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Here we compare two extreme regimes of non-suspended fluid-mediated particle trans-

port, transport in light and heavy fluids (“saltation” and “bedload”, respectively),

regarding their particle fluctuation energy balance. From direct numerical simula-

tions, we surprisingly find that the ratio between collisional and fluid drag dissipa-

tion of fluctuation energy is significantly larger in saltation than in bedload, even

though the contribution of interparticle collisions to transport of momentum and

energy is much smaller in saltation due to the low concentration of particles in the

transport layer. We conclude that the much higher frequency of high-energy particle-

bed impacts (“splash”) in saltation is the cause for this counter-intuitive behavior.

Moreover, from a comparison of these simulations to Particle Tracking Velocimetry

measurements which we performed in a wind tunnel under steady transport of fine

and coarse sand, we find that turbulent fluctuations of the flow produce particle fluc-

tuation energy at an unexpectedly high rate in saltation even under conditions for

which the effects of turbulence are usually believed to be small.
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I. INTRODUCTION

Fluid-mediated particle transport occurs when a fluid flows sufficiently strongly over a

particle bed. The two most prominent examples, water flow over a river bed and air flow

over a sand desert, constitute two extreme regimes of fluid-mediated particle transport.

These regimes are characterized by values of the particle-fluid density ratio, s = ρp/ρf ,

which are either sufficiently close to unity (e.g., s ≈ 2.65 for sand in water) or sufficiently

far from unity (e.g., s ≈ 2250 for sand in air)1, where ρp and ρf are the particle and fluid

density, respectively. If particle transport in suspension with the fluid is much weaker than

particle transport along the surface, which is typical for sand transport in air2 and sand

and gravel transport in mildly-sloped rivers3, these two regimes are known as “bedload” and

“saltation”, respectively1.

Bedload and saltation are responsible for a wide variety of geophysical phenomena, in-

cluding wind erosion, dust aerosol emission, and the formation of dunes and ripples on ocean

floors, river beds, and planetary surfaces2–8. While many aspects of bedload and saltation

have been investigated in numerous experimental and theoretical studies in the last century

(e.g.,1,2,7,9–42), a theoretical concept unifying bedload and saltation, which includes predic-

tions for intermediate regimes (e.g., s ≈ 100)1, is still missing.

In order to achieve such a unifying understanding, it is essential to first characterize

the fundamental physical differences between both regimes. Here we discovered that one

such fundamental difference is the manner in which particle fluctuation energy, also known

as “granular temperature”, is dissipated. In fact, in steady particle shear flows, such as

fluid-mediated particle transport, the continuous conversion of mean energy into fluctuation

energy through granular shear work43 must be balanced by dissipation through interparticle

collisions as well as fluid drag, which dissipates fluctuation energy because it tends to align

the velocities of all particles by changing them towards the velocity of the ambient fluid.

Fluid drag dissipation in turn can be separated into dissipation through mean drag and

production due to turbulent fluctuations of the flow speed.

Here we investigate the particle fluctuation energy balance through Discrete Element

Method (DEM) simulations of steady, homogeneous non-suspended fluid-mediated particle

transport using the model described in Ref.1. Indeed, as shown in very detail in the Sup-

plementary Material44 as well as in Refs.45,46, it is possible to derive the average particle
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fluctuation energy balance only from Newton’s axioms and to determine all terms appearing

in this balance from the simulation data. From this investigation, we find that a signifi-

cantly larger fraction of fluctuation energy is dissipated through interparticle collisions in

saltation than in bedload. In particular, in the region near the particle bed, collisional

dissipation dominates fluid drag dissipation in saltation, in contrast to bedload where fluid

drag dissipation prevails. As a side effect of this and due to their tendency to dissipate

granular temperature anisotropies (defined below), interparticle collisions in saltation con-

vert horizontal fluctuating energy into vertical one at a rate which is higher than the rate

of dissipation through fluid drag in the vertical direction. These finding are surprising,

considering the predominance of interparticle collisions within the dense transport layer in

bedload, if compared with the dilute transport layer in saltation1.

Moreover, a comparison of these DEM simulations to Particle Tracking Velocimetry

(PTV) measurements, which we performed in a wind tunnel under steady transport of

fine (mean particle diameter, d ≈ 230µm) and coarse sand (d ≈ 630µm), indicates that tur-

bulent fluctuations of the flow produce fluctuation energy at an unexpectedly high rate in

saltation. In particular, turbulent production of vertical fluctuation energy seems to surpass

both the contributions from interparticle collisions and mean drag by a large margin. This

is surprising since the effects of turbulence on saltation of sand are usually believed to be

small, especially for coarse sand30.

II. DISCRETE ELEMENT MODEL SIMULATIONS

We simulated very simple, but relevant conditions: steady, homogeneous particle trans-

port. That is the transport of particles along a horizontal, flat, infinite, homogeneous particle

bed subjected to a unidirectional, steady, fluid flow. Thereby each particle was modeled by

a sphere with a constant density ρp and a diameter dp uniformly distributed between 0.8 and

1.2 times the mean diameter, d, while the flow was modeled by a Newtonian fluid with a

density ρf , a kinematic viscosity ν, and a constant fluid shear stress τ (i.e., inner turbulent

boundary layer flow1). The mean velocity of the turbulent flow was modeled using a modified

version of the mixing length theory, in which the turbulent mixing length is modified by the

presence of the particle phase1, while turbulent fluctuations of the mean flow were neglected.

Moreover, interparticle collisions were taken into account using contact dynamics1, and we
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further considered the two most important fluid-particle interactions: buoyancy and fluid

drag. The entire system was under gravity with a gravitational constant g and the simu-

lations where two-dimensional (note that 2D and 3D simulations yield qualitatively similar

results32,36). We refer to Durán et al.1 for further modeling and simulation details.

Steady, homogeneous particle transport can be characterized by three dimensionless

numbers1: the Shields number (Θ), the particle Reynolds number (Re), and the density

ratio (s),

Θ =
τ

(ρp − ρf )gd
, (1)

Re =
d

ν

√

(s− 1)gd, (2)

s =
ρp
ρf

. (3)

Simulations were performed with fixed Re = 10 and for two values of s, s = 2 (bedload)

and s = 2000 (saltation). We note that this particle Reynolds number would correspond to

d ≈ 183µm for transport in water (s = 2.65, ν = 0.001m2/s) and to d ≈ 98µm for transport

in air (s = 2208, ν = 1.43 × 10−5m2/s). Moreover, Θ was varied between one and several

times the transport threshold Shields number, Θt, which is defined as the minimal Shields

number at which transport once initiated can be sustained. For s = 2 and Re = 10, we

obtained Θt = 0.12 and for s = 2000 and Re = 10, Θt = 0.004 from the simulations. The

simulations were run sufficiently long to ensure that the system was in the steady state for

the major part of time. We note that velocity-based quantities, such as Re in Eq. (2), are

henceforth based on the velocity scale
√

(s− 1)gd1 because this definition ensures that the

average particle velocity in units of
√

(s− 1)gd under threshold conditions (Θ = Θt) has

roughly the same value irrespectively of the value of s.

III. FLUCTUATION ENERGY BALANCE

Our simulations allowed us to investigate the balance of the granular temperature (T ),

which is formally defined by T = 1
Nd

Tii (Einsteinian summation) and Tij = 〈cicj〉, where Nd

is the number of dimensions (2 in our simulations), v the particle velocity, 〈·〉 a local mass-

weighted ensemble average, and c = v− 〈v〉 the fluctuation velocity. Moreover, by defining

a Cartesian coordinate system (x, z) with x in direction parallel and z in direction normal

to the particle bed, Txx and Tzz become the aforementioned horizontal and vertical granular
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temperatures, respectively. For steady, homogeneous particle transport (∂/∂t = ∂/∂x = 0),

the fluctuation energy balances read (for the derivation, see Supplementary Material44)

0 =
1

2
ρ
DTxx

Dt
= −dqzxx

dz
+W shear − Γdrag

xx − Γcoll
xx , (4)

0 =
1

2
ρ
DTzz

Dt
= −dqzzz

dz
− Γdrag

zz − Γcoll
zz , (5)

where ρ is local particle mass per unit volume, D/Dt = 〈vz〉d/dz is the material derivative

(i.e., the time derivative in the reference frame moving with the particle flow), which vanishes

since the flux of upward-moving particles must exactly compensate the flux of downward-

moving particles in steady, homogeneous particle transport (〈vz〉 = 044). Moreover, the

fluctuation energy flux tensor (qijk), hereafter called “granular heat flux” tensor, the granular

shear work (W shear), and the fluctuation energy dissipation rate tensors due to fluid drag

(Γdrag
ij ) and interparticle collisions (Γcoll

ij ) are given by44

qijk = qcijk + qtijk, (6)

qcijk =
1

2

∑

mn

Fmn
j cmk (x

m
i − xn

i )K(x,xm,xn), (7)

qtijk =
1

2
ρ〈cicjck〉, (8)

W shear = −Pzx

d〈vx〉
dz

, (9)

Pij = P c
ij + P t

ij , (10)

P c
ij =

1

2

∑

mn

Fmn
j (xm

i − xn
i )K(x,xm,xn), (11)

P t
ij = ρ〈cicj〉, (12)

K(x,xm,xn) =

1
∫

0

δ(x− ((xm − x
n)s+ x

n))ds, (13)

Γdrag
ij = −ρ〈aexi cj〉, (14)

Γcoll
ij = −1

2

∑

mn

Fmn
i (vmj − vnj )δ(x− xm), (15)

where the overbar denotes the ensemble average, Fmn the force applied by particle n on

particle m when they contact, xn the position of particle n, Pij the particle stress tensor,

a
ex the particle acceleration due to external forces, and K(x,xm,xn) the mathematical ex-

pression for a “delta line” between x
m and x

n with δ being the delta distribution44. The

manner in which we compute these quantities in our numerical simulations is also described

in the Supplementary Material44. We note that both qijk and Pij are separated into two

contributions in Eqs. (6) and (12), respectively. The contributions with superscript ’c’ in-
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corporate the contact forces which the particles experience in collisions and thus encodes the

contribution of interparticle collisions, while the superscript ’c’ encodes the contributions

from the transport of particles between collisions, which is mainly driven by the external

forces. We further note that contributions from gravity and buoyancy to aex in Eq. (14)

vanish because 〈c〉 = 0, and thus only the fluid drag contribution to aex remains. We finally

note that Γcoll
ij , additionally to the collisional dissipation of kinetic fluctuation energy into

heat, also incorporates the collisional transfers of kinetic fluctuation energy into rotational

energy and potential contact energy. However, the latter two contributions are usually much

smaller than the former since both the rotational energy47 and potential contact energy are

usually much smaller than the kinetic energy (small interparticle contact times). Moreover,

even within the particle bed, where the potential contact energy is significant due to endur-

ing interparticle contacts, it seems likely that the transfer of kinetic energy into potential

contact energy can be neglected since the number of contacts of particles approaching each

other (contact energy gain) must equal the number of contacts of particles departing from

each other (contact energy loss) in the steady state on average. Interestingly, the structures

of Eqs. (4) and (5) are the same as the structures one obtains from Boltzmann-like models of

granular flows for the particle fluctuation energy balances48,49 (i.e., the gradient of the gran-

ular heat flux equals the net production of fluctuation energy). However, while such models

rely on the assumptions that the particle velocity fluctuation distributions are nearly Gaus-

sian, and that the mean duration of interparticle contacts is much smaller than the mean

free time, Eqs. (4) and (5) with their terms given by Eqs. (6-15) do not. Indeed, these

expressions follow strictly from Newton’s axioms44. A comparison between Boltzmann-like

models of granular flows and an approach like ours can be found in Ref.45.

The sum of Eqs. (4) and (5) describes that a change of granular temperature (DT/Dt) is

governed by fluctuation energy production due to granular shear work (W shear), fluctuation

energy dissipation due to fluid drag (Γdrag
ii ) and interparticle collisions (Γcoll

ii ), and gradients

in the granular heat flux (dqzii/dz). Considered individually, both Eqs. (4) and (5) have

analogous meanings regarding the changes of Txx and Tzz, respectively. However, it is

important to note that, while Γcoll
ii = Γcoll

xx + Γcoll
zz is the collisional granular temperature

dissipation rate and thus strictly positive, Γcoll
zz can also be negative due to conversion from

Txx into Tzz in interparticle collisions.
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IV. SIMULATION RESULTS

Figs. 1a and 1b display the vertical profiles of Γcoll
ii and Γdrag

ii in saltation and bedload,

respectively, for various Shields numbers. Since dissipation rates are mechanical powers

per unit volume (mass density × acceleration × velocity), they are plotted in units of

ρp × g̃ ×
√

(s− 1)gd = ρfd
−1
√

(s− 1)gd
3
, where g̃ = (s − 1)g/s is the buoyancy-reduced

value of the gravity, which is the natural unit for particle accelerations. Moreover, in these

plots, the height z = 0 approximately corresponds to the top of the particle bed, defined

as the height at which the particle volume fraction reaches one half of its value within

the particle bed1. The region within the particle bed (z < 0), which has very often been

assumed to be immobile in previous numerical studies of fluid-mediated particle transport

(e.g.23,30), is of special importance in our study since the effects of particle impacts onto

the particle bed are known to extent many layers into the particle bed50. In fact, it can

be seen in Figs. 1a and 1b that a significant amount of fluctuation energy is dissipated in

interparticle collisions within the particle bed. Particularly notable is the region near the

plotted simulation bottom (z ∈ (−3d,−4d)), where Γcoll
ii exhibits a local maximum (also in

saltation). This maximum is a signature of finite size effects due to external forces applied

on the particles from below the plotted simulation bottom.

The most significant result one can extract from Fig. 1 is that collisional dissipation

dominates fluid drag dissipation within and slightly above the particle bed in saltation,

while fluid drag dissipation dominates collisional dissipation almost everywhere in bedload.

Hence, we computed the overall fractions of collisional dissipation of fluctuation energy in

saltation and bedload, defined by

P coll =

∞
∫

−∞

Γcoll
ii dz

∞
∫

−∞

(Γcoll
ii + Γdrag

ii )dz

. (16)

They are displayed in the insets of Figs. 1a and 1b, respectively, as a function of Θ/Θt.

They show that around 45% − 55% of overall dissipation of fluctuation energy is due to

interparticle collisions in saltation, but significantly less in bedload.

The results shown in Fig. 1 are surprising since one would actually expect that interpar-

ticle collisions in comparison to fluid drag play a much more important role in bedload than

in saltation. One would expect this because the transport layer is much more compressed
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FIG. 1. Vertical profiles of the collisional (Γcoll
ii ) and drag dissipation rates (Γdrag

ii ) of fluctuation

energy in (a) saltation (s = 2000) and (b) bedload (s = 2) for various Shields numbers. The insets

show the overall fraction (P coll) of collisional dissipation as a function of the Shields number.
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in bedload, resulting in a much larger interparticle collision frequency and thus collisional

acceleration of particles, while the fluid drag acceleration of particles is of the order of g̃

in both bedload and saltation and thus smaller in bedload than in saltation. The latter

follows from a proportionality between average horizontal and vertical forces1. In fact, even

though the drag length (sd) is much larger in bedload than in saltation, the average drag

acceleration (∝ (sd)−1V 2
r ) is of the order of g̃ since the average difference between the flow

and particle velocities (Vr) is of the order of
√
sg̃d for constant Re.

To further explain why the results shown in Fig. 1 are surprising, we display in Figs. 2a

and 2b for saltation and bedload, respectively, the amount of the granular heat flux (qzii)

which is due to interparticle collisions (qczii) and thus not due to the transport of particles

between collisions (qtzii, see Eqs. (6-8)). In contrast to the results shown in Fig. 1, the

results shown in Fig. 2 are as expected. In fact, due to the compressed (dilute) transport

layer in bedload (saltation), the collisional contribution to the heat flux is much larger

(smaller) than the transport contribution, which is largely driven by fluid drag. We note

that analogous statements can be made for the collisional and transport contributions to the

overall particle stress and energy flux tensors (not shown). In other words: While in saltation

(bedload) collisions in comparison to fluid drag contribute almost negligibly (dominantly)

to the fluxes of momentum, energy, and fluctuation energy, they contribute significantly

(almost negligibly) to the dissipation of fluctuation energy.

Fig. 2 also shows another interesting behavior: Due to Eqs. (4) and (5), positive gradients

of the granular heat flux (qzii) are associated with a larger production of granular temper-

ature through shear work than dissipation through fluid drag and interparticle collision.

Curiously, while dqzii/dz is positive for most of the transport layer in saltation (Fig. 2a), it

becomes negative at z ≈ d in bedload (Fig. 2b). This sign change corresponds to a strong

sign change of the granular temperature gradient occurring at about the same height (inset

of Figs. 2b), while the granular temperature gradient vanishes for large heights in saltation

(inset of Figs. 2a). This is just another characteristic of the particle transport layer which

strongly distinguishes saltation and bedload.

What causes these fundamental differences in the fluctuation energy dissipation between

saltation and bedload? The answer lies hidden in the characteristics of particle impacts

onto the particle bed: On the one hand, the order of magnitude of the velocity with which

particles in non-suspended particle transport impact onto the particle bed is proportional to

9
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√

(s− 1)gd =
√
sg̃d1. On the other hand, the order of magnitude of the velocity for which

particle-bed impacts may induce bed reorganization is proportional to
√
g̃d since the only

way in which the ambient fluid significantly influences such effects is via buoyancy. Since

the ratio between both velocity scales is equal to
√
s, impacts are the more energetic the

larger is s. In fact, while particles in bedload (s = 2) merely rebound from the particle bed,

particle-bed impacts in saltation (s = 2000) are so energetic that they frequently cause a

phenomenon known as “splash”, which describes the ejection of particles from the particle

bed8. Consequently, particle-bed impacts in saltation produce much more fluctuation ve-

locity relative to the impact velocity than particle-bed impacts in bedload. This fact can

explain the differences in the fluctuation energy dissipation between saltation and bedload,

as we will show in the following.

First, as a direct consequence of this fact, it can be expected that the average horizontal

particle velocity (〈vx〉) normalized by the fluctuation velocity (
√
T ) is much larger in bedload

than in saltation in the region near and within the particle bed. Indeed, this is shown

in Fig. 3. It follows that, in the same region, also the particle shear velocity (dd〈vx〉/dz)
normalized by the fluctuation velocity (

√
T ) is much larger in bedload than in saltation (inset

of Fig. 3). Since the magnitude of particle velocity gradients (d〈vx〉/dz) is associated with

the magnitude of fluid drag forces, and since the frequency of collisions increases with the

fluctuation velocity, the ratio between fluid drag and collisional dissipation should increase

with R = d〈vx〉/dz/[
√
T/d]. Hence, since R is much larger in bedload than in saltation due

to splash in the region near and within the particle bed, the ratio between fluid drag and

collisional dissipation must also be much larger in bedload than in saltation in the same

region (see Fig. 1).

The strong contribution of collisional dissipation and the significant granular temperature

anisotropy in saltation (Txx/Tzz > 1, shown in Fig. 4), which exists because granular shear

work (W shear) produces horizontal, but not vertical fluctuation energy (see Eqs. (4) and

(5)), have an interesting side effect: Horizontal fluctuation energy is converted into vertical

one through interparticle collisions at a rate which is higher than the rate at which vertical

fluctuation energy is dissipated by vertical fluid drag forces. This can happen because

interparticle collisions tend to make the granular temperature more isotropic, resulting in a

production of vertical fluctuation energy in interparticle collisions (Γcoll
zz < 0), even though

the sum of horizontal and vertical fluctuation energy is dissipated through interparticle
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FIG. 3. Vertical profiles of the normalized average horizontal particle velocity (〈vx〉/
√
T ) in salta-

tion (s = 2000) and bedload (s = 2) for various Shields numbers. The inset shows the vertical

profiles of the normalized particle shear velocity (d〈vx〉/dz/[
√
T/d]) in saltation and bedload for

the same Shields numbers.

collisions (Γcoll
ii > 0). Evidence for this side effect comes from the vertical profiles of γ =

−g̃ 1
2
〈v3z〉/〈v2z〉 (shown in the inset of Fig. 4), which exhibit positive values near the particle

bed for all Shields numbers. As we explain in the following, in saltation the value of γ

at a certain height z is approximately equal to P (> z) = −
∫

∞

z
(Γcoll

zz + Γdrag
zz )dz′, the net

production rate of vertical fluctuation energy above z, divided by M(> z) =
∫

∞

z
ρdz′, the

mass of particles transported above z,

γ(z) ≅
P (> z)

M(> z)
. (17)

In other words, γ(z) describes the production of vertical fluctuation energy per particle

mass averaged over all layers above z. Hence, a positive value of γ near the particle bed

corresponds to a net production of vertical fluctuation energy above the particle bed (P > 0),

which means that the production due to interparticle collisions is larger than the dissipation

of vertical fluctuation energy due to vertical fluid drag.

In order to explain this physical meaning of γ, we use that the major contribution to the
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FIG. 4. Vertical profiles of the granular temperature anisotropy (Txx/Tzz) in saltation (s = 2000)

for various Shields numbers. The inset shows the vertical profiles of γ = −g̃ 1
2〈v3z〉/〈v2z〉 in saltation

for the same Shields numbers.

granular heat flux and the particle stress tensor at heights above the particle bed comes from

the transport of particles between collisions in saltation, as mentioned before (see Fig. 2a).

Hence, qzzz ≅ qtzzz =
1
2
ρ〈v3z〉 and Pzz ≅ P t

zz = ρ〈v2z〉, which follows from Eqs. (8) and (12) and

〈vz〉 = 0. Moreover, we use that the contribution from vertical fluid drag to the acceleration

a
ex in the vertical momentum balance, dPzz/dz = ρ〈aexz 〉44, can be neglected (since it is

much smaller than the buoyancy-reduced gravity1), such that

dρ〈v2z〉
dz

≅ −ρg̃. (18)

Eqs. (5) and (18) then allow us to express γ(z) as (see Eq. (17))

γ(z) = −g̃
1

2

〈v3z〉(z)
〈v2z〉(z)

≅

−
∞
∫

z

(Γcoll
zz + Γdrag

zz )dz′

∞
∫

z

ρdz′
=

P (> z)

M(> z)
. (19)
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V. TURBULENT PRODUCTION OF FLUCTUATION ENERGY

In our simulations, turbulent fluctuations of the flow have been neglected, manifesting

itself in fluid drag which strictly dissipates fluctuation energy (Γdrag
xx > 0, Γdrag

zz > 0). How-

ever, if turbulent fluctuations are taken into account, it is possible that fluid drag might

produce instead of dissipate fluctuation energy. This is explained in the following gedanken-

experiment:

Let us consider a constant fluid flow (fluid speed u(x, y, z) = const.) without turbulent

fluctuations in which each particle moves with the velocity of the flow, corresponding to

vanishing fluctuation energy. If we now turn on turbulent fluctuations, the particles will

obviously gain fluctuation energy, which means that fluid drag (mean fluid drag dissipation

+ turbulent production) must net produce fluctuation energy. This production of fluctuation

energy will continue until a new steady state is reached (“steady” hereby refers to ∂/∂t =

0 after ensemble averaging). In this steady state, the particles have a certain granular

temperature Tturb at which turbulent production exactly balances dissipation of fluctuation

energy due to mean fluid drag (the particle concentration shall so small that interparticle

collisions do not occur). Now we externally impose a certain fluctuation energy with T >

Tturb on the particle phase and let the system relax afterwards. In this case, the particles will

loose fluctuation energy until the same steady state is reached. This shows that depending

on the conditions, the net effect of fluid drag (mean fluid drag dissipation + turbulent

production) can, indeed, be both production and dissipation of fluctuation energy.

In order to determine the strength of turbulent production of vertical fluctuation energy

in saltation, we compared our DEM simulations with experimental measurements of γ. In

fact, we carried out PTV measurements in a wind tunnel during steady transport of sand

for two different sand beds consisting of fine (d = 230µm) and coarse sand (d = 630µm),

respectively (see Ho et al.33,40 for a detailed description of the experimental setup). From

these measurements we obtained

γ(13d± 5d) = − g̃

2

∑

p:zp∈(8d,18d)

mp(vpz)3

∑

p:zp∈(8d,18d)

mp(vpz)2
≈ − g̃

2

∑

p:zp∈(8d,18d)

(vpz)3

∑

p:zp∈(8d,18d)

(vpz)2
, (20)

where the overbar denotes the ensemble average like before, mp the mass of particle p,

and the mass-weighted average was approximated by the number-weighted average since it

was not possible to determine the masses of the tracked particles with sufficient precision.
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FIG. 5. PTV measurements with 95%-confidence intervals of γ = −g̃ 1
2〈v3z〉/〈v2z〉 near the sand bed

(z ∈ (8d, 18d)) in a wind tunnel during steady transport of fine (brown circles) and coarse sand

(red rectangles) under a constant air flow for different Shields numbers. The black stars correspond

to γ(13d± 5d) obtained from our DEM simulations (s = 2000, Re = 10).

γ(13d± 5d) obtained from the fine and coarse sand experiments and from the simulations is

plotted in Fig. 5 (the error bars correspond to the 95%-confidence intervals) as a function of

Θ/Θt, revealing three interesting qualities: First, γ(13d± 5d) is positive at Shields numbers

close to the threshold, where it is negative in our DEM simulations. Second, the values of

γ(13d ± 5d) are larger in the fine than in the coarse sand experiments, which are in turn

larger than in the simulations. And third, the trend in the simulations seems to be stronger

than in the experiments. This indicates that turbulent production dominates the vertical

fluctuation energy balance at heights larger than z ≈ 13d. In fact, only turbulence can

explain why vertical fluctuation energy is produced near the threshold (γ(13d ± 5d) > 0),

at which the effects of interparticle collisions are known to be very small at such heights8,

since it is the only remaining production mechanism. It is also natural that the effects of

turbulence do not change much with the Shields number since the flow shear stress in the
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saltation layer also does not change much8, which explains the weaker trends with Θ/Θt

in the experiments. Finally, it is also expected that the effects of turbulence are stronger

(larger γ(13d± 5d)) for fine than for coarse sand8. After all it is the very fine dust which is

transported in suspension with the air due to turbulent fluctuations of the flow8.

VI. CONCLUSION

The first main finding of our study is that collisional dissipation of fluctuation energy

plays a much more important role relative to fluid drag dissipation in saltation than it

does in bedload (see Figs. 1 and 3), even though interparticle collisions transport much less

momentum, energy, and fluctuation energy in saltation (see Fig. 2). It can be expected that

this difference between bedload and saltation is even more pronounced in natural systems

because the hindrance effect (i.e., the increase of the mixture viscosity with particle volume

fraction51), which has been neglected in our simulations, results in a significant increase of

the drag force with the particle volume fraction (φ). This means the maximum of the fluid

drag dissipation rate near the top of the particle bed in bedload (see Fig. 1a), where φ is

large, should be even more pronounced, while in saltation with its dilute transport layer, the

influence of the hindrance effect is most likely negligibly small. We speculate that another

reason why this difference between bedload and saltation should be even more pronounced

in natural systems is the lubrication force, which has been neglected in our simulations, as

we explain in the following. In fact, from experiments it is known that the coefficient of

restitution (e) becomes a function of the Stokes number St = sRevimp/(9
√
sg̃d) due to the

lubrication force52, where vimp is the relative impact velocity at collision. Only when the

Stokes number is sufficiently large (St > 3000) is e constant. For granular Couette flows

under gravity, it is known53 that a decrease of e from 0.9 to 0.4 only increased the overall

dissipation of fluctuation energy by about 10%, although one would expect a much stronger

increase ((1−0.42) = 4.4(1−0.92)), because of a strong decrease of the granular temperature

(T ) and thus the collision frequency in the dense region near the top of the particle bed.

Since granular Couette flows are from all dry granular flows possibly the ones most similar to

bedload, we speculate that the main effect of the lubrication force or other factors effectively

decreasing e (e.g., increased tangential friction in contacts54) on bedload is a decrease of T .

This should affect collisional dissipation more strongly than drag dissipation because T is
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one of the physical parameters controlling the collision frequency (see our discussion of Fig. 3

regarding the parameter R), which explains why the lubrication force should increase fluid

drag dissipation relative to collisional dissipation in bedload and thus enhance the different

importances of fluid drag and collisional dissipation of fluctuation energy for bedload and

saltation in natural systems.

These different importances of fluid drag and collisional dissipation might be of high

relevance for attempts to develop a theory which unifies these regimes. For instance, there

seems to be a connection between entrainment of bed particles and the manner in which

fluctuation energy is dissipated: In bedload, in which particle fluctuation energy is mainly

dissipated via fluid drag, entrainment of bed particles mainly occurs due to fluid drag3,

while in saltation, in which particle fluctuation energy is mainly dissipated via interparticle

collisions, entrainment of bed particles mainly occurs due to grain-bed collisions8. This

connection suggests a further connection between the particle transport and fluctuation

energy dissipation rates since the bed particle entrainment rate is closely related to the

particle transport rate3,40. It might thus be possible to explain the different scalings of

the particle transport rate with the Shields number in saltation and bedload1 in a single

unified analytical model through quantifying the fluid drag and collisional fluctuation energy

dissipation rates. Such a model would then, for the first time, provide predictions for the

particle transport rate in intermediated regimes in which the particle-fluid density ratio

(s) is neither very small nor very large (e.g., s ≈ 1001) and thus significantly improve our

understanding of fluid-mediated particle transport.

The second main finding of our study is that turbulent production of vertical fluctuation

energy appears to dominate the vertical fluctuation energy balance in saltation, even in

saltation of coarse sand. This was suggested by a comparison between experimental mea-

surements and DEM simulations of the average production of vertical fluctuation energy per

particle mass above the particle bed (see Fig. 5), which is quite surprising since the effects of

turbulence in saltation of sand are usually believed to be small, especially for coarse sand30.

It seems to be a reasonable conclusion that turbulent production also plays an important

role in the horizontal fluctuation energy balance and thus in the actual fluctuation energy

balance (horizontal + vertical). It might be possible to test this conclusion in future ex-

periments, which would, however, require precise measurements of the vertical profile of the

granular shear work (W shear, see Eq. (4)).
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