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SCATTERING FOR THE NONLINEAR SCHRÖDINGER EQUATION WITH A

GENERAL ONE-DIMENSIONAL CONFINEMENT

RÉMI CARLES AND CLÉMENT GALLO

ABSTRACT. We consider the defocusing nonlinear Schrödinger equation in several space

dimensions, in the presence of an external potential depending on only one space vari-

able. This potential is bounded from below, and may grow arbitrarily fast at infinity. We

prove existence and uniqueness in the associated Cauchy problem, in a suitable functional

framework, as well as the existence of wave operators when the power of the nonlinearity

is sufficiently large. Asymptotic completeness then stems from at least two approaches,

which are briefly recalled.

1. INTRODUCTION

We consider the large time behavior for the nonlinear Schrödinger equation

(1.1) i∂tu+
1

2
∆u = V (x)u + |u|2σu,

where u : (t, x, y) ∈ R × R × Rd−1 → C, with d > 2, ∆ is the Laplacian in (x, y),
and 0 < σ < 2

(d−2)+
(where 1/a+ stands for +∞ if a 6 0, and for 1/a if a > 0): the

nonlinearity is energy-subcritical in terms of the whole space dimension d. The external

potential V depends only on x. More precisely, we suppose:

Assumption 1.1. The potential V ∈ L2
loc(R) is real-valued and bounded from below:

∃C0, V (x) + C0 > 0, ∀x ∈ R.

It follows from [17, Theorem X.28] that

H = −1

2
∆ + V (x)

is essentially self-adjoint on C∞
0 (Rd), with domain ([17, Theorem X.32])

D(H) = {f ∈ L2(Rd), −1

2
∆f + V f ∈ L2(Rd)}.

The goal of this paper is to understand the large time dynamics in (1.1). This framework is

to be compared with the analysis in [19], where there is no external potential (V = 0), but

where the x variable belongs to the torus T (which is the only one-dimensional compact

manifold without boundary). It is proven there that if a short range scattering theory is

available for the nonlinearity |u|2σu in H1(Rd−1), that is if 2
d−1 < σ < 2

(d−2)+
, then the

solution of the Cauchy problem for (x, y) ∈ T × R
d−1 (is global and) is asymptotically

linear as t → ∞.

This project was supported by the French ANR projects SchEq (ANR-12-JS01-0005-01) and BECASIM

(ANR-12-MONU-0007-04).
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2 R. CARLES AND C. GALLO

In this paper, we prove the analogous result in the case of (1.1), as well as the exis-

tence of wave operators (Cauchy problem with behavior prescribed at infinite time). This

extends some of the results from [1] where the special case of an harmonic potential V
is considered. The properties related to the harmonic potentials are exploited to prove the

existence of wave operators in the case of a multidimensional confinement (V (x) = |x|2,

x ∈ Rn, n > 1), a case that we do not consider in the present paper (see Remark 1.6):

essentially, if the nonlinearity is short range on Rd−n, then it remains short range on Rd

with n confined directions. Long range effects are described in [12], in the case n = d− 1
and σ = 1 (cubic nonlinearity, which is exactly the threshold to have long range scattering

in one dimension). A technical difference with [19] is that for the Cauchy problem, we

do not make use of inhomogeneous Strichartz for non-admissible pairs like established in

[5, 7, 20], and for scattering theory, such estimates are not needed when d 6 4.

We emphasize that here, the potential V can have essentially any behavior, provided that

it remains bounded from below. It can be bounded (in which case the term “confinement”

is inadequate), or grow arbitrarily fast as x → ±∞. This is in sharp contrast with e.g.

[14, 22, 23], where Strichartz estimates (with loss) are established in the presence of super-

quadratic potentials, or with [2], where a functional calculus adapted to confining potentials

is developed: in all these cases, typically, an exponential growth of the potential is ruled

out, since in this case, no pseudo-differential calculus is available.

Introduce the notation

Mx = −1

2
∂2
x + V (x) + C0.

We define the spaces

Bx =
{
u ∈ L2(R),M1/2

x u ∈ L2(R)
}
, Σy =

{
u ∈ H1(Rd−1), yu ∈ L2(Rd−1)

}
,

Z = L2
yBx ∩ L2

xH
1
y , Z̃ = L2

yBx ∩ L2
xΣy,

endowed with the norms

‖u‖2Bx
= ‖u‖2L2

x(R)
+ ‖M1/2

x u‖2L2
x(R)

= ‖u‖2L2
x(R)

+ 〈Mxu, u〉 ,

‖u‖2Σy
= ‖u‖2L2

y(R
d−1) + ‖∇yu‖2L2

y(R
d−1) + ‖yu‖2L2

y(R
d−1),

and

‖u‖2Z = ‖u‖2L2
xy(R

d)+‖M1/2
x u‖2L2

xy(R
d)+‖∇yu‖2L2

xy(R
d), ‖u‖2

Z̃
= ‖u‖2Z+‖yu‖2L2

xy(R
d).

The group e−itH is unitary on Z , but not on Z̃ , a property which is discussed in the proof

of Lemma 2.6.

Remark 1.2. Note that Bx is the domain of the operator M
1/2
x , which is defined as a

fractional power of the self-adjoint operator Mx acting on L2(R): for u ∈ Bx, M
1/2
x u is

defined by

M1/2
x u =

∫ ∞

0

λ1/2dEλ(u),

where Mx =
∫∞

0
λdEλ is the spectral decomposition of Mx.

Theorem 1.3 (Cauchy problem). Let d > 2, V satisfying Assumption 1.1 and 0 < σ <
2

(d−2)+
. Let t0 ∈ R and u0 ∈ Z . There exists a unique solution u ∈ C(R;Z) to (1.1) such
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that u|t=t0 = u0. The following two quantities are independent of time:

Mass: ‖u(t)‖2L2
xy(R

d),

Energy:
1

2
‖∇xyu(t)‖2L2

xy(R
d) +

1

σ + 1
‖u(t)‖2σ+2

L2σ+2
xy (Rd)

+

∫

Rd

V (x)|u(t, x, y)|2dxdy.

If in addition u0 ∈ Z̃ , then u ∈ C(R; Z̃).

Theorem 1.4 (Existence of wave operators). Let d > 2, and V satisfying Assumption 1.1.

1. If u− ∈ Z and 2
d−1 6 σ < 2

(d−2)+
, there exists u ∈ C(R;Z) solution to (1.1) such that

‖u(t)− e−itHu−‖Z = ‖eitHu(t)− u−‖Z −→
t→−∞

0.

This solution is such that

u ∈ L∞(R;Z) ∩ Lp((−∞, 0];Lk
yL

2
x)

for some pair (p, k) given in the proof, and it is unique in this class.

2. If u− ∈ Z̃ and 2
d < σ < 2

(d−2)+
, there exists a unique u ∈ C(R; Z̃) solution to (1.1)

such that

eitHu ∈ L∞(]−∞, 0]; Z̃) and ‖eitHu(t)− u−‖Z̃ −→
t→−∞

0.

In the second case, the lower bound σ > 2
d is weaker than in the first case, so there

is some gain in working in the smaller space Z̃ rather than in Z . However, this lower

bound is larger than in the corresponding result from [1] where only the case V (x) = x2

is considered. Indeed in [1], the general lower bound is σ > 2d
d+2

1
d−1 , which is smaller

than the present one as soon as d > 3. The main technical reason is that specific properties

of the harmonic oscillator (typically, the fact that it generates a flow which is periodic in

time) makes it possible to establish a larger set of Strichartz estimates than the one which

we use in the present paper. In all cases, the expected borderline between short range and

long range scattering is σc = 1
d−1 (d − 1 is the “scattering dimension”), so our result is

sharp in the case d = 2, and most likely only in this case.

Theorem 1.5 (Asymptotic completeness). Let d > 2, V satisfying Assumption 1.1, and
2

d−1 < σ < 2
(d−2)+ . For any u0 ∈ Z , there exists a unique u+ ∈ Z such that the solution

to (1.1) with u|t=0 = u0 satisfies

‖u(t)− e−itHu+‖Z = ‖eitHu(t)− u+‖Z −→
t→+∞

0.

Remark 1.6. When a confinement is present (due either to a harmonic potential, or to

a bounded geometry) in n directions, for a total space dimension d, it is expected that

the “scattering dimension” is d − n. This was proven systematically in the case of a

harmonic confinement in [1], complemented by [12]; see also [11, 18]. Therefore, to prove

asymptotic completeness thanks to Morawetz estimates, it is natural to assume σ > 2
d−n

(essentially because it is not known how to take advantage of these estimates otherwise,

except in the L2-critical case, where many other tools are used). On the other hand, for

the Cauchy problem to be locally well-posed at the H1-level, it is necessary to assume

σ 6 2
d−2 if d > 3. For the above two conditions to be consistent in the energy-subcritical

case σ < 2
d−2 , we readily see that the only possibility is n = 1, as in [19] and the present

paper. To treat the case n = 2,the analysis of a doubly critical case would be required:

L2-critical in Rd−n with σ = 2
d−n , and energy-critical in Rd with σ = 2

d−2 .
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2. TECHNICAL PRELIMINARIES

2.1. Sobolev embeddings.

Lemma 2.1. Bx is continuously embedded into H1
x(R).

Proof. Since V is bounded from below, we have

‖u‖2H1
x(R)

6 ‖u‖2L2
x(R)

+ ‖∂xu‖2L2
x(R)

+ 2

∫

R

(V (x) + C0) |u(x)|2dx

6 ‖u‖2L2
x(R)

+ 2 〈Mxu, u〉 . ‖u‖2Bx
,

hence the result. �

Introduce, for γ, s > 0, the anisotropic Sobolev space

Hγ
yH

s
x = (1−∆y)

−γ/2(1− ∂2
x)

−s/2L2
x,y,

endowed with the norm

‖u‖2Hγ
yHs

x
=

∫

R×Rd−1

〈ξ〉2s 〈η〉2γ |û(ξ, η)|2dξdη,

where û denotes the Fourier transform of u in both x and y variables. Ḣγ
yH

s
x denotes the

corresponding homogeneous space, endowed with the norm

‖u‖2
Ḣγ

yHs
x

=

∫

R×Rd−1

〈ξ〉2s |η|2γ |û(ξ, η)|2dξdη.

Lemma 2.2. If ε ∈ (0, 1/2), s = 1
2 + ε and γ = 1

2 − ε, then

‖u‖Ḣγ
yHs

x
6 ‖u‖Hγ

yHs
x
. ‖u‖Z, ∀u ∈ Z.

Proof. From Young inequality and Lemma 2.1,

‖u‖2Hγ
yHs

x
=

∫

R×Rd−1

〈ξ〉2γ 〈η〉2s |û(ξ, η)|2dξdη

.

∫

R×Rd−1

[
(1 + ξ2) + (1 + |η|2)

]
|û(ξ, η)|2dξdη . ‖u‖2L2

yH
1
x
+ ‖u‖2

L2
xḢ

1
y

,

hence the result. �

2.2. Anisotropic Gagliardo-Nirenberg inequality.

Proposition 2.3. Let k, s, γ > 0 such that

(2.1) s > 1/2 and
1

2
>

1

k
>

1

2
− γ

d− 1
> 0.

Then Hγ
yH

s
x ⊂ Lk

yL
∞
x , and there exists C > 0 such that for every u ∈ Hγ

yH
s
x,

‖u‖Lk
yL

∞

x
6 C‖u‖1−δ

L2
yH

s
x
‖u‖δ

Ḣγ
yHs

x

, where δ =
d− 1

γ

(
1

2
− 1

k

)
.

Proof. We first use the Sobolev inequality in the x variable and Minkowski inequality

(which is possible because k > 2). We get

(2.2) ‖u‖Lk
yL

∞

x
. ‖u‖Lk

yH
s
x
= ‖ 〈ξ〉s Fxu(ξ, y)‖Lk

yL
2
ξ
. ‖ 〈ξ〉s Fxu(ξ, y)‖L2

ξ
Lk

y
,
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where Fx denotes the Fourier transform in the x variable. Similarly, we denote by Fy the

Fourier transform in y and û(ξ, η) = (FxFyu)(ξ, η). Then for a fixed value of ξ ∈ R,

Hausdorff-Young inequality yields

(2.3) ‖Fxu(ξ, y)‖Lk
y
. ‖û(ξ, η)‖Lk′

η
.

Omitting the dependence of the right hand side in ξ, let us denote by v(η) = û(ξ, η). It

follows from the triangle and Hölder inequality that for any R > 0,

‖v‖Lk′

η
6 ‖v‖Lk′(|η|<R) + ‖v‖Lk′(|η|>R)

. ‖1{|η|<R}‖Lp(|η|<R)‖v‖L2
η
+ ‖|η|−γ‖Lp(|η|>R)‖|η|γv‖L2

η

. R(d−1)/p‖v‖L2
η
+R(d−1)/p−γ‖|η|γv‖L2

η
,(2.4)

where p is given by 1/p = 1/2 − 1/k.. Note that (2.1) implies that γp > d − 1, and

therefore |η|−γ ∈ Lp(|η| > R). Optimizing in R in the right hand side of (2.4), we get

(2.5) ‖v‖Lk′

η
. ‖v‖1−δ

L2
η
‖|η|γv‖δL2

η
,

where δ = d−1
γp ∈ (0, 1). Combining (2.2), (2.3) and (2.5), Hölder inequality yields

‖u‖Lk
yL

∞

x
.

(∫
〈ξ〉2s(1−δ) ‖û‖2(1−δ)

L2
η

〈ξ〉2sδ ‖|η|γ û‖2δL2
η
dξ

)1/2

.

(∫
〈ξ〉2s ‖û‖2L2

η
dξ

)(1−δ)/2 (∫
〈ξ〉2s ‖|η|γ û‖2L2

η
dξ

)δ/2

= ‖u‖1−δ
L2

yH
s
x
‖u‖δ

Ḣγ
yHs

x

.

�

Corollary 2.4. Let 2 < k < 2(d−1)
(d−2)+

. Then Z is continuously embedded in Lk
yL

∞
x .

Proof. Pick ε > 0 small enough such that

1

2
− 1/2− ε

d− 1
=

d− 2

2(d− 1)
+

ε

d− 1
<

1

k
.

Then (s, γ) = (1/2 + ε, 1/2 − ε) satisfy the assumptions of Proposition 2.3 and Lemma

2.2. Thus, using also Lemma 2.1,

‖u‖Lk
yL

∞

x
. ‖u‖1−δ

L2
yBx

‖u‖δZ . ‖u‖Z.
�

2.3. Strichartz estimates. Following the idea from [18], with the generalization from [1]

(noticing that the spectral decomposition from the proof in [18] is not needed), we have,

since Mx commutes with H :

Proposition 2.5. Let d > 2. We have

‖e−itHu0‖Lq
tL

r
yL

2
x
+

∥∥∥∥
∫ t

0

e−i(t−s)HF (s)ds

∥∥∥∥
L

q1
t L

r1
y L2

x

. ‖u0‖L2
yL

2
x
+ ‖F‖

L
q′
2

t L
r′
2

y L2
x

,

provided that the pairs are (d− 1)-admissible, that is

2

q
+

d− 1

r
=

2

q1
+

d− 1

r1
=

2

q2
+

d− 1

r2
=

d− 1

2
,

with (q, r) 6= (2,∞) if d = 3.
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2.4. Vectorfields. We introduce the notation

A0(t) = A0 = Id, A1(t) = A1 = M1/2
x , A2(t) = A2 = ∇y,

A3(t) = y + it∇y = itei|y|
2/(2t)∇y

(
· e−i|y|2/(2t)

)
= e−itHyeitH .

The operator A3 is the standard Galilean operator on Rd−1, see e.g. [4], so the last identity

stems from the fact that e−itMx commutes with both ei
t
2
∆y and y. We readily have:

Lemma 2.6. The operators Aj satisfy the following properties:

• Commutation: for j ∈ {0, . . . , 3}, [i∂t −H,Aj ] = 0.

• Action on the nonlinearity: for all j ∈ {0, . . . , 3},

∥∥Aj

(
|u|2σu

)∥∥
L2

x

. ‖u‖2σL∞

x
‖Aju‖L2

x
.

• Equivalence of norms: for all u ∈ C∞
0 (Rd), we have, uniformly in t ∈ R,

(2.6) ‖eitHu‖Z = ‖u‖Z ≈
2∑

j=0

‖Aju‖L2
xy
, ‖eitHu‖Z̃ ≈

3∑

j=0

‖Aj(t)u‖L2
xy
.

• Gagliardo-Nirenberg inequalities: for all g ∈ Σy, 2 6 p < 2
(d−3)+

,

‖g‖Lp
y
6 C‖g‖1−δ

L2 ‖A2g‖δL2
y
,

‖g‖Lp
y
6

C

|t|δ ‖g‖
1−δ
L2 ‖A3(t)g‖δL2

y
, t 6= 0,

where C is independent of t, and δ = (d− 1)
(

1
2 − 1

p

)
.

Proof. The commutation property is straightforward. For the action on the nonlinearity, it

is trivial in the case of A0 and A2. For A3, it stems classically from the fact that A3 is the

gradient in y conjugated by an exponential of modulus one and that the nonlinearity we

consider is gauge invariant. Concerning A1, we compute

‖M1/2
x

(
|u|2σu

)
‖2L2

x
=
〈
Mx

(
|u|2σu

)
, |u|2σu

〉

=
1

2
‖∂x

(
|u|2σu

)
‖2L2

x
+

∫ +∞

−∞

(V (x) + C0) |u|4σ+2dx

6 (2σ + 1)2‖u‖4σL∞

x

(
1

2
‖∂xu‖2L2

x
+

∫ +∞

−∞

(V (x) + C0) |u|2dx
)

= (2σ + 1)2‖u‖4σL∞

x
‖M1/2

x u‖2L2
x
.

Recall that A0, A1 and A2 commute with eitH , which is unitary on L2(Rd), hence the first

equivalence of norms. The identity A3(t) = e−itHyeitH yields the second equivalence of

norms, uniformly in time: note that ‖eitHu‖Z̃ is equivalent to ‖u‖Z̃ only locally in time,

due to the factor t in the identity A3(t) = y + it∇y .

Finally, the Gagliardo-Nirenberg inequalities stated in the lemma are the classical ones,

using once more the factorization of A3. �
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3. CAUCHY PROBLEM

In this section, we prove Theorem 1.3. The existence part relies on a a standard fixed

point argument, adapted to the present framework. Since the problem is invariant by trans-

lation in time, we may assume t0 = 0. Duhamel’s formula reads

u(t) = e−itHu0 − i

∫ t

0

e−i(t−s)H
(
|u|2σu

)
(s)ds =: Φ(u)(t).

This Cauchy problem will be solved thanks to a fixed point argument in a ball of the Banach

space

ZT = {u ∈ L∞([0, T ];Z), Aju ∈ Lq
(
[0, T ];Lr

yL
2
x

)
, ∀j ∈ {0, 1, 2}},

where (q, r) is a (d− 1)-admissible pair that will be fixed later. The space ZT is naturally

equipped with the norm

‖u‖ZT
=

2∑

j=0

(
‖Aju‖L∞

T L2
xy

+ ‖Aju‖Lq

T
Lr

yL
2
x

)
.

Denote La
TX = La([0, T ];X). Proposition 2.5 and the first point of Lemma 2.6 imply, for

j ∈ {0, 1, 2}:

‖AjΦ(u)‖L∞

T L2
xy

+ ‖AjΦ(u)‖Lq

T
Lr

yL
2
x
. ‖Aju0‖L2

xy
+ ‖Aj(|u|2σu)‖Lq′

T Lr′
y L2

x

.

The second point of Lemma 2.6 and Hölder inequality yield

‖Aj(|u|2σu)‖Lq′

T Lr′
y L2

x

. ‖u‖2σLθ
TLk

yL
∞

x
‖Aju‖Lq

T
Lr

yL
2
x
,

where θ and k are given by

(3.1)
1

q′
=

2σ

θ
+

1

q
,

1

r′
=

2σ

k
+

1

r
.

We infer

(3.2) ‖Φ(u)‖ZT
. ‖u0‖Z + ‖u‖2σLθ

T
Lk

yL
∞

x
‖u‖ZT

.

Let us now explain how the parameters q, r, θ, k are chosen.

Case d = 2. We choose r ∈ (2,∞) if σ > 1, 2 < r < 2
1−σ if 0 < σ < 1, and (q, r) the

corresponding 1-admissible pair. Then, (3.1) defines a number k that belongs to (2,∞).

Case d = 3. (q, r) is a 2-admissible pair with r ∈ (2,∞) such that

1

4
<

1

2σ

(
1− 2

r

)
=:

1

k
<

1

2
.

Note that this is made possible thanks to the assumption σ < 2.

Case d > 4. As (q, r) describes the set of all (d−1)-admissible pairs, r varies between the

two extremal values 2 and
2(d−1)
d−3 , and therefore 1

2σ (1 − 2
r ) varies between 0 and 1

σ(d−1) ,

where the latter number is larger than d−2
2(d−1) thanks to the assumption σ < 2/(d − 2).

Thus, one can choose 2 < r < 2(d−1)
d−3 such that if k is defined by (3.1),

d− 2

2(d− 1)
<

1

k
<

1

2
.

For these choices of the parameters, Corollary 2.4 and Hölder inequality in time imply

(3.3) ‖u‖Lθ
T
Lk

yL
∞

x
. ‖u‖Lθ

T
Z . T 1/θ‖u‖ZT

.
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Note that we have chosen admissible pairs such that q > 2. Thus, since θ is defined by

(3.1), 1/θ > 0. From the combination of (3.2) and (3.3), we deduce that if u belongs to

the ball B(R,ZT ) of ZT with radius R > 0 centered at the origin, we have

(3.4) ‖Φ(u)‖ZT
6 C1‖u0‖Z + CT 2σ/θR2σ+1.

Chosing R = 2C1‖u0‖Z and T = T (‖u0‖Z) > 0 sufficiently small, B(R,ZT ) is stable

by Φ. Then, we note that B(R,ZT ) endowed with the norm

‖u‖B(R,ZT ) = ‖u‖L∞

T
L2

xy
+ ‖u‖Lq

TLr
yL

2
x

is a complete metric space (Kato’s method, see e.g. [4]). For u2, u1 ∈ B(R,ZT ), the same

estimates as above yield

‖Φ(u2)− Φ(u1)‖L∞

T L2
xy
+‖Φ(u2)− Φ(u1)‖Lq

T
Lr

yL
2
x

.
(
‖u2‖2σLθ

T
Lk

yL
∞

x
+ ‖u1‖2σLθ

T
Lk

yL
∞

x

)
‖u2 − u1‖Lq

T
Lr

yL
2
x

. T 2σ/θ
(
‖u2‖2σZT

+ ‖u1‖2σZT

)
‖u2 − u1‖Lq

T
Lr

yL
2
x

. T 2σ/θR2σ‖u2 − u1‖Lq

T
Lr

yL
2
x
.

Therefore, Φ is a contraction on B(R,ZT ) endowed with the above norm, provided that

T = T (‖u0‖Z) is sufficiently small, hence the existence of a local solution in Z .

The conservation of mass and energy follows from standard arguments (see e.g. [4]).

Under Assumption 1.1, this implies an a priori bound for ‖u(t)‖Z , and so the solution u is

global in time, u ∈ L∞(R;Z).

Unconditional uniqueness as stated in Theorem 1.3 follows from the same approach as

in [19]. If u1, u2 ∈ C([0, T ];Z) are two solutions of (1.1) with the same initial datum,

then

u2(t)− u1(t) = −i

∫ t

0

e−i(t−s)H
(
|u2|2σu2 − |u1|2σu1

)
(s)ds.

Resuming the same estimates as above, we now have, for 0 < τ 6 T :

‖u2 − u1‖Lq
τLr

yL
2
x
.
(
‖u2‖2σLθ

τL
k
yL

∞

x
+ ‖u1‖2σLθ

τL
k
yL

∞

x

)
‖u2 − u1‖Lq

τLr
yL

2
x

. τ2σ/θ
(
‖u2‖2σZT

+ ‖u1‖2σZT

)
‖u2 − u1‖Lq

τLr
yL

2
x
,

and uniqueness follows by taking τ > 0 sufficiently small.

To complete the proof of Theorem 1.3, we just have to check that the extra regularity

u0 ∈ Z̃ is propagated by the flow. To do so, it suffices to replace the space ZT with

Z̃T = {u ∈ L∞((0, T ), Z), Aj(t)u ∈ Lq
(
(0, T );Lr

yL
2
x

)
, ∀j ∈ {0, 1, 2, 3}},

that is, to add the field A3. The second point of Lemma 2.6, and the above computations

then yield

‖A3Φ(u)‖L∞

T L2
xy

+ ‖A3Φ(u)‖Lq

T
Lr

yL
2
x
. ‖yu0‖L2

xy
+ ‖u‖2σLθ

T
Lk

yL
∞

x
‖A3u‖Lq

T
Lr

yL
2
x

. ‖yu0‖L2
xy

+ T 2σ/θ‖u‖2σZT
‖A3u‖Lq

T
Lr

yL
2
x
.

The above fixed point argument can then be resumed: we construct a local solution in Z̃ ,

u ∈ C([−T, T ]; Z̃) ∩ L∞(R;Z). The latest property and the previous estimate show that

A3u ∈ C(R;L2
xy) is global in time.
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4. EXISTENCE OF WAVE OPERATORS

To prove the existence of wave operators, we construct a fixed point for the related

Duhamel’s formula,

(4.1) u(t) = e−itHu− − i

∫ t

−∞

e−i(t−s)H
(
|u|2σu

)
(s)ds =: Φ−(u)(t),

on some time interval (−∞,−T ] for T possibly very large but finite. According to the

regularity assumption on u−, we construct a solution in Z or in Z̃ . This solution is actually

global in time from either case of Theorem 1.3. We therefore focus on the construction of

a fixed point for Φ−, as well as on uniqueness. In a similar fashion as in Section 3, we

denote La
TX = La((−∞,−T ];X).

4.1. Wave operators in Z . Resume the (d − 1)-admissible pair (q, r) used in Section 3,

and (θ, k) given by (3.1). For (q1, r1) a (d−1)-admissible pair, and j ∈ {0, 1, 2}, Strichartz

estimates and Hölder inequality yield:

‖AjΦ−(u)‖Lq1
T

L
r1
y L2

x
. ‖Aju−‖L2

xy
+
∥∥Aj

(
|u|2σu

)∥∥
Lq′

T
Lr′

y L2
x

. ‖Aju−‖L2
xy

+ ‖u‖2σLθ
TLk

yL
∞

x
‖Aju‖Lq

T
Lr

yL
2
x
.

By construction,

2 6 k <
2(d− 1)

(d− 2)+
<

2(d− 1)

(d− 3)+
,

so we can find p such that (p, k) is (d− 1)-admissible. Putting the definition of admissible

pairs and (3.1) together, we get

1− 2σ

θ
=

2

q
= (d− 1)

(
1

2
− 1

r

)
=

(d− 1)σ

k
= σ

(
d− 1

2
− 2

p

)
.

By assumption, σ > 2
d−1 , so p 6 θ, and there exists β ∈ (0, 1] such that

‖u‖Lθ
T
Lk

yL
∞

x
6 ‖u‖β

Lp

T
Lk

yL
∞

x
‖u‖1−β

L∞

T
Lk

yL
∞

x
.

Corollary 2.4 implies

‖AjΦ−(u)‖Lq1
T L

r1
y L2

x
. ‖Aju−‖L2

xy
+ ‖u‖2σβ

Lp

T
Lk

yL
∞

x
‖u‖2σ(1−β)

L∞

T
Z ‖Aju‖Lq

T
Lr

yL
2
x
.

Now the one-dimensional Gagliardo-Nirenberg inequality

‖f‖L∞

x
6

√
2‖f‖1/2L2

x
‖∂xf‖1/2L2

x

and according to the proof of Lemma 2.1, we have

(4.2)

‖AjΦ−(u)‖Lq1
T L

r1
y L2

x
6 C‖Aju−‖L2

xy

+ C‖u‖σβ
Lp

TLk
yL

2
x
‖A1u‖σβLp

TLk
yL

2
x
‖u‖2σ(1−β)

L∞

T Z ‖Aju‖Lq

T
Lr

yL
2
x
.

for C sufficiently large. We can now define

BT :=
{
u ∈ C(]−∞,−T ];Z),

‖Aju‖Lq

T
Lr

yL
2
x
+ ‖Aju‖L∞

T
L2

xy
6 4C‖Aju−‖L2

xy
, j ∈ {0, 1, 2},

‖Aju‖Lp

TLk
yL

2
x
6 2

∥∥Aje
−itHu−

∥∥
Lp

T
Lk

yL
2
x

, j ∈ {0, 1}
}
.
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From Strichartz estimates, we know that for j ∈ {0, 1},

Aje
−itHu− ∈ Lp(R;Lk

yL
2
x), so

∥∥Aje
−itHu−

∥∥
Lp

T
Lk

T
L2

x

→ 0 as T → +∞.

Since β > 0, we infer that Φ− maps BT to itself, for T sufficiently large, by (4.2), and

since the same estimates yield, for j ∈ {0, 1},

‖AjΦ−(u)‖Lp

T
Lk

yL
2
x
6 ‖Aje

−itHu−‖Lp

TLk
yL

2
x

+ C‖u‖σβ
Lp

T
Lk

yL
2
x
‖A1u‖σβLp

T
Lk

yL
2
x
‖u‖2σ(1−β)

L∞

T
Z ‖Aju‖Lq

T
Lr

yL
2
x
.

We have also, for u2, u1 ∈ BT , and typically (q1, r1) ∈ {(q, r), (∞, 2)}:

‖Φ−(u2)− Φ−(u1)‖Lq1
T

L
r1
y L2

x
. max

j=1,2
‖uj‖2σLθ

T
Lk

yL
∞

x
‖u2 − u1‖Lq

T
Lr

yL
2
x

.
∥∥e−itHu−

∥∥σβ
Lp

T
Lk

yL
2
x

∥∥A1e
−itHu−

∥∥σβ
Lp

T
Lk

yL
2
x

‖u−‖2σ(1−β)
Z ‖u2 − u1‖Lq

T
Lr

yL
2
x
.

Up to choosing T larger, Φ− is a contraction on BT , so Φ− has a unique fixed point in

BT , which solves (4.1). Uniqueness as stated in Theorem 1.4 is an easy consequence of

the above estimates.

4.2. Wave operators in Z̃ . In the case u− ∈ Z̃, we consider the whole set of vector fields,

(Aj)06j63. For (q, r) a (d− 1)-admissible pair to be chosen later, we define

Z̃T = {u ∈ C((−∞,−T ]; Z̃), Aj(t)u ∈ Lq
TL

r
yL

2
x ∩ L∞

T L2
xy, ∀j ∈ {0, 1, 2, 3}}.

We have, for all (d− 1)-admissible pairs (q1, r1), and all j ∈ {0, 1, 2, 3},

(4.3) ‖AjΦ−(u)‖Lq1
T L

r1
y L2

x
. ‖u−‖Z̃ + ‖u‖2σLθ

T
Lk

yL
∞

x
‖Aju‖Lq

T
Lr

yL
2
x
,

where θ and k are again given by (3.1). If

(4.4) H1/2−(Rd−1
y ) →֒ Lk(Rd−1

y ), that is, 2 6 k <
2(d− 1)

d− 2
,

we can find s and γ satisfying (2.1) and s + γ = 1. To obtain explicit time decay, apply

Proposition 2.3 to v = e−i|y|2/(2t)u. This yields

‖u‖Lk
yL

∞

x
= ‖v‖Lk

yL
∞

x
. ‖v‖Lk

yH
s
x
. ‖v‖1−δ

L2
yH

s
x
‖v‖δ

Ḣγ
yHs

x

,

where δ is defined by

δγ = (d− 1)

(
1

2
− 1

k

)
.

Then, since γ + s = 1, it follows from the Young inequality as in Lemma 2.2 that

‖v‖Ḣγ
yHs

x
= |t|−γ

(∫
|tη|2γ(1 + ξ2)s|v̂(ξ, η)|2dξdη

)1/2

(4.5)

. |t|−γ

(∫ (
|tη|2 + (1 + ξ2)

)
|v̂(ξ, η)|2dξdη

)1/2

. |t|−γ
(
‖A3(t)u‖L2

xL
2
y
+ ‖u‖L2

yH
1
x

)
,

where in the last line, we have used Plancherel formula and

A3(t)u = itei|y|
2/(2t)∇ye

−i|y|2/(2t)u = itei|y|
2/(2t)∇yv.
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Then, we deduce from (4.5) and Lemma 2.2 that for any u ∈ Z̃T and t 6 −T , we have

(4.6) ‖u(t)‖Lk
yL

∞

x
.

1

|t|(d−1)( 1
2
− 1

k )

3∑

j=0

‖Aju‖L∞

T L2
xy

.
1

|t|(d−1)( 1
2
− 1

k )
‖u‖Z̃T

.

Then, provided t 7→ |t|−(d−1)(1/2−1/k) belongs to Lθ(−∞,−1), (4.3) and (4.6) imply that

for every u ∈ Z̃T ,

‖AjΦ−(u)‖Z̃T
. ‖u−‖Z̃ + T 2σ( 1

θ
−(d−1)( 1

2
− 1

k ))‖u‖2σ+1

Z̃T
.(4.7)

Let us now explain how the parameters θ, k, q, r are chosen. Since σ > 1/(d− 1), one can

choose q > 2 large enough such that

(4.8) (d− 1)σ >
2

q
+ 1.

Then, r is chosen such that (q, r) is a (d − 1)-admissible pair, in such a way that (4.8)

becomes

(d− 1)

(
σ +

1

r
− 1

2

)
> 1,

which is equivalent to

(d− 1)

(
σ − 2σ

k

)
= (d− 1)

(
σ − 1 +

2

r

)
> 1− (d− 1)

(
1

2
− 1

r

)
= 1− 2

q
=

2σ

θ
,

where θ and k are defined by (3.1). This is precisely the condition θ(d − 1)(12 − 1
k ) > 1

which ensures that the right hand side of (4.6) belongs to Lθ. In terms of k, (4.8) is

equivalent to
1

k
< 1− 1

(d− 1)σ
.

This condition is consistent with (4.4) if and only if

d− 2

2(d− 1)
< 1− 1

(d− 1)σ
,

which is equivalent to σ > 2
d .

The rest of the proof is similar to the proof of local well-posedness of the Cauchy

problem: we take R and T sufficiently large so that the ball of radius R in Z̃T is stable

under the action of Φ−, and so that Φ− is a contraction on this ball, equipped with the

distance ‖u‖L∞

T L2
xy

+ ‖u‖Lq

T
Lr

yL
2
x
, in view of the previous estimates and

‖Φ−(u2)− Φ−(u1)‖Lq1
T L

r1
y L2

x
. max

j=1,2
‖uj‖2σLθ

TLk
yL

∞

x
‖u2 − u1‖Lq

T
Lr

yL
2
x
.

In view of (2.6), the solution that we have constructed satisfies

eitHu ∈ L∞((−∞,−T ]; Z̃).

Uniqueness in this class follows from (2.6) and the same approach as for the Cauchy prob-

lem. If u1 and u2 are two solutions of (1.1) satisfying

eitHuj ∈ L∞((−∞,−T ]; Z̃), ‖eitHuj(t)− u−‖Z̃ −→
t→−∞

0, j = 1, 2,

then for τ > T ,

‖u2 − u1‖Lq
τLr

yL
2
x
. max

j=1,2
‖uj‖2σLθ

τL
k
yL

∞

x
‖u2 − u1‖Lq

τLr
yL

2
x
,
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and (4.6) implies

‖u2 − u1‖Lq
τLr

yL
2
x
. τ2σ(

1
θ
−(d−1)( 1

2
− 1

k ))‖u2 − u1‖Lq
τLr

yL
2
x
.

Choosing τ sufficiently large, we have u2 = u1 for t 6 −τ , and Theorem 1.3 yields

u2 ≡ u1.

5. ASYMPTOTIC COMPLETENESS

In this section, we prove Theorem 1.5. Three approaches are available to prove asymp-

totic completeness for nonlinear Schrödinger equations (without potential). The initial

approach ([8]) consists in working with a Σ regularity. This makes it possible to use the

operator x+ it∇, whose main properties are essentially those stated in Lemma 2.6, and to

which an important evolution law (the pseudo-conformal conservation law) is associated.

This law provides important a priori estimates, from which asymptotic completeness fol-

lows very easily in the case σ > 2/d, and less easily for some range of σ below 2/d; see

e.g. [4]. Unfortunately, this conservation law seems to be bound to isotropic frameworks:

an analogous identity is available in the presence on an isotropic quadratic potential ([3]),

but in our present framework, anisotropy seems to rule out a similar algebraic miracle.

The second historical approach relaxes the localization assumption on the data, and

allows to work in H1(Rd), provided that σ > 2/d. It is based on Morawetz inequalities:

asymptotic completeness is then established in [13, 9] for the case d > 3, and in [15] for

the low dimension cases d = 1, 2, by introducing more intricate Morawetz estimates.

The most recent approach to prove asymptotic completeness in H1 relies on the intro-

duction of interaction Morawetz estimates in [6], an approach which has been revisited

since, in particular in [16] and [10]. In the anisotropic case, interaction Morawetz have

been used in [1] and [19] with two different angles: in both cases, it starts with the choice

of an anisotropic weight in the virial computation from [10, 16], but the interpretations

of this computation are then different. We start by presenting a unified statement of this

aproach in the next paragraph.

5.1. Morawetz estimates. For (x, y) ∈ Rd and µ > 0, we denote by Q(x, y, µ) a dilation

of the unit cube centered in (x, y),

Q(x, y, µ) = (x, y) + [−µ, µ]d.

Proposition 5.1. Let u ∈ C(R;Z) be as in Theorem 1.3. For every µ > 0, there exists

Cµ > 0 such that

∥∥∥|∇y |
4−d
2 R

∥∥∥
2

L2
ty(R×Rd−1)

+

∫

R

(
sup

(x0,y0)∈Rd

∫∫

Q(x0,y0,µ)

|u(t, x, y)|2dxdy
)σ+2

dt

6 Cµ sup
t∈R

‖u(t)‖4H1
xy

. ‖u0‖4Z ,

where

R(t, y) =

∫ +∞

−∞

|u(t, x, y)|2dx

is the marginal of the mass density.

Proof. We resume the computations from [1, Section 5], and simply recall the main steps.
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To shorten the notations, we set z = (x, y). Following [10], we write that if u is a

solution to (1.1), then we have

(5.1)





∂tρ+ div J = 0

∂tJ + div (Re(∇ū ⊗∇u)) +
σ

σ + 1
∇ρσ+1 + ρ∇V =

1

4
∇∆ρ,

where ρ(t, z) := |u(t, z)|2 and J(t, z) := Im(ū∇u)(t, z). Let us define the virial potential

I(t) :=
1

2

∫∫

Rd×Rd

ρ(t, z)a(z − z′)ρ(t, z′) dzdz′ =
1

2
〈ρ, a ∗ ρ〉,

where a is a sufficiently smooth even weight function which will be be eventually a func-

tion of y only. Here 〈·, ·〉 denotes the scalar product in L2(Rd). By using (5.1), we see that

the time derivative of I(t) reads

(5.2)
d

dt
I(t) = −〈ρ,∇a ∗ J〉 =

∫∫
ρ(t, z′)∇a(z − z′) · J(t, z) dz′dz =: M(t),

where M(t) is the Morawetz action. By using again the balance laws (5.1) we have

(5.3)

d

dt
M(t) =− 〈J,∇2a ∗ J〉+ 〈ρ,∇2a ∗ Re(∇ū ⊗∇u)〉+ σ

σ + 1
〈ρ,∆a ∗ ρσ+1〉

− 〈ρ,∇a ∗ (ρ∇V )〉 − 1

4
〈ρ,∆a ∗∆ρ〉

=− 〈Im(ū∇u),∇2a ∗ Im(ū∇u)〉+ 〈ρ,∇2a ∗ (∇ū ⊗∇u)〉

+
σ

σ + 1
〈ρ,∆a ∗ ρσ+1〉 − 〈ρ,∇a ∗ (ρ∇V )〉 − 1

4
〈ρ,∆a ∗∆ρ〉,

where in the second term we dropped the real part because of the symmetry of ∇2a (here,

the notation ∇2a ∗ Re(∇ū ⊗ ∇u) stands for
∑

j,k ∂
2
jka ∗ Re(∂kū∂ju)). Leaving out the

details presented in [1] and [19], the computation shows that if ∇2a is non-negative and if

a depends on y only (so we have ∇a(z1) · ∇V (z2) = 0 for all z1, z2 ∈ Rd), then we have:

(5.4)
d

dt
M(t) >

1

2
〈∇yρ,∆ya ∗ ∇yρ〉+

σ

σ + 1
〈ρ,∆ya ∗ ρσ+1〉.

Now we consider two choices for the weight a. First, for a(y) = |y|, we have indeed

∇2a > 0 as a symmetric matrix, and for d > 3, ∆ya(y) =
d−2
|y| : it is, up to a multiplicative

constant, the integral kernel of the operator (−∆y)
− d−2

2 , that is,

(
(−∆y)

− d−2

2 f
)
(y) =

∫

Rd−1

c

|y − y′|f(y
′) dy′.

Thus, by recalling z = (x, y), we obtain

∫∫

Rd×Rd

1

|y − y′|∇yρ(t, z
′) · ∇yρ(t, z) dz

′dz

=

∫∫∫

R×R×Rd−1

∇yρ(t, x, y) · ∇y(−∆y)
− d−2

2 ρ(t, x′, y) dxdx′dy.

Hence, if we define the marginal of the mass density

R(t, y) :=

∫

R

ρ(t, x, y) dx,
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the last integral also reads
∫

Rd−1

∣∣∣|∇y|
4−d
2 R(t, y)

∣∣∣
2

dy.

We now plug this expression into (5.4) and we integrate in time. Furthermore, the second

term in the right hand side in (5.4) is positive. We then infer

(5.5)

∫ T

−T

∫

Rd−1

∣∣∣|∇y|
4−d
2 R(t, y)

∣∣∣
2

dydt 6 C sup
t∈[−T,T ]

|M(t)|.

Furthermore, with our choice of the weight a, we have

|M(t)| =
∣∣∣∣
∫∫

ρ(t, z′)
y − y′

|y − y′| · Im(ū∇yu)(t, z) dz
′dz

∣∣∣∣ 6 ‖u0‖3L2(Rd)‖∇yu(t)‖L2(Rd),

hence the first part of Proposition 5.1 in the case d > 3. In the case d = 2, the choice

a(y) = |y| leads to a′′(y) = 2δ0, and the conclusion remains the same.

Now, as in [19], consider the weight a(y) = 〈y〉: we still have ∇2a > 0. Resume (5.3):

the computations from [19, 16] yield a rearrangement of the terms so that instead of (5.4),

we now have
d

dt
M(t) >

σ

σ + 1
〈ρ,∆ya ∗ ρσ+1〉.

The right hand side is equal to

σ

σ + 1

∫∫ ∫∫
|u(t, x1, y1)|2∆a(y1 − y2)|u(t, x2, y2)|2σ+2dx1dy1dx2dy2.

Following [19], we note that

inf
Q(0,0,2µ)

∆y (〈y〉) > 0,

so the above term is bounded from below by constant times

sup
(x0,y0)∈Rd

∫∫

Q(x0,y0,µ)

∫∫

Q(x0,y0,µ)

|u(t, x1, y1)|2|u(t, x2, y2)|2σ+2dx1dy1dx2dy2.

Hölder inequality yields

∫∫

Q(x0,y0,µ)

|u(t, x2, y2)|2σ+2dx2dy2 &

(∫∫

Q(x0,y0,µ)

|u(t, x2, y2)|2dx2dy2

)σ+1

.

Finally, with this second choice for a, we still have

|M(t)| 6 ‖u0‖3L2
xy
‖∇yu(t)‖L2

xy
,

hence the result by integrating in time. �

5.2. End of the argument. To prove Theorem 1.5 in the case d 6 4, one can resume the

approach followed in [1, Section 6] which is readily adapted to our framework, the only

difference being that the function space and the related set of vectorfields are not the same

here.

However, as pointed out in [19], the fact that negative order derivatives are involved in

the first term in Proposition 5.1 makes it delicate to use this term when d > 5, and requires

fine harmonic analysis estimates in the case V = 0; it is not clear whether or not these

tools can be adapted to the present setting. This is why the second term in Proposition 5.1,

which corresponds to the one considered in [19], is more efficient then, and allows to prove

Theorem 1.5 for all d > 2.
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The first step stems from [21]: Theorem 1.3 and Proposition 5.1 imply that

‖u(t)‖Lr
xy

−→
t→+∞

0, ∀2 < r <
2d

(d− 2)+
.

The end of the proof is presented in [19], and is readily adapted to our framework: it

consists in choosing suitable Lebesgue exponents and applying inhomogeneous Strichartz

estimates for non-admissible pairs, which follow in our case from [1, 7]. Since the proof

is then absolutely the same as in [19], we choose not to reproduce it here.
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