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Abstract—The proposed system recognizes machine-printed 

Arabic mathematical formulas, extracted from scanned images of 

clearly printed documents, and outputs the recognition results in 

MathML format. Two main stages are followed by the proposed 

system: symbol recognition and symbol-arrangement analysis.  A 

combination of different statistical features (Run length, central 

Zernike moments, Bi-level co-occurrence, etc.) and K*, an 

instance-based classifier, have been used to achieve high accuracy 

for the recognition of mathematical symbols. We defined a set of 

replacement rules by a coordinate grammar to parse 

mathematical formulas. We used the coordinate grammar with 

emphasis on symbol recognizer as well as symbol arrangement 

analysis. Both ascending and descending parsing scheme, based 

on operator dominance, has been used to parse the formula. The 

proposed system provides output in MathML and achieves 

satisfactory results.    

Keywords—Symbol Recognition; Structural analysis; 

Notation parser; Mathematical formula interpretation, 

MathML. 

I.  INTRODUCTION  

Recognizing mathematical formulas is not an easy business 
and the failure of conventional optical character recognition 
systems to treat mathematics has several reasons. In fact, 
mathematics has a number of features which distinguish it from 
conventional text. These include structure in two dimensions 
(fractions, super-scripts, sub-scripts, limits, etc.), frequent font 
changes, different symbols (alphabetic characters, Greek 
letters, numerals, math operators, etc.) with variable shape 
(fraction bars, roots, great delimiters, etc.), and substantially 
differing notational convention from sources to sources. When 
compounded with more generic problems such as noise and 
merged or broken characters, they fail to even recognize the 
symbols adequately partly because they are not on appropriate 
baseline, are unusual in typeface and size, and do not conform 
to expectations of text. Notice that the recognition of 
mathematical formula is more complicated even when all the 
individual symbols can be recognized correctly. A large part of 
Arabic books display mathematical formulas using original 
symbols in a writing running from right to left. A fully 
automatic system for machine-printed Arabic mathematical 
formula recognition is proposed here. The paper is organized as 
follows. In section I, we will quite some characteristics of 
Arabic mathematics notations and we will show what is special 

and difficult about recognizing them. The existing mathematics 
notation recognition literature will be examined in section II. A 
description of our system can be found in section III. We will 
close the paper with some experimental results and concluding 
remarks. 

II. CHARACTERISTICS OF ARABIC MATHEMATICAL 

FORMULAS 

Four common styles are used for mathematics within 
Arabic texts: 1) Moroccan style (see Figure 1), closely related 
to the French style (see Figure 2), 2) Maghreb style, widely 
used in North Africa (see Figure 3), 3) Machrek style, 
generally used in the Middle East (see Figure 4) and 4) Persian 
style which uses the Arabic script (left to right), but with the 
mathematical directionality (right to left), similar to the 
Moroccan style. Figure 5 shows the notation used for limits in 
Persian style. 

 

 

 

 

Fig. 1. Moroccan style [1]. 

 

 

 

Fig. 2. French style [1]. 

 

 

 

Fig. 3. Maghreb style [1]. 

  

  
 

  

   

 

  



 

 

 

 

Fig. 4.  Machrek style [1].  

 

Fig. 5. Persian style [1]. 

As it can be seen, there are, at least, two main ways for 
writing Arabic mathematical formulas. In some contexts, 
mathematical texts use the usual mathematical symbols just as 
they are in Latin script basic texts. Mathematical expressions 
flow then from left to right against the stream of the natural 
language. In other contexts, mathematical texts use specific 
symbols spreading out from right to left in accordance with the 
natural language writing. Of course, in both the two 
mathematical notation systems, the mathematical expressions 
have exactly the same meaning. Only the way mathematical 
expressions are presented is different.  

Notice that formula interpretation depends on the direction 
in which it is written. This problem comes from direction 
inconsistency in handwriting flow. In most of the cases, 
mathematics is written in the direction opposite to the 
surrounding text. So, it is important to determine the direction 
in which mathematical context was entered before proceeding 
with expression analysis. Notice also that Arabic mathematical 
formulas require a large number and wide variety of signs 
(letters are from several alphabets: Arabic, Latin, Greek, etc. in 
several styles: Naskh, Koufi, etc. for Arabic and Roman, italic, 
calligraphic, etc. for Latin alphabet) and in different features 
(lowercase and uppercase, bold). Moreover, Arabic letters vary 
their form according to their position in the word and some 
alphabet used in symbolic expressions, appears without 
diacritical points or signs to mark vowels (see Figure 3). 
Accents are written in different shapes and sizes. Punctuation 
exists in several forms (the comma is geared up for a couple of 
terms or decimal separator and it is oriented low as in French in 
a decimal (see Figure 3)). Also, there are different forms of 
numbers: Arab Maghreb numbers (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), 
Mashrek Arab numbers (٩ ,٨ ,٧ ,٦ ,٥ ,٤ ,٣ ,٢ ,١ ,٠), and Persian 
numbers (۰,  ١ , ٣ ,٢, ۴, ۵, ۶, ٩ ,٨ ,٧). Of this, some confusion 
arise (Zero: ٠ vs. a diacritic point, the Arabic letter ALEF 
isolated form: ا vs. the Arabic digit one: ١ and the Arabic digit 
five ٥ vs. the Arabic letter HEH isolated form: ه). In addition, 
there are two kinds of symbols: literal and mirrored symbols 
which are used according to the local area. The sum (see Figure 
6(a)), product (see Figure 6(b)), the limit (see Figure 6(c)) and 
factorial (see Figure 6(d)) operators are presented in the two 
ways. 

Letter cursivity of Arabic is also taken advantage of, in a 
few cases, to define variables using more than one letter. The 
most widespread example of this kind of usage is the canonical 
symbol for the radius of a circle نق, which is written using the 

two letters ن and ق. When variable names are juxtaposed (as 
when expressing multiplication) they are written non-cursively. 

 

 

 

Fig. 6. Literal and mirrored symbols. 

Stretched large operators in Arabic notation are usually 
stretched to the same width as their lower and upper limits (see 
Figure 7).  

 

 

 

Fig. 7. Stretched large operators. 

III. RELATED WORKS  

Due to the complex characteristic of mathematical Arabic 
formulas, most of the research concerns online-recognition. In 
fact, there are few works that delve into offline recognition of 
Arabic mathematical formulas. Most papers are more 
concerned with Latin mathematical formula recognition. But 
they did not put much emphasis on explaining how the 
mathematical symbols are recognized or how the formula 
structure is analyzed or the explanations are too tedious and 
sometimes too ad hoc. In addition, the majority of works are 
done on some types of formulas with a specific style and 
typography. They cannot handle all kind of formulas. They 
generally recognize simple equations but not matrix or system 
of equations. 

In [2], authors briefly described the segmentation and 
recognition of Simple Arabic Mathematical Equation (SAME) 
structure and Characters/Symbols in still, gray-scale images. 
Mainly SAME are numbers, characters and symbols. It is not 
complex level where there is integration under square root or 
deferential equation in parentheses at second derivative. It is 
just main operation operator plus, minus, product and division 
of variable or numbers with variable in any order. At the 
segmentation step, the system applies threshold for gap 
detection between SAME parts. Secondly it counts the end 
points for each connected component in that part for characters 
and symbols position determining, the expression structure 
decoding and define the operator location. At last, the system 
applies Self–organized map recognizer on the extracted feature 
from connected components of SAME parts. The system is 
tested on a set of handwritten and printed expressions and 
achieves promising results. 

As discussed by [3], quite a number of mathematical 
expression recognition systems obtained the structure without 
parsing. Instead, some procedurally-coded rules were used 
while others applied parsing techniques with a range of 
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variations. However, it should be noted that most methods for 
the structural analysis of mathematical expressions are actually 
based on some kinds of syntax defined implicitly or explicitly. 
For simple expressions, both ways should do the job well. The 
situation changes if we try to recognize more complex 
expressions. Rather than adding ad hoc procedurally-coded 
rules to the system and yet still being uncertain of the 
correctness of the structural analysis module, explicit rules in a 
parser may provide a clearer and more concise form for formal 
verification. The problem of creating a system which is both 
efficient and sufficiently flexible to recognize complex 
relationships remains an open problem. Flexible refers to the 
ability to handle a large range of symbol placements. In this 
paper, we propose a system based on a syntactic parser. It 
starts the parsing by looking for the most important operator in 
the formula and attempts to partition it into sub-formulas which 
are similarly analyzed. The formula parser works in 
conjunction with a symbol recognizer as it will be explained in 
the following section. 

IV. PROPOSED SYSTEM 

The proposed system consists of two main stages: symbol 
recognition and symbol-arrangement analysis. The former 
converts the input image into a set of symbols. The latter 
analyzes the spatial arrangement of this set of symbols to 
recover the information content of the given mathematical 
formula. We are interested by formulas written according the 
Mashrek style (see Figure 4). An isolated symbol recognition 
scheme consisting of a K* classifier based on statistical 
features is used [4]. For the recognition of meaningful 
arrangement of the recognized symbols, a structural analysis, 
based on the bounding box coordinates, is used. A set of 
coordinate grammar rules is served to parse formulas and 
convert them into their corresponding MathML code strings. 
We will explain how our system proceeds to achieve the above 
steps. 

A. Symbol Recognition 

To describe mathematical symbols, we extracted the 
following features:  

 Run-length histogram features which take into 
account the number of successive black pixels in one 
or more directions (horizontal, vertical, major 
diagonal and minor diagonal). These features can 
effectively discriminate the directions, areas and 
geometrical shapes of the symbols. 

 Zernike moments which have rotational invariance 
and are accurate descriptors even with relatively few 
data points. They are often used to capture global 
features of an image. They have proven their 
superiority over other functions moments in their 
description ability and robustness to noise and 
distortion. 

 Bi-level co-occurrence: A co-occurrence count is the 
number of times a given pair of pixels occurs at a 
fixed distance and orientation. 

 Another feature is considered which computes the 
white pixel’s portion in the symbol image.  

For symbol classification, we used an instance-based 
classifier, named K*, where the class of a test instance is based 
upon the class of those training instances similar to it, as 
determined by some similarity function.  Note that K* differs 
from other instance-based learners in that it uses an entropy-
based distance function. For more information on K*, see [4]. 

We used a database composed of 47 symbol classes (some 
variable and function names, arithmetic operators, literal and 
mirrored symbols, Mashrek Arab numbers, etc.) with 60 
samples par class. The symbol recognizer achieves a rate of 
98.48%. Although the symbol recognizer achieved a good 
accuracy, its failure to distinguish certain common symbols 
would be bothersome to any serious use. In fact, certain distinct 
symbols are in close resemblance such Arabic zero and 
diacritic point (٠,  .),  minus sign and horizontal fraction bar (-, 

), Arabic digit one and Arabic letter Alif (ا ,١), etc. 
Observing the event of confusion, we remark that confused 
symbols have roughly similar morphologies. We consider 
some of the misrecognitions to be too difficult for any classifier 
to resolve without considering symbol context.  

B. Structural analysis 

This subsection explains how to parse mathematic 
structures based on lexical, geometrical and syntactical 
analysis. 

1) Lexical analysis: Table 1 gives the input characters, 
strings and symbols to recognize common functions, limit, 
new function, square root, integral, sum and product, 
arithmetic expressions, fractions and their corresponding 
syntactic category. The terminal alphabet of the syntax 
consists of the syntactic categories, listed in the first column of 
this table. For multi-parts symbols or words, some processing 
is needed to group symbols, letters or function names properly 
into units. For example, some pieces multi-part symbols are 
joined together by vertical grouping to form symbols or letters 
or function names like ‘=’, ‘≤’, ‘≥’, ض ,ز ,ذ ,ج ,ح ,خ ,ث ,ت ,ب ,أ, 
 etc. We considered a letter followed ,مج ,جد ,نها ,ن ,ق ,ظ ,غ ,ش
by an open delimiter and closest to its left neighbor as a new 
function’s name. A digit or sequences of digits, which are 
horizontally adjacent, should compose unsigned integers. 
Unsigned floats consist of unsigned integers separated by a 
decimal point.  

2) Geometrical analysis: It is worth noting that spatial 

relationships are especially critical for the pre-processing step 

during the lexical analysis and the recognition of implicit 

operators such as subscripts, superscripts and implied 

multiplication. Geometric criteria are here used to check if a 

set of components has possible links between them. Ten 

relations: Left (L), Right (R), Above (A), B (Below), LS (Left 

Superscript), RS (Right Superscript), Ls (Left subscript), Rs 

(Right subscript), I (Inside) and D (Delimited) are defined to 

describe spatial structure in mathematics notation. These 

spatial relations are also used at this level to remove 

confusions between morphological similar symbols (diacritic 



point and Arabic digit zero, minus sign and horizontal fraction 

bar, etc.). For differentiating between them, a context have to 

be defined. For example, in order for a symbol to be considered 

as a fraction bar, it should have no empty parts above and 

below it. To separate between diacritic point and Arabic zero, 

we can see if the regions above and below contains letters or 

function names. Where letter or function name found, it is seen 

as a diacritic point. 

TABLE I.  SYMBOL LABELING 

Labels Symbols sets Designation 

SS , ,  Literal and mirrored 

Sum symbols 

PS   , جذ, ,  Literal and mirrored 

product symbols 

RS 
 

Square Root 

IS 
 

Integral 

FB ― Horizontal Fraction 

Bar 

DL (, ), {, }, [, ], | Delimiters 

OP =, <, >, ≥, ≤, +, ×, /  Operators 

FL  Flèche 

Unsigned-

integer 

 ٣, ١٢ ,  etc. Unsigned Integers 

Unsigned-

float 

٣.٢, etc. Unsigned Floats 

Letter ت,ب, أ , etc. Letters 

FN ظتا, ظا, جتا, جا, ,حتا ,حا ,  

طتا ,طا    

Function Names. 

NF  ,( س)ق  etc. New Function 

LM نها Limit 

3) Syntactic analysis: Our system begins the parsing by 
looking for the start operator and attempts to partition the 
formula into sub-formulas which will be similarly analyzed. 
The location of the operator from which interpretation begins 
in unambiguous expressions is considered as hard convention 
of mathematics notation. Expressions are generally interpreted 
beginning with their rightmost operator but some exception 
include fraction bars not being rightmost in their associated 
sub-expression or limit symbols with overlapping limits. In 
these cases, operator dominance as defined by [5] may be used 
to locate the dominant operator in the rightmost sub-
expression, from where the interpretation begins. But, there is a 
number of cases where it is impossible to determine the start 
operator of an expression because either it is impossible to 
determine operator dominance or the range of operators is 
unclear (such as when a fraction bar overlaps a symbol lightly, 
making it unclear whether that symbol is an argument of the 
division or an adjacent term). In the following, we introduce 
the proposed coordinate grammar. We then explain how to 
choose the start operator. We finally give an illustrative 
example to explain how to analyze formula structure. 

a) Coordinate Grammar:Each production rule maps a 
set of symbols, located at given coordinates, into a new set of 
symbols whose coordinates are computed by a set of functions 
associated with the given production. The proposed coordinate 

grammar is used here with emphasis on symbol recognizer as 
well as symbol arrangement analysis. As shown in table 2, with 
each rule, our system associates contexts, to be checked each 
time the rule is chosen in the input process and actions to be 
performed. These actions convert mathematical formulas into 
their corresponding MathML codes. To have easy 
communication between the actions and the parser, the 
compounds of the right side of a rule are numerated from 1 to n 
reading from the right to the left. Note that the syntax is 
restricted to commonly used arithmetic notations. We cannot 
use the full generality of mathematics notation, even if it can in 
principle be typeset, because our notion of mathematics 
grammar is necessarily limited to those constructions we are 
aware of. 

b) Start Operator choice: It has particular importance. It 
is not necessary the beginning or the end of the formula. It can 
be an explicit, represented by a symbol, or implicit operator 
like subscripts, superscripts or implicit multiplication. We have 
to use the concept of operator dominance and precedence to 
choose the start operator especially when the formula contains 
many operators which are not lined up. Notice that, the 
operator O1 dominates the operator O2 if O2 lies in the range of 
O1. The range of an operator involves all possible 
emplacements of its operands. The process of finding the start 
operator of an expression takes the set of symbols as input and 
it returns its position in case of an explicit operator. If the start 
operator is implicit, it returns position of the column that split 
the expression in two sub-expressions. Below are the followed 
steps: 

1. Compute, for each operator O, how many times it has been 
dominated by the other operators. Let call dom(O) this 
number, 

2. The start operator is the one that is less dominated.  In case 
of expression in Figure 8, there are two symbols: equal sign 
and square root but the start operator corresponds to the 
equal sign since (dom(OP)=0 whereas  dom(RS)=1), 

 

 

Fig. 8. Operators with different dominance. 

3. If many operators have the same dominance, we choose the 
prior one using operator precedence rules. We start, if they 

exist, by operators of comparison (=,,, , etc.), then 
parentheses which  have higher precedence than the other 

operators such as superscript, subscript, unary operator (-, , 
etc.) and arithmetic operators (*, /, +, -, etc.). In Figure 9, '+' 
and '=' have the same dominance but as '=' is prior than '+' 
and ‘*’, we choose it as start operator. 

 

 

Fig. 9. Operators with same dominance and different precedence. 

4. If many operators have the same dominance and the same 
precedence, we choose the most right one. In expression of 
Figure 10, the first and the latter equal signs have the same 
dominance and precedence. 

 

         



 

 

Fig. 10. Operators with the same dominance and precedence. 

5. The area occupied by the start operator, with its range, 
should correspond to the entire formula otherwise it is about 
an implicit multiplication. In such case, we return the 
column that splits the formula into two sub-formulas using 
the leftmost operator (see Figure 11).  

 

 

Fig. 11. Implicit multiplication of two sub-expressions. 

6. If no operator is found, as shown in the example of Figure 
12, then it is about an implicit multiplication of variables. 
We then return the column that spilt the formula into two 
sets of letters. 

 

 

Fig. 12.  Implicit multiplication of variables. 

V. EXPERIMENTS 

We carried experiments on a database of 110 machine-
printed Arabic mathematical formulas. We compared between 
our system output and the ground truth. Figure 13(b) shows 
MathML code, returned by our system whereas Figure13(c) 
displays what the system should return for the input formula 
presented in Figure 13(a). As it can be seen, there is a mistake 
(colored in red in Figure 13(b)) in coding the Arabic letter ‘س’. 
In fact, this letter has been confused with the Arabic letter ‘ص’ 
at recognition symbol step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 13. MathML code returned by our system. 

The average rate of mathematical interpretation of our 
system is computed by dividing the total of interpretation rates 
of all formulas by their number. The interpretation rate of each 
formula is calculated as follows: 

Formula’s Interpretation Rate=1-Error Rate 

To determine the Error Rate, we compare between the 
output of our system with a ground truth using the Levenshtein 
distance. This distance is a string metric for measuring the 
difference between two sequences. Informally, the Levenshtein 
distance between two words is the minimum number of single-
character edits (i.e. insertions, deletions or substitutions) 
required to change one word into the other. We used this metric 
to consider and pinalize all possible errors in formula MathMl 
code output: 1) insertion of a single symbol (If truth code = uv, 
then inserting the symbol x produces uxv), 2) deletion which 
changes the truth code uxv to uv) and 3) substitution of a 
single symbol x for a symbol y ≠ x which changes the truth 
code uxv to uyv. For each interpreted formula, the number of 
errrors (substitutions, deletions and additions)  is divided by the 
length of the truth code string to get the Error Rate. For the 
example in Fig.13, the error rate is equal to 1/263, so its 
interpretation rate is 1-(1/263) which is near to 1.  Tested on 
handered formulas, we achieved  a very satisfacory average 
rate of formula interpretation which is above 95%. 

VII. CONCLUSION 

In this paper, we address the problem of recognizing 
Arabic mathematical formula. For symbol recognition, we 
used a successful recognition method based on k* with a 
combination of different statistical features. Our system 
provides a success rate above 95%. To improve this work, we 
plan to elaborate tests of efficiency and performance of the 
proposal system on a larger database of symbols, since the 
development of efficient methods depends heavily on the 
database availability of large size permitting to test the 
performance, robustness, reliability of the proposed system 
and conduct meaningful statistical tests to compare against 
each other. We also explained how our system interprets 
mathematical formulas using a coordinate grammar which 
provides a clear and well-structured approach. Then the 
structure representation is encoded in MathML which 
facilitates automatic processing, searching and indexing, and 
reuse of mathematical documents. The overall system has 
shown its efficiency on a reasonable number of practical 
mathematical formulas. Further work is required to extend this 
method to treat noisy, more complex formulas and even 
handwritten formulas to confirm the efficiency and the 
robustness of our system. 
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TABLE II.   PRODUCTION RULES AND MATHML ENCODING 

Production rules Assumption MathML Encoding 

R1: E
0  E2 OP E1 E1=R(OP)  , E2=L(OP)  

OP.code=’+’|’*’|’/’|’>’|’<’|’≤’|’

≥’,’=’ 

E0.code= <mrow> E2.code <mo>OP.code</mo> E1.code </mrow> 

R2: E
0  E2 E1 E1=R(E2) E0.code=<mrow>E2.code<mo>&invisibletimes;</mo> E1.code</mrow> 

R3: E
0  E2 FL E1 E1=R(OP)  , E2=L(OP)  

FL.code=‘‘ 

E0.code=<mrow>E2.code<mo>&RightArrow;</mo> E1.code</mrow> 

R4: E  T OP  T=L(OP)  , R(OP)=   

OP.code=‘+‘|‘–‘|‘±‘  

A(OP)=B(OP)=   

E.code=<mrow> T.code <mo>OP.code</mo></mrow> 

R5: E  T  E.code=T.code 

ISLetterV
N

SEER
10

6:    S=|B(IS)|Rs(IS)|Ls(IS)  

N=|A(IS)|RS(IS)|LS(IS) 

L(SI)=E1  , R(Letter)=E1 

L(Letter)=V 

Letter.code=’ ،’|’د’ 

if (N et S) then E0.code = V.code<mo>د</mo> E1.code  

<munsubsup> S.code N.code<mo>&int;</mo> </munsubsup> 

 else if (S=N=) then E0.code = V.code<mo>د</mo> E1.code 

<mo>&int;</mo> 

end if 

SS
N

SEER
10

7
: 

 N= | A(SS) | RS(SS) | LS(SS)  

S=B(SS)|Rs(SS)|Ls(SS) 

I(SS)=  , E1=L(SS)  

if (N) then E0.code= E1.code <munderover>S.code N.code 

<mo>&asum ;</mo> </munderover> else E0.code= E1.code 

<munder>S.code<mo>&asum ;</mo> 

</munder> end if 

SP
N

SEER
10

8
: 

 

 

 

N= | A(SP) | RS(SP) | LS(SP)  

S=B(SP)|Rs(SP)|Ls(SP) 

I(SP)=  , E1=L(SP)  

if (N) then E0.code= E1.code <munderover>S.code N.code 

<mo>&asum ;</mo> </munderover> else E0.code= E1.code 

<munder>S.code<mo>&asum ;</mo> 

</munder> end if  

                E1  

R9: E
0 FB 

                E2 

E1=A(FB)  , E2=B(FB)   E0.code = <mfrac>E1.code E2.code </mfrac> 

RRSEER 0:
1
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R=|RS(RS) 

E1=I(RS)  

if (R) then E0.code= <mroot> R.code E1.code </mroot> else 

E0.code=<msqrt> E1.code </msqrt>end if 

R11: E
0 DL2 E1 DL1 E1=D(DL2,  DL1) E0.code=<mrow><mfenced open=”DL2.code” close=”DL1.code”> 

E1.code </mfenced></mrow> 

EER
X 10

12
:   X=LS(E1)|   if (X=) then E0.code=<msup><mrow> E1.code </mrow><mrow> 

X.code</mrow> </msup> else E1.code  end if 

R13: E
0  E1  XFN 

 

 

X=|LS(FN) 

E1=L(FN)  

if (X) then E0.code= E1.code 

<msup><mrow>FN.code</mrow><mrow> X.code</mrow> </msup> 
else E0.code = E1.code NF.code end if 

R14: E
0  E1  NF 

 

 

 

E1=L(NF)  

E0.code= NF.code<&Applyfunction ;> E1.code 

R15: E
0  E1 LM  

                        S 
S=B(LM) |  

E1=L(LM)  

if (s) then E0.code= E1.code <mo>&alim</mo><munder>  S.code 

</munder> else E0.code= E1.code <mo>&alim</mo> end if 

R16:T  V  T.code = V.code 

R17:T unsigned-float  T.code = <mn> unsigned-float.code</mn> 

R18:Tunsigned-integer  T.code = <mn> unsigned-integer.code</mn> 

R19: N  E  N.code = E.code 

R20: N  Letter OP  OP.code=’+’|‘–‘ 

Letter.code=‘’ 

R(Letter)= |OP 

if  D(lettre)   then N.code = <mrow><mo>&infin;</mo> 

<mo>OP.code</mo> </mrow> else  N.code = <mo>&infin;</mo>endif  

R21: N     

R22: S  E OP V OP.code=’=’|’<’|’’|’>’|’’|’’|

’←’  

V =R(OP), E=L(OP)  

S.code=<mrow>E.code<mo>OP.code</mo> 

V.code</mrow> 

R23: S  V   S.code =V.code 

R24: R  V  R.code=V.code 

R25: Runsigned-integer  R.code=<mn> unsigned-integer.code</mn> 

R26: R    

R27: X E  X.code=E.code 

R28: X    

R29: D
0 D1Letter E Letter.code=’,’  

D1=R(Letter),E=L(Letter) 

D.code= <mrow>D.code <mo>OP.code,</mo> E.code</mrow> 

R30: D  E  D.code=E.code 

R31: V  D Letter  D=Ls(Letter) V.code=<msub> D.code <mi> Letter.code</mi></msub> 

R32: V Letter  V.code=<mi> Letter.code</mi> 


