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ABSTRACT

We present to the astronomical community an algorithm for the detection of Low Surface
Brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis
in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied
simultaneously to different bands. It segments an image into a user-defined number of classes,
according to their surface brightness and surroundings – typically, one or two classes contain the
LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient
identification of LSB galaxies from among the candidate sources selected by MARSIAA. The
application of the method to two and three bands simultaneously was tested on simulated images.
Based on our tests we are confident that we can detect LSB galaxies down to a central surface
brightness level of only 1.5 times the standard deviation from the mean pixel value in the image
background. To assess the robustness of our method, the method was applied to a set of 18 B
and I band images (covering 1.3 square degrees in total) of the Virgo cluster to which Sabatini
et al. (2003, 2005) previously applied a matched-filters dwarf LSB galaxy search algorithm. We
have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as
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bona fide LSB galaxies. Our method has also detected 4 additional Virgo cluster LSB galaxy
candidates undetected by Sabatini et al. To further assess the completeness of the results of
our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (i) mock
Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band
subimages and (ii) Virgo LSB galaxies identified by eye in a full set of NGVS square degree
gri images. MARSIAA/DetectLSB recovered ∼ 20% more mock LSB galaxies and ∼ 40%
more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false
positives from an entirely unsupervised pipeline, a completeness of 90% is reached for sources
with re > 3′′ at a mean surface brightness level of µg = 27.7 mag arcsec−2and a central surface
brightness of µ0

g = 26.7 mag arcsec−2. About 10% of the false positives are artifacts, the rest
being background galaxies. We have found our proposed Markovian LSB galaxy detection method
to be complementary to the application of matched filters and an optimized use of SExtractor,
and to have the following advantages: it is scale-free, can be applied simultaneously to several
bands, and is well adapted for crowded regions on the sky.

Subject headings: Methods: data analysis – Techniques: image processing – Galaxies: fundamental

parameters – Galaxies: clusters individual: Virgo

1. Introduction

The determination of the baryonic matter con-
tent and distribution is a crucial issue in the
present era of precision cosmology, in which the
detectability of galaxies in optical data plays a
significant role. Compared to the selection ef-
fects affecting “normal” High Surface Brightness
(HSB) galaxies, whose examples fill most of the
pages of classics like The Hubble Atlas of Galax-
ies (Sandage 1961), those concerning the detec-
tion and identification of Low Surface Brightness
(LSB) galaxies are much more challenging, due to
their very nature (e.g., Disney 1976) – a rule-of-
thumb working definition of LSB galaxies is ob-
jects with a central surface brightness at least one
magnitude fainter than the dark night sky. Im-
portant issues in which LSB galaxies play a key
role are the slope of the faint end of the lumi-
nosity function and the extension of the color-
magnitude relation to the faint luminosity regime
(see, e.g., Ferrarese et al. 2012). Both sub-
jects give strong constraints on the global, macro-
scopic processes that governed the assembly of
baryons within merging dark matter halos. In ad-
dition, constructing and interpreting scaling rela-
tions for LSB galaxies will increase our knowledge
on galaxy formation and evolution.

1The presented software can be downloaded at
http://lsiit-miv.u-strasbg.fr/paseo/LSBdetection.php.

2present address: Université Paris-Est, Laboratoire
d’Informatique Gaspard-Monge, Equipe A3SI, ESIEE
Paris

As a class of objects, a significant part of the
LSB galaxies population had been missed for more
than two decades, before they became the object
of a series of studies in the 80’s (e.g. Bothun
1985; 1986; Davies et al. 1988), triggered by, e.g.
the ability of CCD cameras to detect galaxies of
considerably lower surface brightness than photo-
graphic plates, and the discovery that most of the
LSBs then identified were quite rich in Hi gas and
therefore easy to detect and map with radio tele-
scopes. After the first studies, a consensus seemed
to emerge in the literature of the mid-90’s that
LSB galaxies are dwarfish, blue, and Hi-rich, in-
dicating that their potential contribution to the
baryonic matter reservoir may be relatively minor
(e.g., Impey & Bothun 1997; Bothun et al. 1997,
and references therein). However, further stud-
ies started to reveal significant numbers of LSBs
that did not fall within these narrow confines (e.g.,
O’Neil et al. 2000, 2004, Sabatini et al. 2003,
Roberts et al. 2004). The observed diversity of
LSBs made van den Bergh (1998) suggest their
classification into at least three classes: ”mon-
sters” with sizes comparable to those of galaxy
cluster cores (like Malin 1), galaxies with sizes like
those of most ”normal” (HSB) spirals, and dwarf
irregular/spiral/elliptical galaxies. Only the lat-
ter class incorporates the traditionally recognized
LSB galaxies. Even though LSBs are now well
established as a genuine class of galaxies with of-
ten ’extreme’ properties, considerable uncertainty
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remains as to the scope of their physical proper-
ties and their number density in the local Uni-
verse. We have clearly not yet fully mapped out
the parameter space they occupy. Furthermore,
we should not forget that our concept of Low Sur-
face Brightness galaxies remains limited by our
ability to detect extended objects just above the
current noise limit of images – the increased sen-
sitivity of CCDs over photographic plates and the
development of new detection algorithms have un-
locked a wealth of hitherto undetectable objects,
but it should be emphasized that there may well
still be large numbers of extremely LSB galax-
ies out there beyond our present detection lim-
its. Contemporary detection limits have led to
contemporary working definition of LSB galaxies,
such as the commonly used classification based on
an extrapolated central blue disk surface bright-
ness µ0

B≥ 23 mag arcsec−2 (before or after depro-
jection to face-on), which basically means a disk
galaxy with a µ0

B about at least one mag arcsec−2

fainter than the typical mean value for what are
now referred to as HSB spiral galaxies, i.e., the
remarkably tight range of 21.7±0.3 mag arcsec−2

found by Freeman (1970).

Some of the specific issues regarding the prob-
lem of LSB galaxy detection are:

• a large fraction, if not the entire, LSB galaxy
is buried in the noise, where the noise is de-
fined as the standard deviation of the pixel
values from the image background; 3

• the morphology of LSB galaxies covers a
very broad range, from round (elliptical
galaxies) and elliptical (spiral galaxies) to
irregular (irregular galaxies). Most spiral
galaxies have a bulge and a disk component,
and it is well possible that only the high
surface brightness bulge (round) is detected
while the much dimmer disk remains below
the threshold level – these objects are thus
misclassified as dwarf ellipticals and con-
sidered as low-mass, gas-free objects. The
seminal case of the giant LSB spiral Malin 1
is an example of this (Bothun et al. 1987);

• substructure is often present, in the form of

3This is different from the definition commonly used in im-
age processing, i.e., the variance of the pixel values from
the image background.

spiral arms and distinct irregular star forma-
tion regions;

• since LSB galaxies span a wide range of
colors, their surface brightness distribution,
i.e., morphology, can be quite different in dif-
ferent bands. Whereas ellipticals are bright-
est in the red bands, irregulars are brightest
in the blue bands;

• the area covered by the LSB galaxy can
be polluted by multiple foreground stars or
background galaxies of different magnitudes.

In practice, different algorithms have been used
to detect LSB galaxies just above the noise level
in optical and near-infrared images, such as:

SExtractor: The Source EXtractor software
(Bertin & Arnouts 1996) which is widely used to
detect, deblend, measure and classify sources from
images can also be used in a non-standard, ad-
justed way to search for LSB galaxies, e.g. with
an extremely low cut at 1.2σ and at least 200 con-
nected pixels (Sect. 5.3).

Ring filtering: the ring filter is defined as a me-
dian filter which assigns weight only to selected
pixels in an annulus. The filter has a sharply-
defined scale-length; that is, all objects with a
scale-size less than the radius of the ring are fil-
tered and replaced by the local background level.
It provides a fast, simple, and intuitive method to
remove small-scale objects (independent of mor-
phology) from an image, leaving behind the large-
scale objects and overall light gradients (Secker
1995).

Matched filters: Sabatini et al. (2003) devel-
oped a method based on image convolution with a
set of matched filters with different sizes that are
optimized to enhance faint structures with scales
that match the filter scale. The results per filter
are combined into a single significance image in
which objects of all different sizes are emphasized.
With this method a complete sample of galaxies
was selected down to a central surface brightness
level of µB=25.3 mag arcsec−2. The selection of
LSB Virgo cluster member galaxies was based on
morphological criteria, i.e., scale-lengths between
2 and 10 arcsec.

Alternative detection methods, such as wavelet,
curvelet or shapelet (see Crouse et al. 1998;
Romberg et al. 2001; Murtagh et al. 2005; Starck
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& Murtagh 2006; Chan et al. 2008), may be used
to detect and de-noise low surface brightness struc-
tures. Although some of these methods have been
applied to observations obtained in two or more
bands, we are not aware of any LSB galaxy detec-
tion algorithm which has been applied simultane-
ously to multiple bands.

Matched filters have also been applied to multi-
ple bands in the mm wavelength range to extract
cluster catalogs from Sunyaev-Zel’dovich (SZ) ef-
fect surveys (Melin et al. 2006). Pires et al. (2006)
introduced an unsupervised analysis on simulated
multi-band data to separate the SZ signal (blind
separation of the different components using an
Independent Component Analysis (ICA) method),
followed by non-linear wavelet filtering and appli-
cation of SExtractor. Starck et al. (2006) used
the multiscale entropy concept based on wavelets
and the False Discovery Rate (FDR) to robustly
reconstruct weak lensing maps. The FDR proce-
dure provides the means to adaptively control the
fraction of false discoveries over total discoveries.

The latter methods rely on pre-defined mor-
phologies for the source detection, whereas our
aim is to provide a robust, scale-free, and morphology-
independent LSB galaxy detection algorithm for
structures which are deeply embedded in the pixel
noise. In addition, the possibility to extend a
method to multi-band data is required to opti-
mize the detection process.

This paper represents a pilot study in which
we apply our algorithm to (i) INT B and I band
images of the Virgo cluster, for which Sabatini et
al. (2003, 2005) have already obtained LSB galaxy
catalogs using matched filters and (ii) to a set of
NGVS (Next Generation Virgo Survey, Ferrarese
et al. 2012) gri band subimages in which mock
Virgo LSB galaxies were inserted, and (iii) to a
full set of NGVS square degree gri images in which
LSB galaxies were identified by eye. The challenge
to our scale-free Markovian detection method is to
show

• the robustness of the detection of LSB galax-
ies of different morphologies and with differ-
ent degrees of foreground point source pol-
lutions and source confusion;

• that its simultaneous application to two or
more broad-band filters significantly im-
proves the detection rate compared to its

consecutive application to each filter.

Our Markovian segmentation algorithm is embed-
ded into an entirely unsupervised pipeline for the
detection and identification of LSB galaxy can-
didates in multiband optical images. We aim at
providing the most complete list of LSB galaxy
candidates with a minimum number of false posi-
tives without human intervention. Our method is
not intended to provide definite and precise sizes
or magnitudes which is beyond the scope of this
work. The single-band application of the algo-
rithm is described in Laferte et al. (2000), and
the application to multiple bands in Provost et
al. (2004). The latter study determined water
depth maps from SPOT satellite images. The nov-
elty of our work lies in the use of the algorithm
for LSB galaxy detection in astronomical images.
For an alternative bayesian inference method for
multiband image segmentation see Murtagh et al.
(2005).

This paper is structured as follows: the prin-
ciples of the multi-band Markovian modelling
method we developed to detect LSB galaxies on
images are described in Section 2, the method to
identify LSB galaxies from among the detected
sources is presented in Section 3, the results of
tests to detect LSB galaxies on simulated images
are given in Section 4, the results of the application
of our method to two-band INT and three-band
NGVS images are presented in Sections 5 and 6,
and the conclusions are presented in Section 7.

2. Markovian modeling

Our aim was to detect low surface brightness
galaxy candidates, even with complex morpholo-
gies, through a simultaneous analysis of all avail-
able spectral bands. This multi-band inspection
consists of modeling the observations with hid-
den (i.e., unobservable) variables, called labels,
which are spatially connected through a prede-
fined neighborhood system. These labels corre-
spond to discrete classes of objects with similar
surface brightness. The main principle is to re-
construct the image of labels X (also referred to
as a segmentation map in the following) accord-
ing to multiband observations Y . The Markovian
modeling is very efficient in regions with low S/N
(Salzenstein & Collet 2006). It is therefore ideally
suited to extract LSB galaxies from the noise.
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Our method uses the principles of a Marko-
vian approach on X , which are based on neigh-
borhood relationship and the Bayesian inference
linking statistically the multiband observations Y
to the segmentation map X . Since the end of
the last century this methodology has provided us
with a robust and efficient way to solve problems of
restoration, detection, segmentation or classifica-
tion. The power of such statistical image analysis
lies in its specific regularization based on neigh-
borhood behavior (Markovian modeling), coupled
with an explicit noise model within each observa-
tion.

2.1. MARSIAA

We employ the dedicated MARSIAA (MARko-
vian Software for Image Analysis in Astronomy)
modelling software for the segmentation of multi-
band images based on a hierarchical in-scale neigh-
borhood system to overcome strongly noised ob-
servations (Laferte et al. 2000, Provost et al.
2004). In the following we give a brief summary
of the method which is described in detail in the
Appendix.

The segmentation principle, corresponding to
a segmentation (labeling) process, is simple: the
segmentation classes (labels) are described on a
hierarchical quadtree (see Fig. 1). At the bottom
of the quadtree each label is linked to the corre-
sponding pixel of the observations Y . Whereas
the information contained in the observations is
propagated upward within the quadtree, the labels
are propagated downward according to Markovian
transmission probabilities, i.e., a label at a given
level of the quadtree only depends on its parent.
The quadtree structure is a well-adapted topol-
ogy structure to express in-scale Markovian prop-
erties (transmission of information from parent to
child), providing an efficient way to regularize the
segmentation map (Laferte et al. 2000). This reg-
ularization maximizes the extent of objects within
a segmentation class even in the presence of strong
noise.

Since the labels are unknown at the beginning
of the process, they have to be estimated itera-
tively. The quadtree structure deals with the la-
bel estimations at various spatial resolutions: the
top represents the lowest resolution (a single label
for the whole image) whereas the bottom corre-
sponds to the finest resolution, i.e., the image pix-

els. At the bottom of the quadtree all labels X are
linked to the observations Y through a data-driven
term defined as the parametric probability density
function (pdf), which is assumed to be a multi-
dimensional Gaussian of variable variance. The
data-driven term allows the correct connection be-
tween the observations (scalar or multi-component
at each location, according to the available data)
and the label which has to be estimated at the
same image location. The rules on labels between
scales are managed by the Markovian property:
the children labels depend on the parent label ac-
cording to transition probabilities. The label at
the finest resolution represents the end product of
our algorithm: true or false for a detection prob-
lem, reconstructed surface brightness in a restora-
tion problem, or 1, 2, ..., N for our segmentation
problem where we sort image pixels into N sub-
sets of similar behavior. In our case the final map
for a given class is a binary mask at the highest
resolution. This type of regularization scheme is
generic, allowing the detection, segmentation, and
classification of raw data:

• in the case of multiband observations, con-
taining data at different scales (which is not
our case), the quadtree is fed by the observa-
tions at different scales and the segmentation
process takes into account all data simulta-
neously;

• in the case of missing data, the quadtree
can take into account only its prior (parent-
children transition probability) to define the
label.

Compared to other detection methods our ap-
proach is scale-free, because the hierarchical
quadtree is only applied to the set of labels,
whereas the information contained in the data at
the highest resolution is not propagated to lower
resolution planes within the quadtree. MARSIAA
does not handle different PSFs explicitly. How-
ever, a band with data of significantly different res-
olution can feed a different level of the quadtree.
On the other hand, the method will become scale-
dependent if applied to data projected toward
another representation space (wavelet, curvelet,
shapelet, etc.) where the coefficients again may
feed the quadtree at different levels (Crouse et al.
1998, Romberg et al. 2001, Murtagh et al. 2005,
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Starck & Murtagh 2006, Chan et al. 2008), be-
cause structures are intuitively selected on dyadic
scales. The advantage of our approach consists of
the combination of multiband data in the Bayesian
inference process, without any mathematical de-
composition on a specific function basis: in this
sense the data remain unchanged and the segmen-
tation process is model-independent.

2.2. MARSIAA objects

The segmentation process assigns image pix-
els to different classes. The final map of a given
class is a binary mask in which all pixels belong-
ing to this class have been assigned a value of 1
and where the rest are all 0. The mean ampli-
tude of a given class depends on the information
contained in the whole image and the number of
classes. Typically, class 0 is the noise and the LSB
galaxies are contained in class 1 and/or 2. The
user defines the total number of classes, which in
our case was set to 6 for the INT images and 8
for the NGVS images, after tests using values be-
tween 4 and 10. Since a given pixel can only be
assigned to one class, detected objects with a sig-
nificant gradient in their surface brightness profiles
will be distributed over different classes, e.g., the
outer parts are labeled as class 1, the intermedi-
ate radii as class 2, and the center of the object
as class 3. To obtain binary masks of each entire
object in a given class N0, we therefore have to
add the binary masks of classes N ≥ N0. The
assignment of image pixels to the different classes
depends on the total number of classes, the dy-
namic range of the image, and the surface bright-
ness distribution. Our simulations (Sect. 4) show
that the detection of known LSB galaxies on CCD
images is hampered by the high dynamic range,
due to the presence of stars. To avoid this prob-
lem we clipped the images at the 20σ level (σ be-
ing the noise in the images), which affects mainly
bright stars but not the galaxies we are searching
for. We determined the clipping level heuristically
by applying our method to known LSB galaxies
from Sabatini et al. (2003) which could not be de-
tected in the image without clipping. The results
are not sensitive to the exact value of the clipping
level (10-30σ). The subsequent LSB detection was
conducted on both the original and the 20σ-level
clipped images for the INT data and on the 30σ-
level clipped images for the NGVS.

2.3. The pipeline

The MARSIAA segmentation map represents
the heart of our proposed method for the detec-
tion of low surface brightness galaxies in multi-
band images. The MARSIAA objects have then to
be tested for stellarity and confusion. This is done
with a subsequent algorithm called DetectLSB
which is based on radial surface brightness pro-
files to which an exponential profile is fitted. If
a cut in exponential scale-length (e.g., re ≥ 3′′) is
applied to the LSB galaxy candidates on images of
intermediate depth (µB ∼ 26 mag arcsec−2), the
resulting relatively small number of LSB galaxy
candidates permits all to be visually inspected.
Since the number of LSB galaxy candidates is huge
for deep images (µg ∼ 29 mag arcsec−2), we devel-
opped additional selection software which is based
on the source parameters from DetectLSB. The
whole processing pipeline consists of five steps:
(i) cutting the images into subimages of sizes
up to 2048 × 2048 pixels, which represents the
limiting image size for MARSIAA, (ii) applica-
tion of MARSIAA simultaneously to the multi-
band subimages, (iii) application of DetectLSB,
(iv) cross-identification of the objects identified by
DetectLSB via a clustering algorithm, and (v) vi-
sual inspection of LSB candidate galaxies or ap-
plication of a LSB selection software. The pipeline
only needs human intervention between step (iv)
and (v), to change the format of the source catalog
from xml to ascii.

3. LSB galaxy identification

Once the candidate objects are detected by
MARSIAA, their surface photometry properties
are examined and the objects are classified as po-
tential LSB galaxies or other types, using a sec-
ond software package, DetectLSB, which we de-
veloped specifically for this project. The classi-
fication is based on the radial surface brightness
profile, which should be exponential. Since LSB
galaxies can have a dominant disk component, an
elliptical fit to the isophotes is necessary. De-
tectLSB is a fully automated C program designed
to separate astronomical objects into two distinct
classes: LSB galaxies and all others. It takes as
input the original image, an associated segmenta-
tion map (from MARSIAA) and photometric in-
formation such as magnitude zero point and PSF.

6



DetectLSB is applied to observations in a single
band. For each object identified in the segmenta-
tion map, it performs a two-dimensional ellipse fit
and calculates the mean surface brightness profile
over the radii of the estimated ellipse. It mea-
sures how well an exponential model fits the sur-
face brightness profile, and finally, it provides a
classification decision relying on deterministic fil-
ter rules. The LSB galaxies identified in different
bands are then cross-identified via a clustering al-
gorithm. Since different parts of the LSB galaxies
can have different colors and artifacts are typically
present in only one band, this ensures that all LSB
candidates are robustly identified.

3.1. Pre-processing

Segmentation artefacts such as very small con-
nected components or small holes are removed
by using a morphological Open-Close-Close-Open
(OCCO) filter4 (Gonzalez & Woods 1992, Soille
2003) with a cross structuring element of 3 pixels
width. A second filter eliminates objects having a
diameter smaller than the PSF FWHM or larger
than 200 pixels. Finally, objects too close to image
borders (when the distance from center to border
is less than 64 pixels) are removed and the remain-
ing objects are labelled.

3.2. Ellipse fitting

The isophotes of the galaxy are modelled as el-
lipses (Fig. 2), which are described by five param-
eters: center c, major axis radius a, minor axis
radius b and major axis position angle α. The
initial values are provided by Matlab through the
function ‘regionprops’ which determines the ellipse
which has the same second moment as the ob-
ject detected by MARSIAA. The fit is performed
through the minimization of a cost function which
decreases when symmetry increases. The space is
divided into homothetic elliptical rings {ea} with
a width of one PSF FWMH each. We define the
partial cost function of each ring as the sum of
the absolute difference between the mean value of
pixels in each quadrants, whereas the total cost
function is the weighted sum of all partial ener-

4Morphological opening corresponds to an erosion opera-
tion followed by a dilation operation, whereas morphologi-
cal closing corresponds to dilation followed by erosion.

gies. Formally, the cost function e is given by:

e =

a
∑

r=0

G(r)

4
∑

i=1

4
∑

j=1,j 6=i

|Bi(r) −Bj(r)| (1)

where Bi(r) is the mean pixel value over the i-
th quadrant of the ring at radius r and G(r) =

exp
(

−r2

2a

)

is a weighting function which decreases

with radius r.

The major and minor axis radii are defined as
the last points on the radial fits whose error bar
lies above the noise level. The optimization is done
with an adaptive gradient descent algorithm which
processes the parameters sequentially, in the fol-
lowing order: center position, position angle and
minor axis radius. The major axis, which is a di-
rect result of MARSIAA, is not optimized. The
minor axis radius and center parameters are con-
strained: the radius and the center have to stay
within a range of ten pixels from their initial val-
ues, and the center within ± 10◦ from its initial
value. The procedure is run on a mean filtered
version of the image (3× 3 pixel filter) and pixels
belonging to other MARSIAA objects are ignored.
If the estimated center is not included within the
original MARSIAA object, we consider that the
fit has failed and the object is eliminated.

3.3. Surface brightness profiles and linear
regression

In the next step, we compute the mean sur-
face brightness profile using all 4 quadrants. An
exponential profile is fitted by performing a lin-
ear regression on the mean surface brightness pro-
file in a single band. Within each ellipse annulus
ea we compute the mean surface brightness value
µa and its standard deviation σa, using a mean
filtered version of the image (3 × 3 pixel filter),
and ignore all pixels belonging to different MAR-
SIAA objects and to segmentation classes < j − 1
or > j + 1, where j is the class of the majority
of pixels in the annulus. The local background
level µb and local pixel noise σb are estimated
in a window of 512 × 512 pixels centered on the
object with the same iterative clipping algorithm
as used in SExtractor (Bertin & Arnouts 1996).
The linear regression is performed only on those
points whose error bars lie above the background
level and whose distance from the object center is

7



smaller than that of the first point which lies be-
low the background level (Fig. 2). We also calcu-
late the half-light-radius and the magnitude based
on the radial profile. For the determination of the
half-light radius, the surface brightness profile was
not interpolated. The half-light radius has thus
discrete values. We extrapolated the magnitudes
by assuming an exponential profile and a measured
source extent of 3.4 scale lengths. The extracted
half-light radii and magnitudes are thus rough esti-
mates and are not intended to replace photometric
measurements with more sophisticated methods.

3.4. Filtering and clustering of the results

We have defined a set of empirical selection
rules based on estimated surface brightness pro-
files for the removal of spurious detection like
stars, high surface brightness galaxies or multi-
ple objects. An object is discarded if one of the
following conditions is met:

• the linear regression includes less than 3
points;

• multiple objects: the second point is higher
than the first one and there exists another
point higher than the second one (not nec-
essary the third one);

• surface brightness criterion: the extrapo-
lated central surface brightness is higher
than 30 σ in the B/g band and 60 σ in the
I/i band;

• star criterion: the difference between the ex-
trapolated central surface brightness and the
measured central surface brightness is more
than 2 mag arcsec−2(this case applies when
the wings of a star are fitted), where the lat-
ter is defined as the mean pixel value in a
central ellipse with a major axis radius of 4
pixels;

• extension criterion: the width of the extrap-
olated curve at 20% of its height is less than
1.5 times the width of the PSF at 20% of its
height. This criterion rarely applies.

Since the same object can be detected and iden-
tified as an LSB galaxy using masks of different
classes, DetectLSB can yield up to 5 sets of de-
rived parameters for the original and clipped im-
age each (see Sect. 2.2). We gather these sets of

parameters to form one single object using a clus-
tering algorithm based on the projected distances
between the different identifications.

4. LSB galaxies detection simulations

4.1. Method

In order to evaluate the performance and the
limits of our method, we performed several tests
on simulated images. All simulations were done
using single- and multi-band (2 and 3 bands) im-
ages. We considered two classes of sources – ellip-
tically shaped LSB disk galaxies with an exponen-
tial surface brightness profile, and point sources
– and a flat background. These images are con-
volved with the point spread function and Gaus-
sian noise is added to them:

Y = H ∗m+ b (2)

where ∗ stands for a convolution, Y is the sim-
ulated image, H the point spread function, m
the sum of all components of the simulation (LSB
galaxy, point sources, background), and b the noise
(assumed to be Gaussian with zero mean).

We use the following image characteristics
which are close to the INT observations to which
we applied MARSIAA (see Sect. 5); the intensities
are given in arbitrary units:

• pixel scale: 0′′.33/pixel (in all bands);

• PSF FWHM: 2′′.1 in the first band (B) and
2′′.0 in the second (I);

• background level µ: 779.6 in the first band
and 3717.1 in the second;

• noise deviation σ: 16.9 (25.98 mag arcsec−2)
in the B band and 31.6 (24.82 mag arcsec−2)
in the I band.

The free parameters of our simulations are:
scale-length and central surface brightness of the
LSB galaxy in both bands and the number of
point sources. The size of the simulated images
is 512 × 512 pixels. To avoid border effects, the
LSB galaxy is always placed at the center of the
image. It has a constant eccentricity of

√
3/2 (i.e.,

the major axis is two times longer than the minor
axis) and a major axis position angle of 0 degree.
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Point sources are generated randomly in an an-
nulus with an inner radius of 75 pixels and outer
radius of 128 pixels. Their peak brightness is also
chosen randomly between 25σ and 1000σ.

4.2. Results

We performed 10 sets of LSB detection simu-
lations which are designed to reproduce INT data
of Sabatini et al. (2003; see Sect. 5). For each
set an LSB galaxy with a central surface bright-
ness between 0.3σ and 3σ and a characteristic
scale-length between 2′′ and 15′′ was hidden in
a 512 × 512 image. Three, five, and seven point
sources were then added to the image in 21 dif-
ferent configurations. For each set, MARSIAA
and DetectLSB were applied on a clipped and a
non-clipped test image, because the division of the
image pixels into the different classes depends on
the dynamic range of the image and the surface
brightness distribution (see Sect. 2.2). Figs. 3 and
4 show the detection statistics for the following six
different scenarios:

1. single band (a);

2. 2 bands with LSB galaxies of the same cen-
tral surface brightness and characteristic
scale-length in both bands (b);

3. 3 bands with LSB galaxies of the same cen-
tral surface brightness and characteristic
scale-length in both bands (c);

4. single band with a 20σ-level clipping (d);

5. 2 bands with LSB galaxies of the same cen-
tral surface brightness and characteristic
scale-length in both bands, with 20σ-level
clipping (e);

6. 3 bands with LSB galaxies of the same cen-
tral surface brightness and characteristic
scale-length in both bands, with 20σ-level
clipping (f).

While in the simulations shown in Fig. 3 no point
sources were added, the simulated images of Fig. 4
contained either 3, 5, or 7 polluting point sources.
The results of 21 simulations with different num-
bers of polluting sources where included in the de-
tection statistics of Fig. 4. The detection fractions
are upper limits of what can be expected for ob-
servations, because (i) the simulated galaxies are

designed to have exponential profiles and (ii) real
LSB galaxies might be located near or overlap with
other extended sources.

In the case of no polluting point sources the
detection statistics becomes worse for 2 and 3
bands. This is the well-known curse of dimension-
ality (Hughes phenomenon): the number of pixels
in a segmentation class (containing the LSB struc-
ture) may become relatively small and the segmen-
tation process fails. Because MARSIAA is applied
to subimages with sizes between 512× 512 pixels
and 1024× 1024 pixels, this scenario is never met
in astronomical images where a large number of
polluting point sources is always present.

As expected, the presence of polluting point
sources makes single-band detection statistics
worse (Fig. 4). On the other hand, the addition of
multiple bands improves the detection statistics
in this case. Our method is able to detect with a
90% success rate LSB galaxies with a character-
istic scale-length of ≥ 4′′ down to the 1.5σ central
surface brightness level. For the unclipped images
the detection rate increases only slightly for ob-
jects larger than 6′′ when MARSIAA is applied
to 2 and 3 bands simultaneously. When applied
to images which are clipped at a 20σ-level, the
detection limit at the 90% success rate for ex-
tended objects (≥ 8′′) decreases from 1.5 σ to the
1 σ level. This illustrates the effect of the sur-
face brightness distribution on the segmentation
process and justifies the approach to apply our
method on clipped images. We want to emphasize
here that the test images are idealized cases and
that the application of our method on actual INT
observations (Sect. 5) has shown that our detec-
tion limit in practice lies between 1.5σ and 2σ in
both the original and the clipped images.

A galaxy might have a different characteristic
scale-length in each band. This can be the case
for both late-type spirals, lenticulars, or ellipticals
with a dominant old stellar population and only a
small amount of recent star formation. To model
such LSB galaxies of different colors, we have put
an LSB galaxy of fixed size (10′′), central surface
brightness and axis ratio in one band and varied
the properties of the second LSB galaxy in the
second band (Fig. 5):

1. 2 bands, with an LSB galaxy with a central
surface brightness of 1σ in one band (a);
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2. 2 bands, with an LSB galaxy with a central
surface brightness of 1σ in one band, and
20σ-level clipping (b);

3. 2 bands, with an LSB galaxy with a central
surface brightness of 0.5σ in one band (c);

4. 2 bands, with an LSB galaxy with a central
surface brightness of 0.5σ in one band, and
20σ-level clipping (d).

For LSB galaxies with different colors, i.e., dif-
ferent central surface brightness and/or different
scale-length in the two bands, an object with
a large scale-length (10′′) and a central surface
brightness of 1 σ in one band can be detected
with 90% probability if the surface brightness and
scale-length in the second band are greater than
1.5 σ and 4′′, respectively. For the clipped image
the limiting surface brightness decreases below 1 σ
for LSB galaxies with a scale-length > 6′′. In an
extreme case, where a large LSB galaxy (10′′) has
a central surface brightness of only 0.5 σ, its scale-
length has to be larger than 9′′ in the second band
to be detected at the 90% level with a central sur-
face brightness of 1.5 σ. In this case, clipping does
not significantly enhance the detection rate.

In conclusion, we are confident that in images
with a PSF FWHM of about 2′′ we can detect LSB
galaxies with a radius ≥ 4′′ down to a central peak
S/N∼1.5. Large LSB galaxy (scale-length ∼ 10′′)
located in one band, can in principle be detected
down to S/N∼ 1. Clipping of the images always
increases the detection probability.

5. Application to INT B and I band im-
ages of Virgo cluster galaxies

5.1. INT observations

The optical images we use in this paper are part
of the 2.5-m Isaac Newton Telescope Wide Field
Camera (INT WFC) survey of the Virgo cluster
which was used by Sabatini et al. (2003, 2005)
in their search for LSB dwarf galaxies in the clus-
ter. Here we present results from the west-east B
and I band strip in the cluster. The data were
preprocessed and reduced using the Wide-Field
Survey pipeline, see Sabatini et al. for details
– the photometric zero points are accurate to 1-
2%. The results are given in the B and I magni-
tudes of the Johnson-Cousin photometric system.

Each 2048 × 4100 pixel INT image has a size of
11′.26×22′.55, a pixel size of 0′′.33×0′′.33, a mean
PSF FWHM of 2′′.1 and 2′′.0 in the B and I band,
respectively, and the B band sky noise level corre-
sponds to ∼26 mag arcsec−2.

5.2. Results

After the source identification by DetectLSB,
about ∼ 40-50 objects were found per INT im-
age, giving in total 800 objects on 18 INT im-
ages. However, this total includes not only genuine
Virgo LSB galaxies, but also background galaxies
and confused sources. An inspection by eye repre-
sents the most secure way to separate these differ-
ent classes of sources. To facilitate the checking of
the DetecLSB identifications by eye, we developed
the java tool LSBExplorer which displays the ob-
ject together with its measured parameters, sur-
face brightness profiles, image cut-outs and seg-
mentation maps. This readily permits the user
to flag a source as an LSB galaxy candidate. At
the end of the inspection the selected sources can
be saved in xml or VOtable format. Despite the
automatic rejection criteria (Sect. 4.1), there are
still many spurious objects. As a first test, three
of the authors (SS., WvD., BV.) independently
sorted the sources in one INT image (v234c4) by
eye and rejected the spurious sources. In this way,
respectively 70%, 60% and 52% of the sources were
rejected by the three examiners; 47% were rejected
by all three, 13% were rejected by two, and 12%
were rejected by only one. Thus more than half of
the sources are spurious. We did not attempt to
make the automatic rejection criteria more strin-
gent, because this might lead to uncontrolled re-
jections of relevant sources.

To investigate the nature of the spurious
sources, the same three authors then sorted the
sources in 10 INT images into different categories
(Table 1). The overall rejection rate is 50-70%,
consistent with the aforementioned statistics of
the simultaneous inspection of one INT image. Of
these rejections 50-70% are classified as multiple
sources which are sometimes confused and 20-40%
could not be distinguished from extended low-
level variations in the sky noise. After the inspec-
tion about 15-20 sources were left per INT image.
Most of them are cosmologically dimmed back-
ground galaxies which are typically compact and
elongated, and have characteristic scale-lengths
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smaller than 3′′ (Sabatini et al. 2003).

5.2.1. Virgo cluster LSB galaxies

LSB galaxies located in the Virgo cluster at a
distance of ∼ 17 Mpc have characteristic scale-
lengths larger than or equal to 3′′ (Sabatini et
al. 2003). We used this criterion to reduce the
number of sources that have to be inspected by
eye. LSBExplorer has an option to display only
sources with a characteristic scale-length larger
than a given value. This decreases the number of
sources to be inspected by eye from about 40-50
to about 10-20 sources per INT image.

5.3. Comparison to detections with matched
filters and SExtractor

We applied MARSIAA simultaneously to 18
INT B and I band images (1.3 square degree), and
then applied DetectLSB separately to the B and I
images using the MARSIAA segmentation masks
(see Sect. 2.2). Table 3 shows the 52 LSB galaxy
candidates we found with a characteristic scale-
length greater or equal than 3′′. Since the ob-
served fields are overlapping, some sources appear
twice in the table. We decided to leave these dou-
bles, because they represent independent MAR-
SIAA detections/DetectLSB identifications on im-
ages with different S/N. The table columns are:
(1) galaxy number from this work (a star marks
the 9 LSB galaxy candidates not found by Saba-
tini et al. 2003), (2) galaxy number from Saba-
tini et al. (2005), (3) right ascension, (4) declina-
tion, (5) central B band surface brightness, (6) B
band scale-length, (7) I band characteristic scale-
length, (8) I band central surface brightness, (9)
color gradient ∇B−I = 1/(log(rBd )− log(rId)), (10)
total apparent B magnitude, (11) total apparent
I magnitude, (12) B-I color, (13) background flag.
Based on the galaxy morphology we labeled 18
objects as background galaxies (bg in column 12).
Among the remaining 34 objects we did not clas-
sify as background, we detected 9 that are not
included in the Sabatini et al. (2005) catalog. Of
these objects four ([VPC2011] 2, 11, 30, 43) have
characteristic scale-lengths in the B band greater
than 3′′ and three ([VPC2011] 1, 11, 43) have char-
acteristic scale-lengths in the I band greater than
3′′. [VPC2011] 1, 11, and 30 have other sources
close to them (at 6′′-10′′ distance) which could be

removed by DetectLSB from their surface bright-
ness profile, because they were identified by MAR-
SIAA (see Fig. 6). MARSIAA and DetectLSB are
thus able to identify LSB galaxy candidates even
in crowded regions of the sky. The recovered Virgo
LSB galaxies are dwarf ellipticals and dwarf irreg-
ulars.

In Table 2 we compare our detections of LSB
galaxies with characteristic scale-lengths ≥ 3′′

with those of Sabatini et al. (2005) based on
matched filters. In addition, we used SExtractor
(Bertin & Arnouts 1996) in a non-standard way
tuned for our purpose (cut at 1.2σ and with at
least 200 connected pixels).

Out of 28 objects detected with the matched
filter analysis, MARSIAA+DetectLSB detect 20.
Of the 8 objects that were not identified as LSBs
by our method, [SDV2005] 57 is too close to an im-
age edge to be detected by our method, [SDV2005]
2, 39, and 45 are very faint and not recogniz-
able by eye as LSB galaxies on the images, and
[SDV2005] 3, 38, 42, and 52 are most probably
confused sources. Three objects were found by
MARSIAA+DetectLSB but not by SExtractor:
[SDV2005] 0, 1, and 35. On the other hand, two
sources ([SDV2005] 3 and 41) were found by SEx-
tractor and not by DetectLSB (although MAR-
SIAA detected these, they were qualified as non-
LSB by DetectLSB).

We conclude that we detected all 20 LSB ob-
jects on the 18 INT images included in Sabatini et
al. (2005) which we could classify by eye as bona
fide LSB galaxies, and that we detected 3 objects
that SExtractor, even in an optimized configura-
tion, was not able to find. Furthermore, we de-
tected 4 new LSB galaxy candidates ([VPC2011] 2,
11, 30, 43) with characteristic scale-lengths > 3′′

which are not included in the Sabatini et al. (2005)
catalog. Two of these candidates are very LSB
µB ∼ 25 mag arcsec−2([VPC2011] 2 and 30) and
the others show pollution by nearby sources.

In Fig. 7 we compare our total B and I
band magnitudes and B band characteristic scale-
lengths with those of Sabatini et al. (2005). The
correlation has a scatter of 0.5 mag in magnitude,
and 2′′.3 in radius. Given the approximate de-
termination of our magnitudes based on simple
exponential profiles, the large scatter is expected.
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6. Application to NGVS g,r, and i images

6.1. NGVS observations

The Next Generation Virgo Cluster Survey
(NGVS) uses the MegaCam instrument on the
3.8m Canada-France-Hawaii Telescope (CFHT) to
carry out a comprehensive optical imaging survey
of the Virgo cluster, from its core to its virial ra-
dius covering a total area of 104 deg2 in the u∗griz
bandpasses (Ferrarese et al. 2012). The results
are given in CFHT magnitudes which are close to
the SDSS magnitudes. All preprocessing of NGVS
data is performed at the CFHT using the Elixir-
LSB pipeline (see Ferrarese et al. 2012 for details),
while the primary stacking for the NGVS is per-
formed using a variant of the MegaPipe pipeline
(Gwyn 2008). Each ∼ 20000× 20000 pixel NGVS
stacked image has a size of 1 deg2 with a pixel
size of 0′′.186×0′′.186. The mean PSF FWHM is
∼0′′.8 in the g and r bands, and ∼0′′.6 in the i
band. The NGVS reaches a point-source depth of
g∼ 25.9 mag (10σ) and a surface brightness limit
of µg ∼ 29 mag arcsec−2(at 2σ above the mean
sky level). The NGVS is thus ∼ 3 mag deeper
than the INT observations presented in Sec. 5.

Since the u∗ and z band NGVS data are at half-
depth, LSB structures are generally detected at a
lower significance level in these bands. Therefore,
the detection statistics for the simultaneous ap-
plication of MARSIAA to u∗griz images are worse
than that for the application to the gri filters only.
As already stated in Sec. 4.2, in empty bands the
number of pixels in the segmentation class that
contains the LSB structures may become relatively
small and the segmentation process fails (Hughes
phenomenon). Therefore, we applied MARSIAA
simultaneously to the g, r, and i bands only, us-
ing the following pipeline: (i) each NGVS gri im-
age is cut into 144 subimages of size 2048× 2048
each, with overlapping regions of 256 pixels, (ii)
MARSIAA is applied simultaneously to the gri
subimages, (iii) DetectLSB, based on the MAR-
SIAA segmentation maps, is applied sequentially
to the NGVS g, r and i subimages, (iv) a clus-
tering algorithm cross-identifies the sources de-
tected by DetectLSB, (v) selection software (see
Sect. 6.2) identifies the final LSB galaxy candi-
dates. The pipeline only needs human interven-
tion between step (iv) and (v) to change the for-

mat of the source catalog from xml to ascii. We
produced binary masks based on a clipping of
the g band images at a surface brightness level
of 26.7 mag arcsec−2(∼ 30σ). Higher and lower
clipping values did not improve the results. Af-
ter testing MARSIAA with 6 to 10 classes on a
selected NGVS image from the Virgo cluster core
(NGVS+0+1) in the gri bands, we set the number
of MARSIAA classes to 8. The source clustering
algorithm was run with cluster radii from 1′′ to
10′′. We adopted a cluster radius of 2′′, which
gave the best results.

The pipeline was run on a single processor, and
required 90 h for MARSIAA, 90 h for DetectLSB
and 1 h for the clustering and selection software
for a set of gri images of one NGVS square degree
field. For comparison we also applied SExtrac-
tor with the following parameter sets: 2.5σ and
5 connected pixels, and 1.5σ and 200 connected
pixels. The resulting binary maps were added to
yield a SExtractor segmentation map. DetectLSB
and the selection software were then applied to
these data as in the case of MARSIAA. Obviously,
SExtractor is significantly faster than MARSIAA:
SExtractor needs less than 1 h of processor time
for a set of gri images of one square degree NGVS
field, and the application of DetectLSB to the
SExtractor maps needs 80 h. Using the pipeline
with SExtractor on a set of 3-band images of one
square degree NGVS field thus needs about 4 days,
or half of the 8 days needed with MARSIAA.

The advantage of MARSIAA lies in the in-
creased depth of the segmentation maps compared
to SExtractor. MARSIAA/DetectLSB allowed us
to identify up to 40% more LSB galaxies than
SExtractor/DetectLSB (Sect. 6.3 and 6.4).

6.2. LSB galaxy identification

As for the INT images, DetectLSB was applied
to the g, r, and i images separately. The result-
ing catalogs were merged to yield a final source
catalog. In addition, an extra software searched
for extended MARSIAA class 1 objects without
higher classes. The shallower depth of the INT
images made it possible to select LSB galaxy can-
didates from the final catalog based on the char-
acteristic radius and to do the final identification
by eye. This was not possible for the NGVS im-
ages where MARSIAA/DetectLSB finds 20, 000–
40, 000 LSB galaxy candidates per square degree.
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On the other hand, out of this large number only
138 objects were identified by eye as Virgo cluster
LSBs by the NGVS team on one of the NGVS im-
ages (NGVS+0+1) near the center of the cluster
– only about 1% of the candidates in our cata-
log. Although our method is intended to detect
and identify additional LSB galaxies, we have to
select less than ∼ 10% of real Virgo LSB galax-
ies out of our LSB galaxy candidates. This is a
very challenging task. To do so, we developed an
additional software which is based on the MAR-
SIAA segmentation maps and the results of De-
tectLSB for the different filter bands and segmen-
tation classes. In particular, it takes advantage of
the MARSIAA segmentation classes to separate
objects in crowded fields and to exclude objects
which are too small (half light radius smaller than
1′′), have unphysical colors or surface brightness
profiles, are too compact (many MARISAA classes
contained in the object), or highly asymmetric.
This LSB identification led to about 1500–2000
candidate LSB galaxies. An inspection by eye of
400 of these showed that the majority (∼ 90%)
are bona fide LSB galaxy candidates. Most of the
candidates are not in the Virgo cluster, i.e., they
are background galaxies. Spurious detections are
mostly located in halos of extended sources (stars
or galaxies). The majority of recovered Virgo LSB
galaxies are dwarf irregulars, the recovered back-
ground galaxies are mostly spirals. It thus turned
out that we detect and identify elliptical (dEs on
the INT images), disk (background), and irregular
galaxies (dIs in the Virgo cluster).

At the faint surface brightness levels of the
NGVS, source crowding and the merging of source
halos become important problems. As an example,
Fig. 8 shows a MARSIAA/DetectLSB false LSB
identification of multiple aligned sources. Nev-
ertheless, the LSB galaxy identification by De-
tectLSB is quite robust in crowded fields with
merging source halos (Fig. 9) since for the sur-
face brightness profiles, different MARSIAA ob-
jects and pixels belonging to segmentation classes
< j − 1 and > j + 1, where j is the class of the
majority of pixels in an ellipse annulus, are re-
jected . A typical detection and identification of
an isolated LSB galaxy is presented in (Fig. 10).

In Figs. 8, 9 and 10 we also show SExtrac-
tor masks for the two parameter sets (2.5σ and
5 connected pixels, and 1.5σ and 200 connected

pixels). In general, MARSIAA produces deeper
masks than SExtractor. On the other hand, the
increasing depth of the masks increases confu-
sion. MARSIAA/DetectLSB detects and iden-
tifies about 25% more sources than SExtrac-
tor/DetectLSB.

A secondary rejection based on color (r−i>
1.25− (g−r)), size and inclination (half-light radii
smaller than 2′′ and inclinations > 45◦), and area
+ i band surface brightness lead to a total num-
ber of ∼ 1000 LSB galaxy candidates per square
degree NGVS image with only a small decrease
(< 5%) in the identification statistics. Since the
number of Virgo cluster LSB galaxies per NGVS
square degree image is about 100 (Sect. 6.4), we
are thus left with ∼ 90% of sources which are not
Virgo cluster LSB galaxies. Thus, about 1000 have
to be examined manually or by a smart unsuper-
vised fitting routine (e.g., GALFIT; Peng et al.,
2010), which is beyond the scope of our work.

6.3. Application to NGVS mock data

The NGVS team kindly provided us gri subim-
ages of field NGVS-1+1 (18000 × 18000 pixel) to
which they added 396 mock Virgo cluster LSB
galaxies with g band magnitudes between 19 and
25. The galaxy luminosity profiles are Sersic
profiles (Sersic 1963) with variable effective radii
(0.6′′ ≤ re ≤ 5.6′′), exponents (0.6 ≤ n ≤
2.0) and axis ratios (0.2 ≤ b/a ≤ 1.0). More-
over, a nucleus was added to each mock object
with mnuc = mgal + 6.5, rnuce = 0.1 × rgale and
n = 1. In addition to the mock Virgo galax-
ies, NGVS-1+1 also contains real LSB and HSB
galaxies. Both MARSIAA/DetectLSB and SEx-
tractor/DetectLSB were applied to these images.
The two SExtractor binary masks (2.5σ and 5 con-
nected pixels, and 1.5σ and 200 connected pixels)
were added to produce a segmentation map. De-
tectLSB was then applied to this map.

DetectLSB based on the MARSIAA segmenta-
tion map found 40, 635 objects separately in the
g, r, and i band, the final source catalog (after
cross-identification via a cluster algorithm) con-
tains 11, 417 sources, and 263 out of the 396 mock
Virgo LSB galaxies were detected. DetectLSB
based on the SExtractor segmentation map found
21, 915 separately in the g, r, and i band, the
final source catalog contains 8721 sources, and
242 out of 396 mock Virgo LSB galaxies were de-
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tected. We then applied the additional software
described in Sect. 6.2 to the final source cata-
logs which reduced the number of positive sources
significantly: with MARSIAA/DetectLSB we ob-
tained 2089 LSB galaxy candidates: 191 out of
the 396 mock Virgo LSB galaxies were identi-
fied. With SExtractor/DetectLSB we obtained
1606 LSB galaxy candidates: 157 out of 396 mock
Virgo LSB galaxies were identified. As stated in
Sect. 6.2, the application of secondary rejection
criteria based on color, size, and inclination re-
duces the number of LSB galaxy candidates to
∼ 1000 with a less than 5% decrease of the iden-
tification statistics. A visual inspection of a por-
tion of the LSB galaxy candidates not identified
as mock galaxies showed that about 90% are real
galaxies located in the background.

Thus, DetectLSB/MARSIAA detected and
identified ∼ 30% more LSB sources than De-
tectLSB/SExtractor on the NGVS images (11, 417
compared to 8721). Concerning the mock data,
DetectLSB/MARSIAA detected ∼ 10% more
mock Virgo LSB galaxies and identified ∼ 20%
more of them than DetectLSB/SExtractor. It
should be noted here that, since the mock Virgo
LSB galaxies are relatively small, confusion is less
important and SExtractor gives results compara-
ble to MARSIAA. LSB galaxies identified by eye
by the NGVS team can be much more extended
than the mock objects and their identification
based on SExtractor maps becomes more difficult
(see Sec. 6.4).

While SExtractor directly yields the magnitude
and half-light radius for a given object, the appli-
cation of DetectLSB results in several magnitudes
and half-light radii depending on the fitted MAR-
SIAA segmentation class. During the LSB galaxy
identification, DetectLSB assigns a unique mag-
nitude and half-light radius to each MARSIAA
object. The g mean surface brightness of the
identified mock Virgo LSB galaxies as a function
of the effective radius is presented in Fig. 11. The
completeness for re > 1.5′′ and mg < 22 mag is
90% for DetectLSB/MARSIAA and 83% for De-
tectLSB/SExtractor. The completeness of both
methods decreases significantly for sources with
mg > 22 mag. DetectLSB/MARSIAA identified
twice as many mock Virgo LSB galaxies in this
magnitude range than DetectLSB/SExtractor.
Whereas DetectLSB/MARSIAA is able to de-

tect and identify LSB galaxy candidates up to
a mean surface brightness of mg = 28.5 mag
(S/N= 1.6; the NGVS surface brightness limit
is ∼ 29 mag arcsec−2at 2σ above the mean
sky level), confirming the results obtained from
pure simulations (Sec. 4.2), a completeness of
90% is reached for sources with re >1′′.5 at
µg = 26 mag arcsec−2and for sources with re > 3′′

at µg = 27.7 mag arcsec−2.

We note that our magnitudes and sizes are
rough estimates and are not intended to replace
proper magnitudes and sizes derived from more
sophisticated methods. The recovered DetectLSB
and SExtractor magnitudes are compared to the
mock input magnitudes in Fig. 12. For the SEx-
tractor magnitudes we use preferentially those of
the run with (1.5σ, 200 connected pixels). In
the case of the application of DetectLSB based
on SExtractor masks, the magnitude offsets and
dispersions are comparable (offset: DetectLSB=
0.13 mag, SExtractor= 0.11 mag; dispersion:
DetectLSB= 0.18 mag, SExtractor= 0.14 mag).
This result validates the flux extraction by De-
tectLSB compared to SExtractor. In the case of
the application of DetectLSB based on MARSIAA
masks, the DetectLSB magnitudes show a larger
dispersion and a larger offset from the input mag-
nitudes than the SExtractor magnitudes (offset:
DetectLSB= 0.19 mag, SExtractor= 0.11 mag;
dispersion: DetectLSB= 0.22 mag, SExtractor=
0.15 mag). The DetectLSB magnitude offset and
dispersion is due to the quality of the unsuper-
vised ellipse fit, which mainly depends on the first
ellipse fit on the SExtractor or MARSIAA mask
of the object. MARSIAA provides the deeper
masks, SExtractor the cleaner masks. Since only
pixels of similar segmentation classes are taken
into account during the extraction of the surface
brightness profile and the magnitude is derived
from this profile, the fluxes based on MARSIAA
masks are lower than those based on SExtractor
masks, despite the higher depth of the MARSIAA
masks.

The DetectLSB and SExtractor half-light radii
are compared to the mock input half-light radii
in Fig. 13. For input half-light radii exceeding 1′′.5
SExtractor underestimates the input radii on aver-
age by 1′′, and the offset increases with increasing
half-light radius. On the other hand, DetectLSB
overestimates the input half-light radii by an ap-
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proximately constant offset of 0′′.5. The dispersion
of the differences between the input and estimated
half-light radii is in all cases ∼ 0′′.8. As stated in
Sect. 3.3 the DetectLSB half-light radius is dis-
crete and critically depends on the first ellipse fit
on the SExtractor or MARSIAA mask of the ob-
ject.

6.4. Application to a square degree NGVS
image

As a further test, we applied MARSIAA/DetectLSB
and SExtractor/DetectLSB to the NGVS image
NGVS+0+1, the field east of NGVS-1+1. On this
image the NGVS team identified 138 Virgo LSB
members after visual inspection. This identifica-
tion was based on surface brightness, extent, color,
and morphology. While the completeness of this
by-eye catalog cannot be rigorously quantified, it
is expected to be fairly complete. The average
source extent of this sample is significantly larger
than that of the Virgo mock galaxies, and about
20 of these LSB galaxies have half-light radii ex-
ceeding 10′′.

We applied MARISAA, SExtractor, and De-
tectLSB with the same parameters as before. De-
tectLSB based on the MARSIAA segmentation
map found 125, 787 objects separately in the g,
r, and i band, resulting in a final source catalog
with 33, 119 sources. This catalogue contains 124
out of 138 Virgo LSB galaxies. DetectLSB based
on the SExtractor segmentation map found 76, 797
separately in the g, r, and i band, resulting in a
final source catalogue with 25, 913 sources contain-
ing 105 out of 138 Virgo LSB galaxies. As for the
mock data, we then applied the additional soft-
ware described in Sect. 6.2 to the final source cat-
alogs. With MARSIAA/DetectLSB we obtained
2554 LSB galaxy candidates: 115 out of 138 Virgo
LSB galaxies were identified. The non-detected
LSB galaxies were confused, too faint (no object
in the MARSIAA segmentation map), or too small
(apparent size on the g band image smaller than
2′′). In addition, one LSB galaxy is split into two
parts by an image artifact (Fig. 14). With SEx-
tractor/DetectLSB we obtained 1813 LSB galaxy
candidates: 82 out of 138 Virgo LSB galaxies were
identified. Thus, DetectLSB/MARSIAA detected
and identified ∼ 40% more LSB sources than De-
tectLSB/SExtractor on the two NGVS images. As
stated in Sect. 6.2, the application of secondary re-

jection criteria based on color, size, and inclination
reduces the number of LSB galaxy candidates to
∼ 1000 with a less than 5% decrease of the identi-
fication statistics. As for the mock data, a visual
inspection ∼ 400 LSB galaxy candidates not iden-
tified as Virgo LSB galaxies showed that about
90% are real galaxies located in the background.

The recovered g mean surface brightness of the
identified LSB galaxies as a function of the ef-
fective radius is presented in Fig. 15. The com-
pleteness for re > 1′′.5 and mg < 22 mag is
92% for DetectLSB/MARSIAA and 72% for De-
tectLSB/SExtractor. A completeness of 90% is
reached for sources with re > 3′′ at a mean surface
brightness of µg = 27.7 mag arcsec−2and a central
surface brightness of µ0

g = 26.7 mag arcsec−2.

The DetectLSB and SExtractor g band magni-
tudes are compared to the magnitudes extracted
by the NGVS team in Fig. 16. The latter mag-
nitudes were measured with three independent
methods (2D, 1D, and non-parametric) with ex-
tremely good agreement. Both methods show a
magnitude offset of 0.3 mag with respect to the
values measured by the NGVS team, with a dis-
persion of 0.4 mag. The application of MAR-
SIAA/DetectLSB results in a bimodal structure
in the magnitude difference distribution: a promi-
nent peak with an offset of 0.3 mag and a dis-
persion of 0.2 mag, and a secondary peak around
an offset of −0.8 mag. This bimodal structure is
also present, although less pronounced, in the dis-
tribution of the SExtractor magnitude differences.
As expected, DetectLSB recovers less flux than a
manual photometric extraction.

The DetectLSB and SExtractor half-light radii
are compared to the input half-light radii in
Fig. 17. As for the mock data (Sec. 6.3), the
difference between the half-light radii estimated
by SExtractor and those measured by the NGVS
team increases with increasing radius. On the
other hand, the half-light radii estimated by De-
tectLSB have an offset of less than 1′′, with a
dispersion of 0′′.8–1′′.

7. Conclusions

The automated detection of low surface bright-
ness galaxies in images has hitherto generally been
accomplished by applying either (i) SExtractor,
(ii) ring filtering, or (iii) matched filters. We
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propose a different algorithm, called MARSIAA
(MARkovian Software for Image Analysis in As-
tronomy), which is based on multi-scale Marko-
vian modelling. MARSIAA can be applied si-
multaneously to images observed in several bands
(Laferte et al. 2000, Provost et al. 2004). It seg-
ments the image into different classes according to
their surface brightness and continuity, i.e., their
surroundings. The number of classes is defined by
the user. The result of MARSIAA is a binary map
for each class. Typically, class 0 contains the noise,
and class 1 and/or 2 contain the LSB structures.
It is not possible to give a general S/N limit for the
detection of LSB galaxies because the average sur-
face brightness of pixels of class 0 differs from im-
age to image, depending on the surface brightness
distribution of all pixels. For the second step we
developed an algorithm called DetectLSB to iden-
tify LSB galaxies, and remove perturbing sources
recognized by MARSIAA. It simultaneously fits
surface brightness profiles to the 4 quadrants of
selected objects and determines the galaxy center,
major axis position angle, and inclination.

MARSIAA and DetectLSB were tested on a
set of simulated LSB galaxies of different signal
to noise ratios and scale-lengths, surrounded by
point sources of different central surface bright-
nesses. Applying MARSIAA to several bands si-
multaneously increased the detection probability.
Based on our tests we are confident that we can
detect LSB galaxies down to a S/N (peak surface
brightness to pixel noise) ratio of ∼ 1.5.

To assess the robustness of our method, MAR-
SIAA and DetectLSB were applied to 18 INT B
and I band images of the Virgo cluster (Sabatini et
al. 2003), with a total of 150 megapixels covering
a 1.3 square degree area. MARSIAA/DetecLSB
identified about 800 potential LSB sources, of
which 270 have characteristic scale-lengths > 3′′.
From this sample we classified 52 as LSB galaxies
by eye. We detected all objects from the Sabatini
et al. (2005) Virgo cluster LSB dwarfs catalogue
that we could classify by eye as bona fide LSB
galaxies, whereas applying SExtractor optimized
for LSB detection fails to identify 3 of these ob-
jects. An additional 4 LSB galaxy candidates with
characteristic scale-lengths > 3′′, which are not
included in the Sabatini et al. (2005) catalogue,
were detected by our method.

To assess the completeness of the results of our

method, MARSIAA and DetectLSB were applied
to mock Virgo LSB galaxies inserted into a set
of NGVS gri-band subimages of the Virgo cluster
(Ferrarese et al. 2012), and to a full set of NGVS
square degree gri images. Since the NGVS images
are about 3 mag deeper than the INT images, the
surface density of detected LSB structures is much
higher in the NGVS images than in the INT im-
ages. We developed an additional software to se-
lect LSB galaxy candidates from the DetectLSB
identifications which takes advantage of the seg-
mentation classes. It reduces the number of Virgo
LSB galaxy candidates obtained by DetectLSB
to 5-20% of the original number, with a ratio of
false positives of about 90%. About 10% of the
false positives are artifacts, the rest being back-
ground galaxies. MARSIAA/DetectLSB identi-
fied ∼ 20% more mock Virgo LSB galaxies and ∼
40% more Virgo LSB galaxies that were detected
by eye than SExtractor/DetectLSB did. The mag-
nitudes derived by DetectLSB are as reliable as
those derived by SExtractor, with an uncertainty
of ∼0.5 mag. SExtractor underestimates the sizes
for sources with half-light radii in excess of 1.5′′.
This offset increases with increasing half-light ra-
dius. DetectLSB overestimates the source sizes by
an approximately constant offset of ∼ 0.5′′. The
DetectLSB sizes are thus approximate, but more
reliable than the SExtractor estimates. A com-
pleteness of 90% was reached for the recovery of
sources with re > 3′′ at a mean surface bright-
ness level of µg = 27.7 mag arcsec−2and a cen-
tral surface brightness of µ0

g = 26.7 mag arcsec−2.
To weed the Virgo cluster LSB galaxies out of the
large number of LSB galaxy candidates (∼ 90% of
false positives), at least 1000 objets per square de-
gree have to be examined manually or by a smart
unsupervised fitting routine, which is beyond the
scope of our work.

We therefore conclude that our proposed
Markovian method (MARSIAA and DetectLSB)
is complementary to the application of matched
filters and SExtractor, and that is has the follow-
ing advantages:

1. it is scale-free;

2. it is intended to be applied simultaneously
to several bands;

3. it is well adapted for crowded regions on the
sky, where source confusion is substantial.
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A. Multi-scale segmenation (Provost et al. 2004)

A Hidden Markov quadtree (HMT) is an acyclic graph G = (S,L) with a set of nodes S and a set of edges
L. S is partitioned into “scales”, i.e.; S = S0 ∪ S1 . . . ∪ SR, such that SR = {r} is the root, Sn involves
4R−n nodes, and S0 is the finest scale formed by the leaves. Each node s, excepts the root r, has a unique
predecessor, its “parent” s−. Each node s, except the “leaves”, has four “children” s+ = {u ∈ S : u− = s}.
We use the notation s++ for all descendants of s.

The hidden process5 X , which assigns to each node s ∈ S a hidden state Xs, is chosen from the label set
Ω = {ω1, ..., ωK} of the K classes. X is assumed Markovian in scale, i.e., :

P (xn|xk, k > n) = P (xn|xn+1); xn = {xs : s ∈ Sn}. (A1)

Moreover, Xs, s ∈ Sn, is independent from all Xu, u ∈ Sn+1, given its parent and the inter-scale transition
probability, and can be factorized in the following way:

P (xn|xn+1) =
∏

s∈Sn

P (xs|xs−) (A2)

The hidden process X is called a Markov tree since it verifies (Laferte et al. 2000):

P (x) = P (xr)

R−1
∏

n=0

∏

s∈Sn

P (xs|xs−) (A3)

The multi-component observations Y are introduced at the scale S0 so that each D-dimensional pixel ys is
linked to the hidden state Xs (Fig. 18). The HMT assumes ys independent from the entire quadtree given
its hidden state, which is formulated as follows:

P (ys|x,y − {ys}) = P (ys|xs). (A4)

Thus the probability of Y conditionally to X is expressed as the following product:

P (y|x) =
∏

s∈S0

P (ys|xs), (A5)

where ∀ s ∈ S0, P (ys|xs = ωi), called a data driven term, captures the likelihood of the observation ys

with respect to the class ωi. In the case of multidimensional Gaussian noise the covariance matrix takes the
correlation between spectral bands into account.

If no data are available at a given site s in the image, i.e., missing or masked data, the likelihood at this
site is set to 1 (Provost et al. 2004). Thus P (ys|xs = ωi) is computed as the likelihood of ys of the class ωi.

From the assumptions above, the joint distribution P (x,y) can easily be factorized as follows :

P (x,y) = P (xr)
∏

s6=r

P (xs|xs−)
∏

s∈S0

P (ys|xs). (A6)

The HMT parameters are:

• Φx, the a priori parameters regrouping:

- {πi = P (xr = ωi)}i=1, ···,K the probabilies at the root,

- {aij = P (xs = ωj |xs− = ωi)}i,j=1, ···,K the parent/child transition probabilities,

5To simplify the notation, we will denote the discrete probability P (X = x) as P (x).
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• Φy, the parameters of the likelihoods {P (.|xs = ωi)}i=1, ···,K .

In the pdf version, there is text here on Algorithmus 1; I do not see that in the Latex file. Algorithmus
= Algorithm

One of the interests of this model is the possibility of computing exactly the posterior marginals P (xs|y)
and P (xs, x

−
s |y) at each node s in two passes on the quadtree (Algorithm 1).

Algorithmus 1 Two passes on the quadtree for posterior computation given HMT parameters {Φx,Φy}.
• Evaluation of the partial posterior marginals at the bottom of the quadtree :

∀s ∈ S0, P (xs = ωi/ys++) = P (xs = ωi/ys) =
P (xs = ωi)P (ys/xs = ωi)

∑

ωj
P (xs = ωj)P (ys/xs = ωj)

,

where P (xs = ωi) is recursively evaluated through a top-down pass, given the prior probability P (xr =
ωi) = πi as follows :
for n = R− 1, · · · , 0 do
for all s ∈ Sn do
P (xs = ωi) =

∑

ωj
P (xs = ωi/xs− = ωj)P (xs− = ωj)

end for
end for.
• Upward pass :
for n = 1, · · · , R do
for all s ∈ Sn do
P (xs = ωi/ys++) = 1

ZP (xs = ωi)
∏

t∈s+
∑

ωj

aijP (xt=ωj/yt++)

P (xt=ωj)

end for
end for
where aij = P (xt = ωj/xt− = ωi) is the parent/child transition probability
and Z is a normalizing factor such that

∑

ωi
P (xs = ωi/ys++) = 1. Note that at the top of quadtree we

obtain P (xr = ωi/y)
• Downward pass :
for n = R− 1, · · · , 0 do
for all s ∈ Sn do

P (xs = ωj, xs− = ωi/y) = P (xs− = ωi/y)
P (xs = ωj/ys++)aijP (xs− = ωi)/P (xs = ωj)

∑

ωl
P (xs = ωl/ys++)ailP (xs− = ωi)/P (xs = ωl)

,

P (xs = ωj/y) =
∑

ωi

P (xs = ωj , xs− = ωi/y)

end for
end for

The EM algorithm used for the estimation of the a priori parameters Φx, leads to an iterative procedure
with the followings updates (Flitti et al. 2005, Provost et al. 2004) :

a
[c+1]
ij =

∑

s∈Sn, n6=r p
[c](xs = ωj , xs− = ωi|y)

∑

s∈Sn, n6=r p
[c](ss− = ωi|y)

π
[c+1]
i = p[c](xr = ωi|y) (A7)
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where [c] stands for the current iteration and p[c](xs = ωi|y) and p[c](xs = ωj, xs− = ωi|y) are computed by
way of the two passes of Algorithm 1 using the current parameters.

When converged, i.e., when the difference between successive updates is small enough or the maximum
number of iteration is reached, the Marginal a Posteriori Mode criterion (MPM) is used to obtain the
segmentation map:

∀ s ∈ S0, x̂s = arg max
xs∈Ω

p(xs|y) (A8)

21



Fig. 1.— Dependency graph, corresponding to a quadtree structure. Filled black circles represent labels
(segmentation classes X) and white circles represent observations (image pixels Y at the highest resolution).
At the bottom of the quadtree each label is linked to the corresponding pixel of the observations Y . Whereas
the information contained in the observations is propagated upward within the quadtree, the labels are
propagated downward according to Markovian transmission probabilities, i.e. a label at a given level of the
quadtree only depends on its parent.

Fig. 2.— The LSB galaxy candidate [VPC2011] 20. From left to right: B and I band image, with the system
of homothetic fitted ellipses superimposed; B and I band mean radial surface brightness profile; B-I color
profile. The dashed lines show fitted exponentials to the radial profiles, and the resulting color gradient
between the fitted profiles.
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Fig. 3.— Simulated LSB galaxies detection statistics as function of central surface brightness (in σ) and
radius (in arcsec) for 1, 2 and 3 bands, respectively (from left to right). The FWHM of the PSF is 2′′. The
simulated LSB galaxies have the same size and central surface brightness in all bands. The contour levels are
0.5, 0.6, 0.7, 0.8, 0.9 and 1.0, from light to dark grey. The dotted lines indicate the borders of the parameter
space. No polluting point sources were added. The detection statistics become worse for 2 and 3 bands; this
is the well-known Hughes phenomenon.

Fig. 4.— As in Fig. 3, but in this case the images contained either 3, 5, or 7 polluting point sources. The
FWHM of the PSF is 2′′. The results of multiple simulations with different numbers of polluting sources
where included in the detection statistics. Upper row: unclipped images. Lower row: images clipped at
S/N=20. Compared to Fig. 3, the presence of polluting point sources deteriorates the single-band detection
statistics, but improves those of the multiple band cases.
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Fig. 5.— As in Fig. 3, but in this case the LSB galaxy added to the first band has a fixed size (10′′), central
surface brightness and axial ratio, whereas the LSB in the second band has variable properties. The contour
levels are 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0, from light to dark grey. The dotted lines indicate the borders of the
parameter space. Left column: unclipped images. Right column: images clipped at S/N=20. The addition
of a second band improves the detection statistics.
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Fig. 6.— Selected LSB galaxy candidates with a characteristic scale-length larger than 3′′ which were detected
by us, but not by Sabatini et al. (2003) on the INT images. From left to right: B and I band images, with
the system of homothetic fitted ellipses superimposed; B and I band mean radial surface brightness profiles;
B-I color profile. The dashed lines show fitted exponentials to the radial profiles, and the resulting color
gradient between the fitted profiles.
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Fig. 7.— Comparison between results of MARSIAA/DetectLSB and Sabatini et al. (2003). Upper panel:
total B magnitude; middle panel: total I magnitude; lower panel: characteristic scale-length on the INT
iamges in the B band. The solid lines correspond to equality between both results.
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Fig. 8.— Example of the application of MARSIAA/DetectLSB on NGVS gri-bandimages. Shown is a
false positive result, due to confusion of three sources. Black ellipses: source extent (outer ellipse) and
characteristic radius derived by DetectLSB (inner ellipse). Top row, from left to right: MARSIAA mask,
SExtractor mask (2.5σ, 5 connected pixels) and SExtractor mask (1.5σ, 200 connected pixels); middle row:
g, r and i band images; lower row: g, r and i surface brightness profiles. Grey ellipses: source extents and
characteristic radii derived by DetectLSB for the different segmentation classes and filter bands.
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Fig. 9.— As in Fig. 8, but showing a confused, but detected and identified LSB galaxy in a crowded field
with merging source halos
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Fig. 10.— As in Fig. 8, but showing a typical detection and identification of an isolated LSB galaxy.

MARSIAA SExtractor

Fig. 11.— Results for the mock data: mean g-band surface brightness as a function of effective radius.
Left panel: MARSIAA/DetectLSB. Right panel: SExtractor/DetectLSB. The solid lines correspond to g
magnitudes of 22 and 23 (upper line). Grey diamonds: not identified mock Virgo LSB galaxies. Black crosses:
mock Virgo LSB galaxies identified by MARSIAA/DetectLSB or SExtractor/DetectLSB. The completeness
of both methods decreases significantly for mg > 22 mag, but MARSIAA/DetectLSB identified twice as
many objects in this range as SExtractor/DetectLSB.
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Fig. 12.— Results for the mock data: g-band magnitudes of the mock Virgo LSB galaxies recovered by
SExtractor and by DetectLSB as a function of their input g magnitudes. Left panels: MARSIAA/DetectLSB.
Right panels: SExtractor/DetectLSB. Upper panels: small crosses: detected but not selected mock Virgo
LSB galaxies; open squares: DetectLSB magnitudes and half-light radii. The solid line represents equality
between the recovered and the input magnitude; to guide the eye, the dotted line has an offset of +0.5 mag.
Lower panels: distribution of the difference between the recovered and the input g band magnitudes measured
using SExtractor or DetectLSB, together with Gaussian fits. For the MARSIAA mask, using DetectLSB
yields a larger dispersion and offset than SExtractor, whereas using both on the SExtractor mask results in
comparable values.
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Fig. 13.— Results for the mock data: recovered SExtractor and DetectLSB effective radii of the mock
Virgo LSB galaxies as a function of their input effective radii. Left panels: MARSIAA/DetectLSB. Right
panels: SExtractor/DetectLSB. Upper panels: small crosses: detected but not selected mock Virgo LSB
galaxies. The solid line represents equality between the recovered and the input effective radius. Lower
panels: distribution of the difference between the recovered and the input effective radius together with
Gaussian fits. For radii > 1.5′′, SExtractor underestimates the radii by 1′′, a value that increases with
radius, whereas DetectLSB overestimates by an about constant offset of 0.5′′.
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Fig. 14.— Examples of MARSIAA/DetectLSB pipeline for non-identifications of selected-by-eye LSB galax-
ies on NGVS+0+1: too small objects (object 1), too faint objects (object 2–4), confused objects (object 5),
image artifact (object 6). From left to right: g band image cutout, MARSIAA mask, SExtractor mask
(classical parameters: 2.5σ and 5 connected pixels), SExtractor mask (modified parameters: 1.5σ and 200
connected pixels). The x and y axis are pixels.

32



MARSIAA SExtractor

Fig. 15.— Results for the NGVS+0+1 data: mean g-band surface brightness of the Virgo LSB galaxies as
a function of effective radius. Left panel: MARSIAA/DetectLSB. Right panel: SExtractor/DetectLSB. The
solid lines correspond to g magnitudes of 22 and 23. Grey diamonds: not identified LSB galaxies. Black
crosses: identified LSB galaxies. The completeness for re > 1.5′′ and mg < 22 mag is 92% for MARSIAA
and 72% for SExtractor.
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Fig. 16.— Results for the NGVS+0+1 data: recovered SExtractor and DetectLSB g magnitudes of the Virgo
LSB galaxies extracted by the NGVS team as a function of manually fitted g magnitudes (by the NGVS
team). Left panels: MARSIAA/DetectLSB. Right panels: SExtractor/DetectLSB. Upper panels: small
crosses: detected but not selected LSB galaxies; open squares: DetectLSB magnitudes and half-light radii.
The solid line represents equality between the recovered and the manually fitted magnitude; the dotted line
has an offset of 0.5 mag. Lower panels: distribution of the difference between the recovered and the manually
fitted g band magnitudes together with Gaussian fits. All methods show a mean offset of ∼ 0.3 mag from the
magnitudes measured by the NGVS team, but the MARSIAA/DetectLSB method also shows a secondary
peak around −0.8 mag.

34



Fig. 17.— Results for the NGVS+0+1 data: recovered SExtractor and DetectLSB effective radii of the Virgo
LSB galaxies as a function of the manually fitted effective radii. Left panels: MARSIAA/DetectLSB. Right
panels: SExtractor/DetectLSB. Upper panels: small crosses: detected but not selected LSB galaxies. The
solid line represents equality between the recovered and the manually fitted effective radius. Lower panels:
distribution of the difference between the recovered and the manually fitted effective radius together with
Gaussian fits. The difference between the SExtractor and NGVS team radii increases with radius, whereas
the DetectLSB radii have an about constant offset of < 1′′.
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Fig. 18.— Example of a dependency graph corresponding to a quadtree structure on a 4× 4 lattice. White
circles represent labels and black circles represent multiband observations ys, s ∈ S. Each node s has a
unique parent s−, and four children s+ = {s+1 , · · · , s+4 }.
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Table 1: Rejection statistics for three independent visual inspections (by SS., WvD., BV.) of 10 INT images.

number of sources 479 497 414
rejected sources 250 293 279
multiple 113 153 193
noise 105 70 55
stellar halo 25 46 6
stripe 0 0 6
background 0 3 0
track 0 3 3
saturated 3 0 0
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Table 2: Comparison of LSB galaxy detections with different methods.

[SDV2005]a other nameb M+Dc SEd B SEe I comment
0 y n n
1 y n n
2 n n n very faint
3 t322 n y n confused/double
31 t243 y y y
32 t171 y y y
33 y y y
34 t388 y y y
35 t411 y n n
36 t409 y y y
37 VCC1464 y y y
38 n n n double
39 n n n very faint
40 t224 y y y
41 n n y fuzzy object in I, confused
42 t373 y y y
43 VCC1538 y y y
44 VCC1680 y y y
45 n n n very faint
47 VCC1681 y y y
48 VCC1729 y y y
49 VCC1754 y y y
50 t231 y y y
51 t221 y y y
52 n n n faint double/triple
53 t404 y y y
54 t142 y y y
57 t322 n n n border

a) Sabatini et al. (2005) matched filters detection

b) VCC: Bingelli et al. (1985), t: Trentham & Hodgkin (2002)

c) MARSIAA+DetectLSB, simultaneously on B and I bands

d) SExtractor (Bertin & Arnouts 1996) on B band image only

d) SExtractor on I band image
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Table 3: MARSIAA LSB galaxy candidate detections.

[VPC [SDV RA DEC µB
0 rBd µI

0 rId ∇B−I mB mI B-I back
2011] 2005] (deg) (deg) (mag (′′) (mag (′′) (mag) (mag) (mag) ground

arsec−2) arsec−2)
1* 187.79100 +10.9489 26.0 - 24.0 4 -1.3 23.0 18.6 4.3
2* 188.07269 +10.9968 25.8 4 25.0 2 -1.3 21.9 21.6 0.3
3 33 187.86490 +10.9357 23.2 3 21.9 3 0.40 18.4 17.1 1.3
4 32 187.90379 +11.0077 23.7 8 22.6 9 0.50 17.7 16.4 1.2
5 0 188.06281 +10.9383 25.7 7 24.2 6 -0.5 19.9 18.1 1.7
6 31 188.00140 +11.0232 24.1 5 22.7 5 0.30 18.4 17.0 1.4
7 34 187.73950 +11.0879 24.6 4 23.5 3 -0.8 19.5 18.8 0.7
8 187.72220 +10.9974 24.9 3 22.2 2 -1.3 20.8 18.3 2.4 bg
9 35 187.72411 +10.9121 25.6 10 24.5 5 -0.8 19.3 19.1 0.2
10 187.69209 +11.0130 22.5 5 21.1 4 -0.7 17.1 16.1 1.0 bg
11* 188.59621 +10.9634 24.3 9 23.2 9 -0.4 16.5 15.3 1.2
12 36 188.43871 +10.8729 25.3 7 24.1 7 -0.4 19.4 18.2 1.1
13 188.42810 +11.0229 22.8 4 21.7 3 -0.6 17.5 16.7 0.7 bg
14 37 188.22459 +11.1914 23.7 9 22.7 10 0.30 17.1 16.2 0.9
15 40 188.18730 +10.9498 24.1 7 22.9 6 -0.6 17.8 16.8 0.9
16 188.23900 +11.0278 22.6 6 20.5 4 -0.9 16.5 15.2 1.3 bg
17 188.15320 +11.0164 22.9 3 20.3 2 -0.9 17.8 15.8 1.9 bg
18 1 188.38789 +11.0877 23.3 3 20.8 3 -0.8 18.1 15.6 2.5 bg
19 42 188.67410 +11.1428 24.6 5 23.2 5 0.50 19.0 17.3 1.7
20 43 188.52530 +11.0542 25.2 5 23.7 5 0.40 19.7 18.6 1.1
21 188.62250 +11.1551 23.6 3 22.3 2 -0.8 18.7 17.9 0.8 bg
22* 189.09241 +10.8617 26.0 3 24.1 3 -0.5 21.7 19.4 2.3
23 44 189.15320 +10.9912 24.2 4 22.7 4 -0.4 19.0 17.5 1.4
24 188.95110 +10.8989 22.7 4 20.7 2 -1.0 17.6 16.3 1.3 bg
25 189.13519 +10.9072 22.7 3 20.4 3 0.40 17.9 15.7 2.2 bg
26* 189.03870 +10.8728 24.2 3 23.3 3 0.40 20.0 18.4 1.6
27 42 188.67400 +11.1428 24.4 4 23.0 4 -0.5 19.1 17.8 1.3
28 47 189.15630 +11.1535 24.0 6 22.2 5 -0.5 17.9 16.3 1.6
29* 188.90450 +11.0620 25.1 3 23.6 3 0.40 21.0 19.4 1.5
30* 188.83600 +11.1119 25.4 4 23.7 3 -0.6 20.4 19.1 1.3
31* 188.90450 +11.0618 25.1 3 23.2 2 -1.1 20.9 19.2 1.7
32 47 189.15620 +11.1536 23.9 6 22.2 6 -0.4 17.8 16.2 1.6
33 189.42470 +10.9981 23.0 3 20.9 2 -0.6 18.4 16.5 1.9 bg
34 48 189.44209 +10.9852 24.1 9 22.4 8 -0.4 17.9 16.2 1.7 bg
35 189.29970 +11.2058 24.8 3 21.7 2 -1.2 20.5 17.9 2.6 bg
36 189.25011 +10.9344 24.0 3 21.1 1 -1.4 19.4 17.3 2.1 bg
37 49 189.57140 +11.1807 25.1 14 23.7 13 -0.4 17.9 16.5 1.4
38 189.45200 +11.1823 26.4 9 23.5 2 -2.1 22.5 19.9 2.6
39 50 189.47980 +11.1485 25.2 11 23.7 9 -0.6 18.3 16.9 1.3
40 189.48000 +11.1184 23.0 3 21.7 3 -0.7 18.1 17.0 1.0 bg
41 189.48019 +11.1482 25.1 9 23.7 8 -0.5 18.4 17.1 1.2
42 51 190.07660 +10.9965 24.2 7 22.7 6 -0.5 18.1 16.7 1.3
43* 189.90739 +10.9758 22.5 6 20.8 5 -0.4 16.6 15.0 1.5
44 51 190.07651 +10.9965 24.2 7 22.7 6 -0.5 18.1 16.7 1.3
45* 189.95599 +10.9650 23.8 3 22.3 2 -0.8 19.4 18.1 1.2
46 190.00470 +10.9721 23.4 3 22.1 3 -0.7 18.3 16.8 1.4 bg
47 189.74170 +10.9396 22.8 4 20.9 3 -0.8 17.6 16.1 1.5 bg
48 189.74820 +10.9495 22.7 3 21.0 2 -0.7 18.0 16.6 1.4 bg
49 53 190.15480 +11.1240 24.5 3 23.0 3 -0.5 19.9 18.4 1.4
50 190.30020 +10.9341 22.6 6 21.5 6 -0.3 16.2 15.3 0.9 bg
51 54 190.36411 +11.1460 23.2 6 21.7 6 -0.3 17.0 15.4 1.6
52 54 190.36411 +11.1461 23.3 6 21.7 6 0.30 17.1 15.5 1.6
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