
HAL Id: hal-01112690
https://hal.science/hal-01112690v1

Submitted on 3 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ramanujan series for arithmetical functions
M. Ram Murty

To cite this version:
M. Ram Murty. Ramanujan series for arithmetical functions. Hardy-Ramanujan Journal, 2013, Vol-
ume 36 - 2013, pp.21 - 33. �10.46298/hrj.2013.180�. �hal-01112690�

https://hal.science/hal-01112690v1
https://hal.archives-ouvertes.fr


HARDY-RAMANUJAN JOURNAL 36 (2013), 21-33

RAMANUJAN SERIES FOR ARITHMETICAL FUNCTIONS

M. RAM MURTY

Abstract. We give a short survey of old and new results in the theory of Ra-

manujan expansions for arithmetical functions.

1. Introduction

In 1918, Ramanujan [17] published a seminal paper entitled “On certain trigono-

metric sums and their applications in the theory of numbers” in which he introduced

sums (now called Ramanujan sums) defined as

(1) cq(n) =

q∑
a=1

(a,q)=1

cos

(
2πan

q

)
for any two natural numbers q and n. It is easy to see that this can be re-written as

(2) cq(n) =

q∑
a=1

(a,q)=1

e2πian/q

since (a, q) = 1 if and only if (q − a, q) = 1 so that we can pair up elements in (2) to

derive (1).

These sums have remarkable properties. First, for fixed n, cq(n) is a multiplicative

function. In other words, if q1, q2 are relatively prime, then

cq1(n)cq2(n) = cq1q2(n).

Second, from (2), it is easily seen that cq(n) is a periodic function of n with period

q. That is, the value of cq(n) depends only on the arithmetic progression of n (mod

q). Third, using the familiar Möbius function, one can derive an explicit formula for

cq(n):

(3) cq(n) =
∑
d|(q,n)

µ(q/d)d,
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where µ denotes the Möbius function. This is easily seen by using the characteristic

property of the Möbius function:

(4)
∑
d|n

µ(d) = 0, n > 1

and is equal to 1 if n = 1. Hence, from (2),

cq(n) =

q∑
a=1

e2πian/q

∑
d|(a,q)

µ(d)

 =
∑
d|q

µ(d)

 q∑
a=1,d|a

e2πian/q

 .

The inner sum can be re-written as
q/d∑
b=1

e2πibn/(q/d)

which equals q/d if n is divisible by q/d and zero otherwise. Thus,

cq(n) =
∑

d|q,(q/d)|n

µ(d)(q/d).

As d runs over divisors of q so does q/d and we may re-write the above sum as

cq(n) =
∑
d|q,d|n

µ(q/d)d,

which is (3). In his work on the cyclotomic polynomial, Hölder [12] derived in 1936

the explicit formula:

cq(n) =
φ(q)

φ(q/(q, n))
µ(q/(q, n)),

where φ denotes Euler’s function. More generally, one can study generalized Ra-

manujan sums of the form ∑
d|q,d|n

f(d)g(q/d),

with f and g arbitrary arithmetical functions, and derive some interesting results as in

Apostol [1]. In a forthcoming paper, Fowler, Garcia and Karaali [4] show that many

properties of Ramanujan sums can be deduced using the theory of supercharacters

which seems to be an emerging new topic of group theory.

A convenient function to introduce is εd(q) which is d if d|q and is zero otherwise.

This allows us to write (3) as

cq(n) =
∑
d|q

εd(n)µ(q/d)

so that by Möbius inversion we have

εq(n) =
∑
d|q

cd(n).
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This permits us to deduce several elegant Ramanujan expansions. For instance, let

σs(n) =
∑
d|n

ds.

Then,

σs(n)

ns
=
∑
d|n

1

ds
=
∞∑
d=1

1

ds+1
εd(n) =

∞∑
d=1

1

ds+1

∑
q|d

cq(n).

Interchanging summation, we find the sum is

σs(n)

ns
= ζ(s+ 1)

∞∑
q=1

cq(n)

qs+1

and all the sums are absolutely convergent for <(s) > 0 since |cq(n)| ≤ σ1(n). This

formula appears in [17].

One can derive several variations of this result. For instance, if we let

σs(n, χ) =
∑
d|n

χ(d)ds,

then essentially the same argument as above shows that for any Dirichlet character

χ (mod q), and (n, q) = 1, we have

χ(n)
σs(n, χ)

ns
= L(s+ 1, χ)

∞∑
q=1

χ(q)cq(n)

qs+1
.

More elaborate examples of this nature can be found in [2]. Ivic [13] has shown that

generally, for any completely multiplicative function f , we have by essentially the

same argument that

∑
d|n

f(d)d−s =

(
∞∑
q=1

f(q)

qs+1

)(
∞∑
q=1

f(q)cq(n)

ns+1

)
.

Formula (3) also allows us to deduce that cq(n) is an ordinary integer though this

is not obvious from the definition of (1) or (2). (One can also deduce this by viewing

(2) as the trace of the algebraic integer ζnq in the cyclotomic field Q(ζq).) Thus, if

(q, n) = 1, then cq(n) = µ(q). Many of the basic properties of the Ramanujan sums

are collected in [9].

In his paper, Ramanujan [17] derives a variety of expressions of the form

(5)
∞∑
q=1

aqcq(n)
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for some arithmetical functions. For instance, for the divisor function, Ramanujan

showed that

d(n) = −
∞∑
q=1

log q

q
cq(n).

If r(n) denotes the number of ways of writing n as a sum of two squares, Ramanujan

proves that

r(n) = π

∞∑
q=1

(−1)q

2q + 1
c2q+1(n).

We call series of the form (5) Ramanujan series (or Ramanujan expansion or some-

times Ramanujan-Fourier series) since such series mimic the notion of a Fourier ex-

pansion of an L1-function. More precisely, given an arithmetical function f , we say

that f admits a Ramanujan expansion if

f(n) =
∞∑
q=1

f̂(q)cq(n)

for appropriate complex numbers f̂(q) and the series on the right hand side converges.

We say that f̂(q) is the q-th Ramanujan coefficient of f .

Several natural questions now arise. First, for which arithmetical functions do

we have such a series. If such a series exists for a given function f , then how can

we determine the Ramanujan coefficients f̂(q). What can we say about the rate of

convergence of such a series? These are the questions we explore in this (largely

survey) paper.

Some of these questions can be quite subtle. As Ramanujan observes in his paper

[17], the assertion
∞∑
q=1

cq(n)

q
= 0

is equivalent to the prime number theorem. This equation also shows that the Ra-

manujan coefficients of a given function need not be unique (since the above is an

expansion of the zero function).

A more complicated example was given by Hardy [7] for the von Mangold function

Λ(n) defined as log p when n is a power of the prime p and zero otherwise:

φ(n)

n
Λ(n) =

∞∑
q=1

µ(q)

φ(q)
cq(n).

This expression, in conjunction with a Wiener-Khinchine type conjecture for Ra-

manujan expansions, was applied by Gadiyar and Padma [5] to give a heuristic

derivation of the celebrated conjectural formula of Hardy and Littlewood on the
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number of twin primes up to x. We will describe their work below and take this op-

portunity to formulate a general question of Wiener-Khinchine type for a wide class

of arithmetic functions. In a forthcoming paper, we plan to explore this in greater

detail.

Regarding the first question of when such series expansions exist, there are a num-

ber of results for which we refer the reader to [18]. For instance, using functional

analysis, Spilker [21] has proved that every bounded arithmetical function admits

a Ramanujan expansion. Hildebrand [10] gave a surprisingly simpler proof of this

result without the boundedness assumption. However, the Ramanujan coefficients in

many of these cases are not “natural.”

2. An orthogonality principle

It was Carmichael [2] who noticed an orthogonality principle for the Ramanujan

sums. This observation led him to predict what the Ramanujan coefficients of a

given arithmetical function should be, if such an expansion exists. Indeed, given an

arithmetical function f , we write M(f) for the limit

lim
x→∞

1

x

∑
n≤x

f(n)

when it exists and call it the mean value of f . We also write Th for the shift operator:

Th(f)(n) = f(n+ h). Then,

Theorem 1. (Orthogonality relations)

lim
x→∞

1

x

∑
n≤x

cr(n)cs(n) = φ(r)

if r = s and zero otherwise. More generally,

lim
x→∞

1

x

∑
n≤x

cr(n)cs(n+ h) = cr(h)

if r = s and zero otherwise. In other words, M(crTh(cs)) = cr(h) if r = s and zero

otherwise.

Proof. We evaluate∑
n≤x

cr(n)cs(n) =
∑

(a,r)=1

∑
(b,s)=1

∑
n≤x

e2πi(n(a/r+b/s)).

Now, if r 6= s then a/r + b/s is not an integer. Indeed, if it were equal to m (say),

then

as+ br = mrs = br + as,

from which we see that r|s and s|r so that r = s, a contradiction. Thus, if r 6= s,

the innermost sum is a geometric sum which is bounded. Hence the limit in question
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is zero. If r = s, then the innermost sum is again bounded if (a + b)/r is not an

integer. Thus, the limit is non-zero only in the case a ≡ −b (mod r) and the result

is now immediate. For the second assertion, we proceed as before. Namely, we write

out the Ramanujan sums. Interchanging summations, we see the limit in question is

r∑
b=1

(b,r)=1

e2πihb/r
q∑

a=1
(a,q)=1

lim
x→∞

1

x

∑
n≤x

e2πin(a/q+b/r).

As before, if r 6= q, then a/q+b/r is not an integer and the innermost sum is bounded

so that the limit is zero. If r = q, then the innermost sum is bounded unless a+b ≡ 0

(mod q), in which case the limit is 1. This completes the proof. �

This orthogonality principle allows one to (heuristically) write down possible can-

didates for the Ramanujan coefficients of any given arithmetical function. Indeed,

if

f(n) =
∞∑
q=1

f̂(q)cq(n),

then, multiplying both sides of the equation by cr(n) and taking the mean value of

both sides, we find on interchanging the sum that

f̂(r)φ(r) = M(fcr).

The second property allows us to deduce that if f(n) admits a Ramanujan expansion

with Ramanujan coefficients f̂(q), then, so does the function f(n + h) which has

Ramanujan coefficients f̂(q)cq(h)/φ(q).

There has been extensive study of when Ramanujan expansions exist and we refer

the reader to some excellent surveys like [15] and [18] for details and additional

references. However, in the next section, we highlight two important theorems due

to Wintner and Delange (see for example, Cor. 2.3 of [18] or [23]) in this context.

Generalizations of this theory to functions of several variables have been investigated

by several authors, most notably, Ushiroya [22], but the theory is still in its infancy.

For instance, one can investigate Ramanujan expansions of arithmetical functions of

several variables and see under what conditions these expansions are valid.

3. The theorems of Wintner and Delange

The theorem of Wintner discussed below allows us to determine a large number of

Ramanujan expansions.

Theorem 2. (Wintner, 1943) Suppose that

f(n) =
∑
d|n

g(d),
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and that
∞∑
n=1

|g(n)|
n

<∞.

Then, M(f) =
∑∞

n=1 g(n)/n.

Proof. We have

1

x

∑
n≤x

f(n) =
1

x

∑
d≤x

g(d)[x/d] =
∞∑
d=1

g(d)

d
+O

(∑
d>x

|g(d)|
d

)
+O

(
1

x

∑
d≤x

|g(d)|

)
.

By our hypothesis, the first big O-term goes to zero as x tends to infinity. To study

the last term, we need only apply partial summation. Let S(x) =
∑

n≤x |g(n)|/n.
Then, ∑

n≤x

|g(n)| = S(x)x−
∫ x

1

S(t)dt =

∫ x

1

(S(x)− S(t))dt.

Now fix ε > 0. Then, there is an x0 such that |S(x)−S(t)| ≤ ε for x > t > x0. Thus,

splitting the integral into two parts, we see that our sum in question is

≤ 2αx0 + εx,

which completes the proof. �

More generally, Wintner showed that if
∞∑
n=1

|g(n)|
n

<∞,

then the Ramanujan coefficients M(fcr) exist for every r. If in addition,
∞∑
n=1

|g(n)|d(n)

n
<∞,

then the Ramanujan expansion converges pointwise to f(n). This was later improved

by Delange [3] who proved the following theorem regarding Ramanujan expansions.

Theorem 3. (Delange, 1976) Suppose that

f(n) =
∑
d|n

g(d),

and that
∞∑
n=1

2ω(n)
|g(n)|
n

<∞,

where ω(n) is the number of distinct prime divisors of n. Then, f admits a Ramanu-

jan expansion with

f̂(q) =
∞∑
m=1

g(qm)

qm
.
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The proof of Delange’s theorem is not difficult and we refer the reader to [3] for

complete details. However, we can here indicate the main ideas of the proof. One

first shows that the double series ∑
m,q≥1

g(qm)

qm
cq(n)

is absolutely convergent. Once this is done, we evaluate

∞∑
k=1

wk,

where

wk =
∑
qm=k

g(qm)

qm
cq(n) =

g(k)

k

∑
q|k

cq(n).

As noted earlier, the latter sum is εk(n) which is k if k|n and zero otherwise. Thus,

wk = g(k) if k|n and zero otherwise, from which the theorem follows immediately.

It is clear that the arithmetical function for <(s) > 0, σs(n)/ns satisfies the con-

ditions of Delange’s theorem and thus admits a Ramanujan expansion and the Ra-

manujan coefficients are also determined from the theorem. Despite its simplicity

and beauty, this theorem does not include the more subtle Ramanujan expansions of

functions such as the divisor function or the von Mangoldt function. Several authors

have developed larger theories that would enable one to derive such expansions. We

refer the reader to the recent paper of Lucht [15] for details and additional references.

For instance, Lucht proves:

Theorem 4. Let f̂ : N→ C. If the series

g(d) := d

∞∑
m=1

µ(m)f̂(dm)

converges for every natural number d, then for

f(n) =
∑
d|n

g(d),

we have

f(n) =
∞∑
q=1

f̂(q)cq(n),

This theorem allows one to deduce, for example, Ramanujan’s expansion of the

divisor function. Indeed, if we take

f̂(n) =
log n

n
,
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then

g(d) =
∞∑
m=1

µ(m)

dm
log dm = −1

since
∞∑
m=1

µ(m)

m
= 0,

and
∞∑
m=1

µ(m)

m
logm = −1,

both assertions being quite subtle and requiring the theory of the Riemann zeta func-

tion. Indeed, the former is known to be equivalent to the prime number theorem. One

can also deduce the Wintner-Delange theorems from this result. However, Hardy’s

Ramanujan expansion of φ(n)Λ(n)/n noted in the introduction, cannot be deduced

from this result. Indeed, taking the cue from Hardy’s expansion, we set

g(d) = d
∞∑
m=1

µ(dm)

φ(dm)
µ(m).

This series needs to converge for us to be able to deduce the Hardy expansion. Un-

fortunately, the series diverges since we may restrict the sum to those m which are

coprime to d (since the Möbius function vanishes otherwise), in which case the sum-

mand is

µ(d)µ2(m)/φ(d)φ(m)

and the series clearly diverges.

Hardy [7] obtains his expansion by considering the Dirichlet series

f(s) =
∞∑
q=1

µ(q)cq(n)

qs−1φ(q)

which converges absolutely for <(s) > 1. By the mutliplicative properties of the

Ramanujan sum and the Euler function, we see that

f(s) =
∏
p

(
1− cp(n)

ps−1φ(p)

)
,

where the product is over all primes p. Now cp(n) = −1 if p is coprime to n and p−1

otherwise. Thus,

f(s) =
∏
p|n

(
1− 1

ps−1

) ∏
(p,n)=1

(
1 +

1

ps−1(p− 1)

)
.
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We can rewrite this as∏
p|n

(
(p− 1)(ps−1 − 1)

ps − ps−1 + 1

)∏
p

(
1 +

1

ps−1(p− 1)

)
= g(s)h(s) say.

It is evident that if n is a prime power, g(s) has a simple zero at s = 1, and if n is not

a prime power, it has a zero of order at least 2. On the other hand, it is not difficult

to see that

h(s) = ζ(s)h1(s),

where h1(s) is regular for <(s) > 0 and non-vanishing there. Thus, f(s) is zero at

s = 1 when n is not a prime power and is equal to

p− 1

p
log p

if n is a prime power. To complete the proof, we need to establish that the series

converges to f(1). But this can be deduced in several ways. Hardy deduces it by

appealing to his earlier work with Littlewood [8] (see in particular Theorem D on page

218) where he showed that the prime number theorem is equivalent to the assertion

that
∞∑
n=1

µ(n)

n
= 0.

A more direct method is to use Perron’s formula for the partial sums and use contour

integration which is a standard method in analytic number theory. The reader can

find details of this method in [16].

4. The Wiener-Khintchine formula and analogues

In the theory of Fourier series, the Wiener-Khintchine formula states that if

f(t) =
∑
n

fne
iλnt,

then

lim
T→∞

1

2T

∫ T

−T
f(t+ u)f(t)dt =

∑
n

|fn|2eiλnu.

Inspired by this theorem, Gadiyar and Padma [5] have asked if it is reasonable to

expect that for a function f(n) with Ramanujan coefficients f̂(q), a similar result

holds. Namely, is it true that

lim
x→∞

1

x

∑
n≤x

f(n)f(n+ h) =
∞∑
q=1

f̂(q)2cq(h)?
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We propose here a more general question. Given two arithmetical functions f and g,

when is it true that

lim
x→∞

1

x

∑
n≤x

f(n)g(n+ h) =
∞∑
q=1

f̂(q)ĝ(q)cq(h).

In a forthcoming paper [6], we show this is true for a wide class of functions. However,

one must exercise some caution since there are already some contradictions, even in

the simplest cases.

Still, the question is intriguing since as noted in [5], the case f(n) = g(n) =

φ(n)Λ(n)/n gives the Hardy-Littlewood prime-tuplet conjecture (which incidentally,

was conjectured using the more sophisticated circle method). Indeed, from Hardy’s

expansion, we would have

lim
x→∞

1

x

∑
n≤x

φ(n)

n

φ(n+ h)

n+ h
Λ(n)Λ(n+ h) =

∞∑
q=1

µ2(q)

φ2(q)
cq(h).

The last sum can be expressed as an infinite product over prime numbers:∏
p

(
1 +

cp(h)

(p− 1)2

)
.

Since cp(h) = −1 if p is coprime to h and p− 1 if p|h, we see that this product is∏
p|h

(
1 +

1

p− 1

) ∏
(p,h)=1

(
1− 1

(p− 1)2

)
which agrees with the Hardy-Littlewood constant obtained by them using heuristic

reasoning based on the circle method.

The conjecture can be viewed as a special case of a Parseval type formula in a

suitable Hilbert space. Indeed, the authors in [11] consider the C-linear span of all

Ramanujan sums and consider the closure of this space (denoted B2) with respect to

the (semi)-norm

||f ||22 := lim sup
x→∞

1

x

∑
n≤x

|f(n)|2.

For functions in this space, they establish using elementary Hilbert space theory, the

Parseval identity:

||f ||22 =
∞∑
q=1

|f̂(q)|2φ(q).

Indeed, the space B2 (modulo null functions) can be equipped with an inner product

(f, g) := M(fg).

This makes B2 into a Hilbert space and we have the general Parseval theorem from

which our result above follows. This is not particular to our situation but a general
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fact about Hilbert spaces that the more specialized version of Parseval’s formula

implies the general one via a useful identity, namely,

(f, g) =
1

4

(
||f + g||22 − ||f − g||22 + i||f + ig||22 − i||f − ig||22

)
.

The difficulty in extending this theorem to a wider class is formidable since as we

said above, such a general theorem would lead to a proof of the twin-prime conjecture.

Nevertheless, the theory of Ramanujan expansions does give a viable framework to

understand a wide spectrum of questions and it would be interesting to investigate

this further.

5. Concluding remarks

At the end of his paper, Ramanujan [17] derives the expression

Λ(n) = −
∞∑
q=1

cn(q)

q
,

which is “dual” to the expansions we have considered till now. This suggests that

perhaps there is a “dual theory” of such expansions of the form

f(n) =
∞∑
q=1

f ∗(q)cn(q).

Several extensions of Ramanujan’s expansions of this type to generalizations of the

von Mangoldt function appear in [13].

Finally, we mention the monograph of Sivaramakrishnan [20] which contains a

wealth of material on Ramanujan sums including a curious “reciprocity law” which

surely will find a place in a larger theory. We also highlight the relevance of the

theory of almost periodic functions as studied in [14] where Ramanujan expansions

are derived for certain strongly multiplicative function.

The interesting thing about the right hand side of (5) is that if the series converges

absolutely and we replace n by a real number x, we obtain a continuous function

which interpolates the given arithmetical function. In this way, we can view the

Ramanujan expansion as a continuous analogue of the discretely defined arithmetical

function.

Acknowledgements. I would like to thank Kumar Murty, S. Gun, P. Rath, G.

Gadiyar and R. Padma for their comments on an earlier version of this article.
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