
HAL Id: hal-01112674
https://hal.science/hal-01112674

Submitted on 3 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recognition of Machine-Printed Arabic Mathematical
Formulas

Khazri Kaouther, Afef Kacem, Abdel Belaïd

To cite this version:
Khazri Kaouther, Afef Kacem, Abdel Belaïd. Recognition of Machine-Printed Arabic Mathematical
Formulas. Information and Communication Technologies Innovations and Applications (ICTIA), Mar
2014, Sousse, Tunisia. �hal-01112674�

https://hal.science/hal-01112674
https://hal.archives-ouvertes.fr

Recognition of Machine-Printed Arabic

Mathematical Formulas

Kaouther Khazri Ayeb and Afef Kacem Echi

University of Tunis, LaTICE-ESSTT

Tunis, Tunisia

kawther.khazri@edunet.tn

afef.kacem@esstt.rnu.tn

Abdel Belaïd

University of Lorraine, LORIA

Nancy, France

Abdel.belaid@loria.fr

Abstract—The proposed system recognizes machine-printed

Arabic mathematical formulas, extracted from scanned images of

clearly printed documents, and outputs the recognition results in

MathML format. Two main stages are followed by the proposed

system: symbol recognition and symbol-arrangement analysis. A

combination of different statistical features (Run length, central

Zernike moments, Bi-level co-occurrence, etc.) and K*, an

instance-based classifier, have been used to achieve high accuracy

for the recognition of mathematical symbols. We defined a set of

replacement rules by a coordinate grammar to parse

mathematical formulas. We used the coordinate grammar with

emphasis on symbol recognizer as well as symbol arrangement

analysis. Both ascending and descending parsing scheme, based

on operator dominance, has been used to parse the formula. The

proposed system provides output in MathML and achieves

satisfactory results.

Keywords—Symbol Recognition; Structural analysis;

Notation parser; Mathematical formula interpretation,

MathML.

I. INTRODUCTION

Recognizing mathematical formulas is not an easy business
and the failure of conventional optical character recognition
systems to treat mathematics has several reasons. In fact,
mathematics has a number of features which distinguish it from
conventional text. These include structure in two dimensions
(fractions, super-scripts, sub-scripts, limits, etc.), frequent font
changes, different symbols (alphabetic characters, Greek
letters, numerals, math operators, etc.) with variable shape
(fraction bars, roots, great delimiters, etc.), and substantially
differing notational convention from sources to sources. When
compounded with more generic problems such as noise and
merged or broken characters, they fail to even recognize the
symbols adequately partly because they are not on appropriate
baseline, are unusual in typeface and size, and do not conform
to expectations of text. Notice that the recognition of
mathematical formula is more complicated even when all the
individual symbols can be recognized correctly. A large part of
Arabic books display mathematical formulas using original
symbols in a writing running from right to left. A fully
automatic system for machine-printed Arabic mathematical
formula recognition is proposed here. The paper is organized as
follows. In section I, we will quite some characteristics of
Arabic mathematics notations and we will show what is special

and difficult about recognizing them. The existing mathematics
notation recognition literature will be examined in section II. A
description of our system can be found in section III. We will
close the paper with some experimental results and concluding
remarks.

II. CHARACTERISTICS OF ARABIC MATHEMATICAL

FORMULAS

Four common styles are used for mathematics within
Arabic texts: 1) Moroccan style (see Figure 1), closely related
to the French style (see Figure 2), 2) Maghreb style, widely
used in North Africa (see Figure 3), 3) Machrek style,
generally used in the Middle East (see Figure 4) and 4) Persian
style which uses the Arabic script (left to right), but with the
mathematical directionality (right to left), similar to the
Moroccan style. Figure 5 shows the notation used for limits in
Persian style.

Fig. 1. Moroccan style [1].

Fig. 2. French style [1].

Fig. 3. Maghreb style [1].

Fig. 4. Machrek style [1].

Fig. 5. Persian style [1].

As it can be seen, there are, at least, two main ways for
writing Arabic mathematical formulas. In some contexts,
mathematical texts use the usual mathematical symbols just as
they are in Latin script basic texts. Mathematical expressions
flow then from left to right against the stream of the natural
language. In other contexts, mathematical texts use specific
symbols spreading out from right to left in accordance with the
natural language writing. Of course, in both the two
mathematical notation systems, the mathematical expressions
have exactly the same meaning. Only the way mathematical
expressions are presented is different.

Notice that formula interpretation depends on the direction
in which it is written. This problem comes from direction
inconsistency in handwriting flow. In most of the cases,
mathematics is written in the direction opposite to the
surrounding text. So, it is important to determine the direction
in which mathematical context was entered before proceeding
with expression analysis. Notice also that Arabic mathematical
formulas require a large number and wide variety of signs
(letters are from several alphabets: Arabic, Latin, Greek, etc. in
several styles: Naskh, Koufi, etc. for Arabic and Roman, italic,
calligraphic, etc. for Latin alphabet) and in different features
(lowercase and uppercase, bold). Moreover, Arabic letters vary
their form according to their position in the word and some
alphabet used in symbolic expressions, appears without
diacritical points or signs to mark vowels (see Figure 3).
Accents are written in different shapes and sizes. Punctuation
exists in several forms (the comma is geared up for a couple of
terms or decimal separator and it is oriented low as in French in
a decimal (see Figure 3)). Also, there are different forms of
numbers: Arab Maghreb numbers (0, 1, 2, 3, 4, 5, 6, 7, 8, 9),
Mashrek Arab numbers (٩ ,٨ ,٧ ,٦ ,٥ ,٤ ,٣ ,٢ ,١ ,٠), and Persian
numbers (۰, ١ , ٣ ,٢, ۴, ۵, ۶, ٩ ,٨ ,٧). Of this, some confusion
arise (Zero: ٠ vs. a diacritic point, the Arabic letter ALEF
isolated form: ا vs. the Arabic digit one: ١ and the Arabic digit
five ٥ vs. the Arabic letter HEH isolated form: ه). In addition,
there are two kinds of symbols: literal and mirrored symbols
which are used according to the local area. The sum (see Figure
6(a)), product (see Figure 6(b)), the limit (see Figure 6(c)) and
factorial (see Figure 6(d)) operators are presented in the two
ways.

Letter cursivity of Arabic is also taken advantage of, in a
few cases, to define variables using more than one letter. The
most widespread example of this kind of usage is the canonical
symbol for the radius of a circle نق, which is written using the

two letters ن and ق. When variable names are juxtaposed (as
when expressing multiplication) they are written non-cursively.

Fig. 6. Literal and mirrored symbols.

Stretched large operators in Arabic notation are usually
stretched to the same width as their lower and upper limits (see
Figure 7).

Fig. 7. Stretched large operators.

III. RELATED WORKS

Due to the complex characteristic of mathematical Arabic
formulas, most of the research concerns online-recognition. In
fact, there are few works that delve into offline recognition of
Arabic mathematical formulas. Most papers are more
concerned with Latin mathematical formula recognition. But
they did not put much emphasis on explaining how the
mathematical symbols are recognized or how the formula
structure is analyzed or the explanations are too tedious and
sometimes too ad hoc. In addition, the majority of works are
done on some types of formulas with a specific style and
typography. They cannot handle all kind of formulas. They
generally recognize simple equations but not matrix or system
of equations.

In [2], authors briefly described the segmentation and
recognition of Simple Arabic Mathematical Equation (SAME)
structure and Characters/Symbols in still, gray-scale images.
Mainly SAME are numbers, characters and symbols. It is not
complex level where there is integration under square root or
deferential equation in parentheses at second derivative. It is
just main operation operator plus, minus, product and division
of variable or numbers with variable in any order. At the
segmentation step, the system applies threshold for gap
detection between SAME parts. Secondly it counts the end
points for each connected component in that part for characters
and symbols position determining, the expression structure
decoding and define the operator location. At last, the system
applies Self–organized map recognizer on the extracted feature
from connected components of SAME parts. The system is
tested on a set of handwritten and printed expressions and
achieves promising results.

As discussed by [3], quite a number of mathematical
expression recognition systems obtained the structure without
parsing. Instead, some procedurally-coded rules were used
while others applied parsing techniques with a range of

(a) (b)

(c) (d)

variations. However, it should be noted that most methods for
the structural analysis of mathematical expressions are actually
based on some kinds of syntax defined implicitly or explicitly.
For simple expressions, both ways should do the job well. The
situation changes if we try to recognize more complex
expressions. Rather than adding ad hoc procedurally-coded
rules to the system and yet still being uncertain of the
correctness of the structural analysis module, explicit rules in a
parser may provide a clearer and more concise form for formal
verification. The problem of creating a system which is both
efficient and sufficiently flexible to recognize complex
relationships remains an open problem. Flexible refers to the
ability to handle a large range of symbol placements. In this
paper, we propose a system based on a syntactic parser. It
starts the parsing by looking for the most important operator in
the formula and attempts to partition it into sub-formulas which
are similarly analyzed. The formula parser works in
conjunction with a symbol recognizer as it will be explained in
the following section.

IV. PROPOSED SYSTEM

The proposed system consists of two main stages: symbol
recognition and symbol-arrangement analysis. The former
converts the input image into a set of symbols. The latter
analyzes the spatial arrangement of this set of symbols to
recover the information content of the given mathematical
formula. We are interested by formulas written according the
Mashrek style (see Figure 4). An isolated symbol recognition
scheme consisting of a K* classifier based on statistical
features is used [4]. For the recognition of meaningful
arrangement of the recognized symbols, a structural analysis,
based on the bounding box coordinates, is used. A set of
coordinate grammar rules is served to parse formulas and
convert them into their corresponding MathML code strings.
We will explain how our system proceeds to achieve the above
steps.

A. Symbol Recognition

To describe mathematical symbols, we extracted the
following features:

 Run-length histogram features which take into
account the number of successive black pixels in one
or more directions (horizontal, vertical, major
diagonal and minor diagonal). These features can
effectively discriminate the directions, areas and
geometrical shapes of the symbols.

 Zernike moments which have rotational invariance
and are accurate descriptors even with relatively few
data points. They are often used to capture global
features of an image. They have proven their
superiority over other functions moments in their
description ability and robustness to noise and
distortion.

 Bi-level co-occurrence: A co-occurrence count is the
number of times a given pair of pixels occurs at a
fixed distance and orientation.

 Another feature is considered which computes the
white pixel’s portion in the symbol image.

For symbol classification, we used an instance-based
classifier, named K*, where the class of a test instance is based
upon the class of those training instances similar to it, as
determined by some similarity function. Note that K* differs
from other instance-based learners in that it uses an entropy-
based distance function. For more information on K*, see [4].

We used a database composed of 47 symbol classes (some
variable and function names, arithmetic operators, literal and
mirrored symbols, Mashrek Arab numbers, etc.) with 60
samples par class. The symbol recognizer achieves a rate of
98.48%. Although the symbol recognizer achieved a good
accuracy, its failure to distinguish certain common symbols
would be bothersome to any serious use. In fact, certain distinct
symbols are in close resemblance such Arabic zero and
diacritic point (٠, .), minus sign and horizontal fraction bar (-,

), Arabic digit one and Arabic letter Alif (ا ,١), etc.
Observing the event of confusion, we remark that confused
symbols have roughly similar morphologies. We consider
some of the misrecognitions to be too difficult for any classifier
to resolve without considering symbol context.

B. Structural analysis

This subsection explains how to parse mathematic
structures based on lexical, geometrical and syntactical
analysis.

1) Lexical analysis: Table 1 gives the input characters,
strings and symbols to recognize common functions, limit,
new function, square root, integral, sum and product,
arithmetic expressions, fractions and their corresponding
syntactic category. The terminal alphabet of the syntax
consists of the syntactic categories, listed in the first column of
this table. For multi-parts symbols or words, some processing
is needed to group symbols, letters or function names properly
into units. For example, some pieces multi-part symbols are
joined together by vertical grouping to form symbols or letters
or function names like ‘=’, ‘≤’, ‘≥’, ض ,ز ,ذ ,ج ,ح ,خ ,ث ,ت ,ب ,أ,
 etc. We considered a letter followed ,مج ,جد ,نها ,ن ,ق ,ظ ,غ ,ش
by an open delimiter and closest to its left neighbor as a new
function’s name. A digit or sequences of digits, which are
horizontally adjacent, should compose unsigned integers.
Unsigned floats consist of unsigned integers separated by a
decimal point.

2) Geometrical analysis: It is worth noting that spatial

relationships are especially critical for the pre-processing step

during the lexical analysis and the recognition of implicit

operators such as subscripts, superscripts and implied

multiplication. Geometric criteria are here used to check if a

set of components has possible links between them. Ten

relations: Left (L), Right (R), Above (A), B (Below), LS (Left

Superscript), RS (Right Superscript), Ls (Left subscript), Rs

(Right subscript), I (Inside) and D (Delimited) are defined to

describe spatial structure in mathematics notation. These

spatial relations are also used at this level to remove

confusions between morphological similar symbols (diacritic

point and Arabic digit zero, minus sign and horizontal fraction

bar, etc.). For differentiating between them, a context have to

be defined. For example, in order for a symbol to be considered

as a fraction bar, it should have no empty parts above and

below it. To separate between diacritic point and Arabic zero,

we can see if the regions above and below contains letters or

function names. Where letter or function name found, it is seen

as a diacritic point.

TABLE I. SYMBOL LABELING

Labels Symbols sets Designation

SS , , Literal and mirrored

Sum symbols

PS , جذ, , Literal and mirrored

product symbols

RS

Square Root

IS

Integral

FB ― Horizontal Fraction

Bar

DL (,), {, }, [,], | Delimiters

OP =, <, >, ≥, ≤, +, ×, / Operators

FL  Flèche

Unsigned-

integer

 ٣, ١٢ , etc. Unsigned Integers

Unsigned-

float

٣.٢, etc. Unsigned Floats

Letter ت,ب, أ , etc. Letters

FN ظتا, ظا, جتا, جا, ,حتا ,حا ,

طتا ,طا

Function Names.

NF ,(س)ق etc. New Function

LM نها Limit

3) Syntactic analysis: Our system begins the parsing by
looking for the start operator and attempts to partition the
formula into sub-formulas which will be similarly analyzed.
The location of the operator from which interpretation begins
in unambiguous expressions is considered as hard convention
of mathematics notation. Expressions are generally interpreted
beginning with their rightmost operator but some exception
include fraction bars not being rightmost in their associated
sub-expression or limit symbols with overlapping limits. In
these cases, operator dominance as defined by [5] may be used
to locate the dominant operator in the rightmost sub-
expression, from where the interpretation begins. But, there is a
number of cases where it is impossible to determine the start
operator of an expression because either it is impossible to
determine operator dominance or the range of operators is
unclear (such as when a fraction bar overlaps a symbol lightly,
making it unclear whether that symbol is an argument of the
division or an adjacent term). In the following, we introduce
the proposed coordinate grammar. We then explain how to
choose the start operator. We finally give an illustrative
example to explain how to analyze formula structure.

a) Coordinate Grammar:Each production rule maps a
set of symbols, located at given coordinates, into a new set of
symbols whose coordinates are computed by a set of functions
associated with the given production. The proposed coordinate

grammar is used here with emphasis on symbol recognizer as
well as symbol arrangement analysis. As shown in table 2, with
each rule, our system associates contexts, to be checked each
time the rule is chosen in the input process and actions to be
performed. These actions convert mathematical formulas into
their corresponding MathML codes. To have easy
communication between the actions and the parser, the
compounds of the right side of a rule are numerated from 1 to n
reading from the right to the left. Note that the syntax is
restricted to commonly used arithmetic notations. We cannot
use the full generality of mathematics notation, even if it can in
principle be typeset, because our notion of mathematics
grammar is necessarily limited to those constructions we are
aware of.

b) Start Operator choice: It has particular importance. It
is not necessary the beginning or the end of the formula. It can
be an explicit, represented by a symbol, or implicit operator
like subscripts, superscripts or implicit multiplication. We have
to use the concept of operator dominance and precedence to
choose the start operator especially when the formula contains
many operators which are not lined up. Notice that, the
operator O1 dominates the operator O2 if O2 lies in the range of
O1. The range of an operator involves all possible
emplacements of its operands. The process of finding the start
operator of an expression takes the set of symbols as input and
it returns its position in case of an explicit operator. If the start
operator is implicit, it returns position of the column that split
the expression in two sub-expressions. Below are the followed
steps:

1. Compute, for each operator O, how many times it has been
dominated by the other operators. Let call dom(O) this
number,

2. The start operator is the one that is less dominated. In case
of expression in Figure 8, there are two symbols: equal sign
and square root but the start operator corresponds to the
equal sign since (dom(OP)=0 whereas dom(RS)=1),

Fig. 8. Operators with different dominance.

3. If many operators have the same dominance, we choose the
prior one using operator precedence rules. We start, if they

exist, by operators of comparison (=,,, , etc.), then
parentheses which have higher precedence than the other

operators such as superscript, subscript, unary operator (-, ,
etc.) and arithmetic operators (*, /, +, -, etc.). In Figure 9, '+'
and '=' have the same dominance but as '=' is prior than '+'
and ‘*’, we choose it as start operator.

Fig. 9. Operators with same dominance and different precedence.

4. If many operators have the same dominance and the same
precedence, we choose the most right one. In expression of
Figure 10, the first and the latter equal signs have the same
dominance and precedence.

Fig. 10. Operators with the same dominance and precedence.

5. The area occupied by the start operator, with its range,
should correspond to the entire formula otherwise it is about
an implicit multiplication. In such case, we return the
column that splits the formula into two sub-formulas using
the leftmost operator (see Figure 11).

Fig. 11. Implicit multiplication of two sub-expressions.

6. If no operator is found, as shown in the example of Figure
12, then it is about an implicit multiplication of variables.
We then return the column that spilt the formula into two
sets of letters.

Fig. 12. Implicit multiplication of variables.

V. EXPERIMENTS

We carried experiments on a database of 110 machine-
printed Arabic mathematical formulas. We compared between
our system output and the ground truth. Figure 13(b) shows
MathML code, returned by our system whereas Figure13(c)
displays what the system should return for the input formula
presented in Figure 13(a). As it can be seen, there is a mistake
(colored in red in Figure 13(b)) in coding the Arabic letter ‘س’.
In fact, this letter has been confused with the Arabic letter ‘ص’
at recognition symbol step.

Fig. 13. MathML code returned by our system.

The average rate of mathematical interpretation of our
system is computed by dividing the total of interpretation rates
of all formulas by their number. The interpretation rate of each
formula is calculated as follows:

Formula’s Interpretation Rate=1-Error Rate

To determine the Error Rate, we compare between the
output of our system with a ground truth using the Levenshtein
distance. This distance is a string metric for measuring the
difference between two sequences. Informally, the Levenshtein
distance between two words is the minimum number of single-
character edits (i.e. insertions, deletions or substitutions)
required to change one word into the other. We used this metric
to consider and pinalize all possible errors in formula MathMl
code output: 1) insertion of a single symbol (If truth code = uv,
then inserting the symbol x produces uxv), 2) deletion which
changes the truth code uxv to uv) and 3) substitution of a
single symbol x for a symbol y ≠ x which changes the truth
code uxv to uyv. For each interpreted formula, the number of
errrors (substitutions, deletions and additions) is divided by the
length of the truth code string to get the Error Rate. For the
example in Fig.13, the error rate is equal to 1/263, so its
interpretation rate is 1-(1/263) which is near to 1. Tested on
handered formulas, we achieved a very satisfacory average
rate of formula interpretation which is above 95%.

VII. CONCLUSION

In this paper, we address the problem of recognizing
Arabic mathematical formula. For symbol recognition, we
used a successful recognition method based on k* with a
combination of different statistical features. Our system
provides a success rate above 95%. To improve this work, we
plan to elaborate tests of efficiency and performance of the
proposal system on a larger database of symbols, since the
development of efficient methods depends heavily on the
database availability of large size permitting to test the
performance, robustness, reliability of the proposed system
and conduct meaningful statistical tests to compare against
each other. We also explained how our system interprets
mathematical formulas using a coordinate grammar which
provides a clear and well-structured approach. Then the
structure representation is encoded in MathML which
facilitates automatic processing, searching and indexing, and
reuse of mathematical documents. The overall system has
shown its efficiency on a reasonable number of practical
mathematical formulas. Further work is required to extend this
method to treat noisy, more complex formulas and even
handwritten formulas to confirm the efficiency and the
robustness of our system.

REFERENCES

[1] Benjamin P. B. and Fateman J., “Optical character recognition for
typeset mathematics”, in proceeding of International Symposium on
symbolic and Algebraic computation, pp. 348-353, 1994.

[2] Khalifa M. and Bing Ru Y., “A Hybrid Segmentation System of Offline

Arabic Mathematical Expression Recognition”, Canadian Journal on
Image Processing and Computer Vision, Vol. 2, No. 4, pp. 30-35, 2011.

[3] Blostein D. and Grbavec A., Recognition of Mathematical Notation,
Handbook of character recognition and document image analysis, Eds.
H. Bunke and P.S.P. Wang, world scientific publishing company, pp.
557-582, 1997.

[4] John G. Cleary, Leonard E. Trigg: K*: An Instance-based Learner Using
an Entropic Distance Measure. In: 12th International Conference on
Machine Learning, 108-114, 1995.

[5] Chang S. K. Chang, “A method for the structural analysis of two-
dimensional mathematical expressions”, in information sciences, vol. 2,
pp.253-272, 1970.

 <html><head></head><body><

math

xmlns="http://www.w3.org/19

98/Math/MathML"

mode="display"

dir="rtl"><mrow><mi>ق

;</mi><!--

<mo>⁡</mo>--

><mfenced open="("

close=")"><mi>ص</mi><

/mfenced><mo>=</mo><mn>&

#x0660;</mn></mrow></math

></body></html>

 <html><head></head><body><

math

xmlns="http://www.w3.org/19

98/Math/MathML"

mode="display"

dir="rtl"><mrow><mi>ق

;</mi><!--

<mo>⁡</mo>--

><mfenced open="("

close=")"><mi>س</mi><

/mfenced><mo>=</mo><mn>&

#x0660;</mn></mrow></math

></body></html>

(a)

(b) (c)

http://en.wikipedia.org/wiki/String_metric
http://ebooks.asmedigitalcollection.asme.org/searchresults.aspx?q=Khalifa%20Mahmoud&p=1&s=19&c=0&t=
http://ebooks.asmedigitalcollection.asme.org/searchresults.aspx?q=BingRu%20Yang&p=1&s=19&c=0&t=

TABLE II. PRODUCTION RULES AND MATHML ENCODING

Production rules Assumption MathML Encoding

R1: E
0  E2 OP E1 E1=R(OP) , E2=L(OP) 

OP.code=’+’|’*’|’/’|’>’|’<’|’≤’|’

≥’,’=’

E0.code= <mrow> E2.code <mo>OP.code</mo> E1.code </mrow>

R2: E
0  E2 E1 E1=R(E2) E0.code=<mrow>E2.code<mo>&invisibletimes;</mo> E1.code</mrow>

R3: E
0  E2 FL E1 E1=R(OP) , E2=L(OP) 

FL.code=‘‘

E0.code=<mrow>E2.code<mo>→</mo> E1.code</mrow>

R4: E  T OP T=L(OP)  , R(OP)= 

OP.code=‘+‘|‘–‘|‘±‘

A(OP)=B(OP)=

E.code=<mrow> T.code <mo>OP.code</mo></mrow>

R5: E  T E.code=T.code

ISLetterV
N

SEER
10

6:  S=|B(IS)|Rs(IS)|Ls(IS)

N=|A(IS)|RS(IS)|LS(IS)

L(SI)=E1 , R(Letter)=E1

L(Letter)=V

Letter.code=’ ،’|’د’

if (N et S) then E0.code = V.code<mo>د</mo> E1.code

<munsubsup> S.code N.code<mo>∫</mo> </munsubsup>

 else if (S=N=) then E0.code = V.code<mo>د</mo> E1.code

<mo>∫</mo>

end if

SS
N

SEER
10

7
: 

 N= | A(SS) | RS(SS) | LS(SS)

S=B(SS)|Rs(SS)|Ls(SS)

I(SS)=  , E1=L(SS) 

if (N) then E0.code= E1.code <munderover>S.code N.code

<mo>&asum ;</mo> </munderover> else E0.code= E1.code

<munder>S.code<mo>&asum ;</mo>

</munder> end if

SP
N

SEER
10

8
: 

N= | A(SP) | RS(SP) | LS(SP)

S=B(SP)|Rs(SP)|Ls(SP)

I(SP)=  , E1=L(SP) 

if (N) then E0.code= E1.code <munderover>S.code N.code

<mo>&asum ;</mo> </munderover> else E0.code= E1.code

<munder>S.code<mo>&asum ;</mo>

</munder> end if

 E1

R9: E
0 FB

 E2

E1=A(FB)  , E2=B(FB)  E0.code = <mfrac>E1.code E2.code </mfrac>

RRSEER 0:
1

10

R=|RS(RS)

E1=I(RS) 

if (R) then E0.code= <mroot> R.code E1.code </mroot> else

E0.code=<msqrt> E1.code </msqrt>end if

R11: E
0 DL2 E1 DL1 E1=D(DL2, DL1) E0.code=<mrow><mfenced open=”DL2.code” close=”DL1.code”>

E1.code </mfenced></mrow>

EER
X 10

12
:  X=LS(E1)|  if (X=) then E0.code=<msup><mrow> E1.code </mrow><mrow>

X.code</mrow> </msup> else E1.code end if

R13: E
0  E1 XFN

X=|LS(FN)

E1=L(FN) 

if (X) then E0.code= E1.code

<msup><mrow>FN.code</mrow><mrow> X.code</mrow> </msup>
else E0.code = E1.code NF.code end if

R14: E
0  E1 NF

E1=L(NF) 

E0.code= NF.code<&Applyfunction ;> E1.code

R15: E
0  E1 LM

 S
S=B(LM) | 

E1=L(LM) 

if (s) then E0.code= E1.code <mo>&alim</mo><munder> S.code

</munder> else E0.code= E1.code <mo>&alim</mo> end if

R16:T  V T.code = V.code

R17:T unsigned-float T.code = <mn> unsigned-float.code</mn>

R18:Tunsigned-integer T.code = <mn> unsigned-integer.code</mn>

R19: N  E N.code = E.code

R20: N  Letter OP OP.code=’+’|‘–‘

Letter.code=‘’

R(Letter)= |OP

if D(lettre)   then N.code = <mrow><mo>∞</mo>

<mo>OP.code</mo> </mrow> else N.code = <mo>∞</mo>endif

R21: N  

R22: S  E OP V OP.code=’=’|’<’|’’|’>’|’’|’’|

’←’

V =R(OP), E=L(OP)

S.code=<mrow>E.code<mo>OP.code</mo>

V.code</mrow>

R23: S  V S.code =V.code

R24: R  V R.code=V.code

R25: Runsigned-integer R.code=<mn> unsigned-integer.code</mn>

R26: R 

R27: X E X.code=E.code

R28: X 

R29: D
0 D1Letter E Letter.code=’,’

D1=R(Letter),E=L(Letter)

D.code= <mrow>D.code <mo>OP.code,</mo> E.code</mrow>

R30: D  E D.code=E.code

R31: V  D Letter D=Ls(Letter) V.code=<msub> D.code <mi> Letter.code</mi></msub>

R32: V Letter V.code=<mi> Letter.code</mi>

