusters clearly
appear, each corresponding to di↵erent anomalies. Figure
3 shows the cliques that have been built for correlating the
clusters found in di↵erent sub-spaces, and then linking the
ones that correspond to the same anomaly or attack.

Anomaly [327] appears in Figure 2 on subspaces (d) with
the blue cluster, and (e), with the green cluster correspond-
ing to nRst

n

Pkts = 0.5. At the end of the UNADA process,
the algorithm generated the following signature that fully
characterizes anomaly [327]:

Characteristics of attack [327]:
(nBytes/nF low < 93.6666666666667)^(nBytes/nF low >

74) ^ (nDiffSrcAddr = 1) ^ (nFin/nPkts = 0)^
(nFinTcp/nPktsTcp = 0) ^ (nPkts = 2) ^ (nPktsTcp =
2) ^ (nRst/nPkts = 0.5) ^ (nSyn/nPkts = 0.5)^
(nSynTcp/nPktsTcp = 0.5)

Thanks to this process that issues such a signature, it is
easy for a security expert to analyze the anomaly: it cor-
responds to a well-known DoS attack which consists in re-
questing the opening of a new TCP connection by sending
a SYN packet, and then a RST packet for closing it in an
un-negociated way. It then makes the receiver allocate re-
sources, and desallocate them immediately. The receiver is
then overwhelmed with the slow operations it has to perform
on the machine memory. The advantage with issuing auto-
matically such signature is that the appropriate counter-
measures which consists in blocking the related tra�c can
be performed automatically without the help of the network
administrator who can then focus on trickiest attacks.

Anomaly [326] appears in Figure 2 on subspaces (d) with

the blue cluster, and (e), with the green cluster. The algo-
rithm generated the following signature that fully character-
izes anomaly [326]:

Characteristics of attack [326]:
(avgSport < 21796)^(avgSport > 18635)^(nBytes/nF low <

93.6666666666667)^(nBytes/nF low > 74)^(nDiffSrcAddr =
1) ^ (nPkts = 2) ^ (nPktsTcp = 2) ^ (nRst/nPkts =
0.5) ^ (nSyn/nPkts = 0.5) ^ (nSynTcp/nPktsTcp = 0.5)

Anomaly [326] is very similar to anomaly [327]. It relies
of the same principle of sending a SYN packet followed by a
RST packet for uselessly exhausting receiver resources, and
then performing a DoS attack. The only di↵erence is in the
port numbers that origin the connection attempts.

Anomaly [44] appears in Figure 2 on subspaces (b) with
the black cluster corresponding to nSyn

n

Pkts = 1 and (c),
with the pink cluster corresponding to nRst

n

Pkts = 1. The
algorithm generated the following signature that fully char-
acterizes anomaly [44]:

Characteristics of attack [44]:
(bpp = 40) ^ (nBytes

n

Flow = 40) ^ (nDiffDestAddr =
1) ^ (nPkts = 1) ^ (nPkts/nF low = 1) ^ (nPktsTcp =
1) ^ (nRst/nPkts = 1) ^ (nSyn/nPkts = 0)

This anomaly is also very simple to analyze based on the
issued signature. It also corresponds to a DoS attack called
RST attacks which consists in sending RST packets in order
to close ongoing connections.

The last anomalies described in this paper is anomaly [224]
that appears in Figure 2 on subspaces (c) and (e), on the
red cluster with nRst

n

Pkts = 0.
The algorithm generated the following signature that fully

characterizes anomaly [224]:

Characteristics of attack [224]:

(avgSport > 51209.3738990333)^(avgSport < 42107.1671947005)^
(bgstDestPortTcp/tNbOccuDestPortTcp < 262.25)^
(destPortTcpMax < 291) ^ (destPortTcpMin < 291) ^
(nBytes > 19187.5)^(nBytes < 118272)^(nBytes/nF low >
843.428571428571)^(nBytes/nF low < 1425.16666666667)^
(nDiffDestPort = 1)^(nDiffSrcAddr = 1)^(nDiffSrcPort <
40.5) ^ (nPkts > 198) ^ (nPkts < 1200.5) ^ (nPktsIcmp =
0)^(nPkts/nF low > 21.5)^(nPkts/nF low < 11.3333333333333)^
(nPktsUdp = 0) ^ (nRst/nPkts = 0) ^ (nSyn/nPkts >
0.115691489361702)^(nSyn/nPkts < 0.183333333333333)^
(nSynTcp/nPktsTcp < 0.291666666666667)^(srcPortTcpMax <
61502)^(srcPortTcpMax > 34033.5)^(srcPortTcpMin <
61502) ^ (srcPortTcpMin > 34033.5)

The analysis of this anomaly is more tricky than the three
previous ones. It does not correspond to a basic DoS attacks.
It is nevertheless a kind of TCP flooding attack with an
advanced strategy for targeting specific address and port
ranges making it look like a legitimate application tra�c.
It then makes it di�cult to detect with classical detection
tools.

8. EXPERIMENTAL EVALUATION
Figure 4 depicts the True Positives Rate (TPR) as a func-

tion of the False Positives Rates (FTR) in the identifica-
tion of the di↵erent attacks contained in the honeypot tra�c
traces from the University of Maryland. The presented re-
sults are based on a manual analysis of the detection and/or
identification algrithms under evaluation. This manual anal-
ysis made possible labeling all attacks in the honeypot tra�c
of the University of Maryland. This set of labels serves for
the evaluations as the reference ground truth. Actually, they
permit an accurate evaluation of any detection, characteri-
zation or classification algorithm.
We compare the performance of UNADA against three

previous approaches for unsupervised anomaly detection:
DBSCAN-based, k-means-based, and PCA-based outliers
detection. The first two consist in applying either DBSCAN
or k-means to the complete feature space X, identify the
largest cluster C

max

, and compute the Mahalanobis distance
of all the flows lying outside C

max

to its centroid. The ROC
is finally obtained by comparing the sorted distances to a
variable detection threshold. These approaches are similar
to those used in previous work [8,16,21]. In the PCA-based
approach, PCA and the sub-space methods [14, 15] are ap-
plied to the complete matrix X, and the attacks are detected
by comparing the residuals to a variable threshold. Both the
k-means and the PCA-based approaches require fine tuning:
in k-means, we repeat the clustering for di↵erent values of
clusters k, and take the average results. In the case of PCA
we present the best performance obtained for each evalua-
tion scenario.
Obtained results permit to evidence the great advantage

of using the SSC-Density-based algorithm in the clustering
step with respect to previous approaches. In particular, all
the approaches used in the comparison generally fail to de-
tect all the attacks with a reasonable false alarm rate. Both
the DBSCAN-based and the k-means-based algorithms get
confused by masking features when analyzing the complete
feature space X. The PCA approach shows to be not sen-
sitive enough to discriminate di↵erent kinds of attacks of
very di↵erent intensities, using the same representation for
normal-operation tra�c.

0 5 10 15 20 25 30 10x
−30.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FPR

TP
R

UNADA
DBSCAN Outliers Detection
k−means Outliers Detection
PCA Outliers Detection

Figure 4: True Positives Rate vs False Alarms.

9. COMPUTATIONAL TIME AND PARAL-
LELIZATION

The last issue that we analyze is the Computational Time
(CT) of the algorithm. The SSC-EA-based algorithm per-
forms multiple clusterings in N(m) low-dimensional sub-
spaces X

i

⇢ X. This multiple computation imposes scal-
ability issues for on-line detection of attacks in very-high-
speed networks. Two key features of the algorithm are
exploited to reduce scalability problems in number of fea-
tures m and the number of aggregated flows n to analyze.
Firstly, clustering is performed in very-low-dimensional sub-
spaces, X

i

2 R2, which is faster than clustering in high-
dimensional spaces [11]. Secondly, each sub-space can be
clustered independently of the other sub-spaces, which is
perfectly adapted for parallel computing architectures. Par-
allelization can be achieved in di↵erent ways: using a sin-
gle multi-processor and multi-core machine, using network-
processor cards and/or GPU (Graphic Processor Unit) capa-
bilities, using a distributed group of machines, or combining
these techniques. We shall use the term ”slice” as a reference
to a single computational entity.

Figures 5 and 6 depict the CT of the SSC-EA-based al-
gorithm, as a function of the number of features m used
to describe tra�c flows and as a function of the number
of flows n to analyze, respectively. Figure 5 compares the
CT obtained when clustering the complete feature space X,
referred to as CT(X), against the CT obtained with SSC,
varying m from 2 to 29 features. We analyze a large number
of aggregated flows, n = 104, and use two di↵erent number
of slices, M = 40 and M = 100. The analysis is done with
tra�c from the WIDE network, combining di↵erent traces
to attain the desired number of flows. To estimate the CT
of SSC for a given value of m and M , we proceed as follows:
first, we separately cluster each of the N = m(m � 1)/2
sub-spaces X

i

, and take the worst-case of the obtained clus-
tering time as a representative measure of the CT in a sin-
gle sub-space, i.e., CT(X

SSCwc

) = max
i

CT(X
i

). Then,

0 5 10 15 20 25 30
0

50

100

150

200

250

Nº Features

C
lu

st
er

in
g

Ti
m

e
(s

)

Clustering in the complete Feature Space
Distributed Sub−Space Clustering, 40 slices
Distributed Sub−Space Clustering, 100 slices

Figure 5: Computational Time as a function of num-

ber of features to analyze. The number of aggre-

gated flows is n = 10000.

1000 5000 10000 50000 100000
−1

0

1

2

3

4

5

Nº Patterns

C
lu

st
er

in
g

Ti
m

e
(lo

g1
0(

s)
)

Clustering in the complete Feature Space
Distributed Sub−Space Clustering, 190 slices

Figure 6: Computational Time as a function of num-

ber of flows to analyze. The number of features and

slices is m = 20 and M = 190 respectively.

if N 6 M , we have enough slices to completely parallelize
the SSC algorithm, and the total CT corresponds to the
worst-case, CT(X

SSCwc

). On the contrary, if N > M , some
slices have to cluster various sub-spaces, one after the other,
and the total CT becomes (N%M +1) times the worst-case
CT(X

SSCwc

), where % represents integer division. The first
interesting observation from figure 5 regards the increase of
CT(X) when m increases, going from about 8 seconds for
m = 2 to more than 200 seconds for m = 29. As we said
before, clustering in low-dimensional spaces is faster, which
reduces the overhead of multiple clusterings computation.
The second paramount observation is about parallelization:
if the algorithm is implemented in a parallel computing ar-
chitecture, it can be used to analyze large volumes of tra�c
using many tra�c descriptors in an on-line basis; for exam-
ple, if we use 20 tra�c features and a parallel architecture
with 100 slices, we can analyze 10000 aggregated flows in
less than 20 seconds.

Figure 6 compares CT(X) against CT(X
SSCwc

) for an in-
creasing number of flows n to analyze, using m = 20 tra�c

features and M = N = 190 slices (i.e., a completely paral-
lelized implementation of the SSC-EA-based algorithm). As
before, we can appreciate the di↵erence in CT when clus-
tering the complete feature space vs. using low-dimensional
sub-spaces: the di↵erence is more than one order of magni-
tude, independently of the number of flows to analyze. Re-
garding the volume of tra�c that can be analyzed with this
100% parallel configuration, the SSC-EA-based algorithm
can analyze up to 50000 flows with a reasonable CT, about
4 minutes in this experience. In the presented evaluations,
the number of aggregated flows in a time slot of �T = 20
seconds rounds the 2500 flows, which represents a value of
CT(X

SSCwc

) ⇡ 0.4 seconds. For the m = 9 features that we
have used (N = 36), and even without doing parallelization,
the total CT is N⇥CT(X

SSCwc

) ⇡ 14.4 seconds.

10. CONCLUSION
This paper presents an unsupervised algorithm for clas-

sifying illicit tra�c. This algorithm has several advantages
compared to previous work: (i) it works in a completely
unsupervised manner, what makes it able to work on top
of any monitoring system, and directly usable, without pre-
liminary configuration or knowledge. (ii) It combines robust
clustering techniques to avoid classical issues of clustering
algorithms, e.g. sensitivity to initial configuration, the re-
quired a priori indication of teh number of clusters to be
identified, or the sensitivity of results when using less perti-
nent features. (iii) It automatically builds simple and small
signatures fully characterizing attacks; theses signature can
then be used in a filtering security device. (iv) It is designed
to run in real time by making possible to take advantage of
the parallelism of our clustering approach.

This algorithm thus opens new perspectives for perform-
ing a risk analysis in the Internet - taking advantage of hon-
eypot tra�c - and automatically configuring related filtering
rules on routers, switches, or firewalls.

Acknowledgements
The author sincerely thanks Michel Cukier and Bertrand
Sobesto for providing the tra�c traces gathered on the hon-
eypots of the University of Maryland. The author thanks
Johan Mazel and Pedro Casas who have been first involved
in the research work on the sub-space clustering algorithm
applied to the full Internet tra�c. The author also thanks
Richard Turc who started this work on the analysis of the
honeypot tra�c during his master internship at LAAS. This
work is supported by the ONTIC project, funded by the Eu-
ropean commission under grant FP7-ICT-2013-11/619633.

11. REFERENCES
[1] R. Agrawal, J. Gehrke, D. Gunopulos, and

P. Raghavan. Automatic subspace clustering of high
dimensional data for data mining applications. In
Proc. ACM SIGMOD, 1998.

[2] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal
analysis of network tra�c anomalies. In Proc. ACM
IMW, 2002.

[3] R. Berthier, M. Cukier, M. Hiltunen, D. Kormann,
G. Vesonder, and D. Sheleheda. Nfsight:
Netflow-based network awareness tool. In Proceedings
of the 24th international conference on Large
installation system administration (LISA’10), 2010.

[4] J. Brutlag. Aberrant behavior detection in time series
for network monitoring. In Proc. 14th Systems
Administration Conference, 2000.

[5] P. Casas, J. Mazel, and P. Owezarski. Unada:
Unsupervised network anomaly detection using
sub-space outliers ranking. In IFIP Networking
conference, 2011.

[6] P. Casas, S. Vaton, L. Fillatre, and I. Nikiforov.
Optimal volume anomaly detection and isolation in
large-scale ip networks using coarse-grained
measurements. In Computer Networks, vol. 54, pp.
1750-1766, 2010.

[7] G. Cormode and S. Muthukrishnan. What’s new:
Finding significant di↵erences in network data
streams. In IEEE Trans. on Networking, vol. 13 (6),
pp. 1219-1232, 2005.

[8] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and
S. Stolfo. A geometric framework for unsupervised
anomaly detection: Detecting intrusions in unlabeled
data. In Applications of Data Mining in Computer
Security, Kluwer Publisher, 2002.

[9] G. Fernandes and P. Owezarski. Automated
classification of network tra�c anomalies. In Proc.
SecureComm’09, 2009.

[10] A. Fred and A. K. Jain. Combining multiple
clusterings using evidence accumulation. In IEEE
Trans. Pattern Analysis and Machine Intelligence, vol.
27 (6), pp. 835-850, 2005.

[11] A. K. Jain. Data clustering: 50 years beyond k-means.
In Pattern Recognition Letters, vol. 31 (8), pp.
651-666, 2010.

[12] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen.
Sketch-based change detection: Methods, evaluation,
and applications. In Proc. ACM IMC, 2003.

[13] A. Lakhina, M. Crovella, and C. Diot.
Characterization of network-wide anomalies in tra�c
flows. In Proc. ACM IMC, 2004.

[14] A. Lakhina, M. Crovella, and C. Diot. Mining
anomalies using tra�c feature distributions. In Proc.
ACM SIGCOMM, 2005.

[15] A. Lakhina, C. Diot, and M. Crovella. Diagnosing
network-wide tra�c anomalies. In Proc. ACM
SIGCOMM, 2004.

[16] K. Leung and C. Leckie. Unsupervised anomaly
detection in network intrusion detection using
clustering. In Proc. ACSC05, 2005.

[17] X. Li, F. Biang, M. Crovella, C. Diot, R. Govindan,
G. Iannaccone, and A. Lakhina. Detection and
identification of network anomalies using sketch
subspaces. In Proc. ACM IMC, 2006.

[18] J. Mazel. Unsupervised network anomaly detection. In
PhD thesis of INSA Toulouse, 2011.

[19] J. Mazel, P. Casas, Y. Labit, and P. Owezarski.
Sub-space clustering, interclustering results
association & anomaly correlation for unsupervised
network anomaly detection. In 7th International
Conference on Network and Service Management
(CNSM 2011), CNSM’11, october 2011.

[20] L. Parsons, E. Haque, and H. Liu. Subspace clustering
for high dimensional data: a review. In ACM SIGKDD
Expl. Newsletter, vol. 6 (1), pp. 90-105, 2004.

[21] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion
detection with unlabeled data using clustering. In
Proc. ACM DMSA Workshop, 2001.

[22] H. Ringberg, A. Soule, J. Rexford, and C. Diot.
Sensitivity of pca for tra�c anomaly detection. In
Proc. ACM SIGMETRICS, 2007.

[23] F. Silveira and C. Diot. Rca: Pulling anomalies by
their root causes. In Proc. IEEE INFOCOM, 2010.

[24] A. Strehl and J. Ghosh. Cluster ensembles - a
knowledge reuse framework for combining multiple
partitions. In Journal on Machine Learning Research,
vol. 3, pp. 583-617, 2002.

