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TRANSITION FROM GAUSSIAN TO NON-GAUSSIAN
FLUCTUATIONS FOR MEAN-FIELD DIFFUSIONS IN SPATIAL
INTERACTION

ERIC LUCON' AND WILHELM STANNAT??3

ABSTRACT. We consider a system of N disordered mean-field interacting diffusions
within spatial constraints : each particle 0, is attached to one site x; of a periodic lattice
and the interaction between particles 6; and 6; decreases as |x; — z;|”” for a € [0,1). In a
previous work [28], it was shown that the empirical measure of the particles converges in
large population to the solution of a nonlinear partial differential equation of McKean-
Vlasov type. The purpose of the present paper is to study the fluctuations associated to
this convergence. We exhibit in particular a phase transition in the scaling and in the
nature of the fluctuations: when « € [0, %), the fluctuations are Gaussian, governed by

a linear SPDE, with scaling /N whereas the fluctuations are deterministic with scaling
N'™ in the case a € (3.1).
2010 Mathematics Subject Classification: 60F05, 60G57, 60H15, 82C20, 92B25.

1. INTRODUCTION

The aim of the paper is to study the large population fluctuations of disordered mean-
field interacting diffusions within spatial interaction. A general instance of the model may
be given by the following system of N coupled stochastic differential equations in X := R™
(m>1):

d9i7t = C(@@t,wi)dt + L Z T (Hi,t,wiﬁ“,wj) \I’(:Ei,$j)dt + dB@t, 1€y, te [O,T]

(1.1)
where T' > 0 is a fixed but arbitrary time horizon. In (LII), ¢(6;+,w;) models the local
dynamics of the particle 0;, I'(0; 1, w;,0;+,w;) governs the interaction between particles 6;
and 6; and (B;)ea, is a collection of independent standard Brownian motions modeling
thermal noise in the system. Both local dynamics and interaction are perturbed by an
independent random environment that is a sequence of i.i.d. random variables (w;); > 1 in
Y :=R" (n > 1) modeling some local inhomogeneity for each particle.

The novelty of (II]) is that some geometry is imposed on the interactions: the particles
0; in (LI)) are regularly positioned on a periodic lattice (of dimension 1 for simplicity)
and the interaction between two particles depend on the distance between them. Namely,
define Ay := {-N,...,N} with —N and N being identified, with cardinal |Ay| = 2N and
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suppose that for all ¢ € Ay, the particle 6; is at the fixed position x; := ﬁ € Sy, where
Sy = {xl = ﬁ, 7€ AN} is a subset of the one-dimensional circle S := R/Z. Making the

obvious identification between x € [—%, %] and its equivalence class T € S, the euclidean
norm || on [-3, 1] induces a distance d(-,-) on S by:
Vi = 2[1],§ = y[1] €S, d(z,5) = min(|z - y|,1 - |z - y]). (1.2)

The interaction in (L)) is supposed to decrease polynomially with the distance between
particles through the spatial weight

(z,y) =d(z,y)™", z,y€S, (1.3)
where « is a parameter in [0, 1).

Remark 1.1. We will often drop the notation j i in sums as in (L1l), since, with no
loss of generality, one can define ¥(x,x) =0 for all x.

1.1. Weakly interacting diffusions.

Mean-field models in physics and neuroscience. In the particular case where o = 0 and
w; = 0, the geometry and the disorder in (LI]) become irrelevant and we retrieve the usual
class of weakly interacting diffusions (studied since McKean, Oelschlager and Sznitman [31]
18,133, 139]). Such systems are encountered in the context of statistical physics and biology
(synchronization of large populations of individuals, collective behavior of social insects,
emergence of synchrony in neural networks [6l 40, [14]) and for particle approximations of
nonlinear partial differential equations (see e.g. [10, 29] and references therein). Usual
questions for this class of models concern their large population behavior (propagation of
chaos, existence of a continuous limit for the empirical measure of the particles [33], 18], 27],
fluctuations around this limit [16] 38| 27] and large deviations [I3]) as well as their long-
time behavior [9, 29].

A recent interest for similar mean-fields diffusions has been developed for the modeling of
the spiking activity of neurons in a noisy environment (e.g. Hodgkin-Huxley and FitzHugh-
Nagumo oscillators [6, 15, [40]). In this context, 0; represents the electrical activity of one
single neuron, I' captures synaptic connections between neurons and the disorder w; models
an inhomogeneous behavior between inhibition and excitation. We refer to [6] for more
details on application of these models to neuroscience.

Another illustration of weakly interacting diffusions concerns statistical physics and
models of synchronization of oscillators. In particular, the Kuramoto model (see e.g.
[1, 27, [19] [37]) describes the synchronization of rotators 6; in R/27xZ with inhomogeneous
frequencies w;:

N
A0;(t) = w; dt + % S sin(0; - 0;) dt + o dBy(t), t >0, i=1,...,N.  (Ld)
j=1

The system (L.4)) is well-known to exhibit a phase transition between incoherence to syn-
chrony as the interaction strength K > 0 increases. We refer to the mentioned references
for further details on the dynamical properties of (I.4]).

Diffusions in spatial interaction. The motivation of going beyond pure mean-field inter-
actions comes from the biological observation that neurons do not interact in a mean-field
way (see [11, 41] and references therein). There has been recently a growing interest in
models closer to the topology of real neuronal networks [21], 35 [41]. Even though the
analysis of such models seems to be difficult in general, it is quite natural to expect that
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properties valid in the pure mean-field case (the first of them being the existence of a
continuous limit in an infinite population) still hold for perturbations of the mean-field
case, namely for systems where the interactions are not strictly identical, but where the
number of connections is sufficiently large to ensure some self-averaging as the population
size increases.

In this perspective, the main motivation of (II) comes from works of Rogers and Wille
[36] and of Gupta, Potters and Ruffo [21] (see also [30], [12]) where a spatial version of the
Kuramoto model is introduced:

1

K N
df;¢ = w;idt + = > sin (0 - 0;¢) ————z dt +odB;y, 20, i=1,...,N. (1.5)
) N]zl ) ) |£EZ—33‘]| )

In (L) (and more generally in (II])), the particles are still interacting on the complete
graph but the strength of interaction decreases polynomially with the distance between
particles.

System ([LH) has to be related to analogous models of statistical physics with long-range
interactions (e.g. the Ising model or XY-model with interaction in 7%, see [3] and refer-
ences therein). The influence of the spatial decay in (I.5]) on the synchronization properties
of the system (in particular the existence of critical exponents and finite size effects) does
not seem to be completely understood so far (see the aforementioned references for further
details).

Empirical measure and McKean-Vlasov limit. Note that in (IL1]), 6; € X := R™, but one
should also think to the case of X being a compact domain of R™, see for example X =
R/27Z in the Kuramoto case (L.3]). For any vectors u and v in X (or Y), |u| stands for the
euclidean norm of v and u - v is the scalar product between u and v.

We endow (L)) with an initial condition: the particles (0;0)i-1,..n are independent
and identically distributed according to some law ¢ on X. The disorder (w;)i-1,. n is a
sequence of independent random variables, identically distributed according to some law
pon Y, independently from (60;0)iea, and (B;)iea -

All the statistical information of (II]) is contained in the empirical measure of the
particles, disorder and positions (that is a random process in the set of probabilities on
XxY xS):

1

VNJ = m Z 5(9j’t,wj,:vj)7 N> 17 te [O7T] (16)

JeAN

The object of a previous work [28] was to show that, under mild assumptions on the model
(see [28], Theorem 2.18), the empirical measure vy converges, as N — oo, to the unique
solution v of the following weak McKean-Vlasov equation:

t . ~

f Fdu, = f fdu0+/0 f (%Agf FVof - {c+ f T(-,0,5)0(-,#)vs(dd, do, dj)}) v, ds,
(1.7)

for any regular test function (6,w,z) ~ f(6,w,z) and where the initial condition is

vo(dl, dw, dz) = ((df)u(dw) dz. (1.8)

The main difficulty in the analysis of (7)) is that it involves the singular kernel ¥ so
that even the well-posedness of such equation is unclear. We refer to [28] for more details.
Equation (7)) is a spatial generalization of the standard McKean-Vlasov equation in the
pure mean-field case (see e.g. [33 [I8] 27]).
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Fluctuations around the mean-field limit. The purpose of this work is to address the ques-
tion of the fluctuations of the empirical measure vy (6] around its limit v (7). We are
in particular interested in the influence of the geometry on the speed of convergence of vy
towards v.

Definition 1.2. Define the fluctuation process
NNt = aN (VNJ, - Vt), N = 1, te [O,T] (19)
where ay s an appropriate renormalizing factor.

The first contribution of the paper is to exhibit a phase transition in the size of the
fluctuation of (II)): the correct scaling ay in (LL9) depends on the value of the spatial

parameter o € [0,1) in (3] with respect to the critical value 3.

Definition 1.3 (Fluctuation renormalization). Fiz 0 < o <1 and define for N > 1

1 . 1

ax = {N A (110
N7 dfs<a<l

Let us show intuitively that Definition [[3] provides the correct scaling for (L9). The
convergence of vy towards v is due to the competition of two effects: the convergence
of the empirical distribution of the initial condition #;( and the Brownian motions B;
(which scales typically as VN ) and the convergence with respect to the spatial variable
x;. To fix ideas, set ¢ = 0 and I' = 1 in (ILI)). In this case, everything boils down to the

approximation of the integral fS #‘a dz by the Riemann sum % ij\il m A simple
J 7

|z—2;
estimate (see Lemma [3.4] below) shows that the rate of this last convergence is exactly
N'=@. Definition [3 simply chooses the predominant scaling in both cases.

This intuition also suggests that when a < %, the randomness prevails and one should
obtain Gaussian fluctuations as N — oo, whereas when «a > % the randomness disappears
under the scaling N~ and one should obtain a deterministic limit for ny. The main
result of the paper is precisely to make this intuition rigorous: we show that the fluctua-
tion process ny converges to the unique solution of a linear stochastic partial differential
equation when « < % (see Theorem [27) and that ny has a deterministic limit in the
supercritical case o > % (see Theorem 2.§)).

What makes the analysis difficult here is the singularity of the spatial kernel ¥ in (LT).
An important aspect of the paper is the introduction of an auxiliary weighted fluctuation
process Hy (in addition to ny) that is necessary to capture the spatial variations of the
system and to cope with the singularity of the weight W. We refer to Section Bl for more
details.

On the quenched fluctuations. The main results (Theorems 2.7l and 2.8)) are averaged with
respect to the disorder (w;);. Although we did not go in this direction for the simplicity
of exposition, analogous results also hold in the quenched set-up, that is when we only
integrate in (LI) w.r.t. the Brownian noise and the initial condition, and not w.r.t. the
disorder. This has been carried out in a previous paper [27] in the non spatial case. We
let the reader adapt a similar strategy to the present situation.

Ezisting literature. The use of weighted empirical processes such as Hy (see Section 2.1])
in the context of interacting particle systems is reminiscent of previous works. One should
mention in particular the articles of Kurtz and Xiong [25] 26] on particle approximations
for nonlinear SPDEs.
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The present paper uses Hilbertian techniques already introduced by Fernandez and
Méléard [16] (see also [38], 27]) who proved a similar central limit theorem for weakly
interacting diffusions without spatial geometry (that is « = 0 in the framework of (L.IJ)).
It is shown in [I6] that the fluctuations are governed by a linear SPDE and that the
convergence holds in some appropriate weighted Sobolev space of distributions. One can
see the first result of the paper (Theorem 2.7]) as a generalization of the result of Fernandez
and Méléard to the spatial case: when a < %, the spatial damping on the interactions in
(LI) is not strong enough to have an effect on the behavior of the fluctuations of the
system and the fluctuations remain Gaussian.

The supercritical case (Theorem 2.8]) may also be related to a class of models previously
studied in the literature, that is moderately interacting diffusions (see [23,34]). This class
of models also exhibits deterministic fluctuations (see [23] p. 755), but one should point
out that the precise scaling ay is not explicitly known in this case (see [23], Remark 3.15).

Comments and perspective. The main conclusion of Theorem [2.8is that, in the case o > %,

the leading term in the asymptotic expansion of the empirical measure vy around v is
deterministic, of order Nll,a. A natural question would be to ask about the existence
and the nature of the next term in this expansion. Concerning the dependence in the
spatial variable, one easily sees that the term following ﬁ in the asymptotic expansion

of % Z;V:l ﬁ is of order %, which is in any case smaller than the Gaussian scaling ﬁ
Consequently, one should expect the next term in the expansion of vy to be Gaussian, of

order ﬁ The precise form of this term remains unclear, though. Note that a similar

analysis has been made by Oelschliger in [34] concerning moderately interacting diffusions.

Another natural question would be to ask what happens at the critical case o = % (that
is when the spatial and Gaussian fluctuations are exactly of the same order). Although it
is natural to think that the correct scaling is exactly v/N, the present work only provides
partial answers. A closer look to the proof below shows that the scaling is at least %
(see Section 2.4]). To derive the correct scaling and limit for the fluctuations in this case
seems to require alternative techniques.

The behavior as N — oo of systems similar to (II]) in the case a > 1 is also of interest
and is the object of an ongoing work. The existence of a continuous limit at the level of
the law of large number is doubtful in this case.

It is likely that the results presented here should be generalized to other models of
interacting diffusions, especially to systems with random inhomogeneous connectivities
(in the spirit of [5 [7]) which are of particular interest in the context of neuroscience [6].
This will be the object of a future work.

Outline of the paper. In Section [, we specify the assumptions on the model and state
the main results (Theorem [27] and 2.8]). Section B is devoted to prove tightness of the
fluctuation process in an appropriate space of distributions. The identification of the limits
is done in Section @l Section [ contains the proofs of technical propositions.

2. MAIN RESULTS

In the rest of the paper, 7 = (0,w, z) stands for an element of X x Y x S. In particular,
for any s €[0,7T], i € AN, 75 = (0; 5,wi, z;). We use also the duality notation

N, f) = [Xxmf(e,w,m(de, dw, dz), (2.1)
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where A is a measure on X x Y xZ and (0, w,z) — f(0,w,x) is a test function on X x Y x S.
We also use functions of two variables defined on (X x Y x S)? and introduce notations for
the corresponding partial integrals: for any such function (7,7) — g(7,7), define

(9.2, ) =[9:2] Ouws2) = [ g(0.w.2.0.5.2)A(00, 5, i), (2.2)

(o /\]2(%) =[o. A]Q(é,az,i) = /XXYXSQ(H,w,:E,HN,cD,:i))\(dH, dw, dz).  (2.3)

With a slight abuse of notations, we will often drop the subscript whenever it is clear from
the context and write [-, ] instead of [-, ] , 1=1,2. With these notations, one can write

the dynamics (LLI]) only in terms of the emlpirical measure (L0
d0; s = c(0;,w;) dt + [F‘P, VN,t](ei,tawia$i) dt + dB;y, i€ An, t€[0,T] (2.4)

where [F\I', VN,t:I = [F\I', I/N,t]l stands for (Z2) with the choice of g(#,w,x,0,&,&) =

['(0,w,0,5)¥(z,#) and X == vy, Note also that the McKean-Vlasov equation (7)) may
be written as

e )= (0, P+ [ s, D) s, (2.
where, for any measure A on X x Y x S, the generator L[] is given by
LINF(7) = 5805 () + Taf (r) - {e(6,0) + [T0,A] (1)} (2.6

2.1. Decomposition of the fluctuation process.

Two-particle fluctuation process. The main difficulty in the analysis of (L9) comes from
the singularity of the spatial kernel ¥ (LL3)). In particular, if one studies the process ny
alone, one would need to consider test functions (0,w,z) — f(0,w,z) with singularities
w.r.t. x whereas the embeddings techniques used in this work require a minimal regularity
on the test functions (see Section [3.3] below). Hence, the main idea is to introduce an
auxiliary process H  in order to bypass the lack of regularity of the kernel ¥. This process,
that we call two-particle fluctuation process, is the key object in order to understand the
influence of the positions (x;,z;) of the particles on the fluctuations of the whole system.

Definition 2.1. Define the two-particle fluctuation process by

1 -
Hny=an (|A R > U (@i, 25 )0(r, 4750) ~ VNt ® Lt (\IJ)) (dr, d7), te[0,T] (2.7)
N i,jEAN
that is, for any test function (0,w,x,0,,%) = (1,7) ~ g(7,7)
1 N - -
<HN7t7 g) =aN D) Z \Il(xhxj)g(Ti,thJ) - A— Z [ \Il(xhx)g(Ti,taT)Vt(dT)
|AN| 1,J€AN | Nl €A N

(2.8)

The process Hy captures the mutual fluctuations of two particles (0;,6;) instead of
one. One can easily see that Hy captures the correct fluctuations induced by the space
variables (especially in the supercritical case o > %) taking g = 1 in (2.8]), one obtains that

(HN,tv 1> = ‘A_IN‘ ZiEAN {CLN (‘A_IN‘ ZjeAN \II(:EM:EJ) —qu’(;pi’j) dj)}v WhiCh7 by Lemmam

below and Definition [[.3] is exactly of order 1 when a > %
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What makes the use of H critical is that it enables to separate the issue of the sin-
gularity of the spatial kernel ¥ from the issue of the regularity of the test functions g:
it is the process Hy itself that carries the singularity in (x,Z), not the test functions.
Hence, we are allowed to (and we will in the sequel) consider test functions as regular as
required in all variables (6,w,x), which is crucial for the Sobolev embeddings techniques
used in th{a paper. Note that it also necessary to consider the process Hy in the subcritical

case a < 5 even if H = limy_,. Hy does not appear in the final convergence result (see

Theorem [27]).

Relations between ny and Hy. It is immediate to see from ([L9) and (2.7) that for all test
functions (7,7) ~ g(7,7)

(Hni, 9) = (N, (vne, Yg)), te[0,T], (2.9)

where by (nn:t, (vne, Yg)) we mean (nn4(d7), (vns(dr), U(z,2)g9(7,7))). A natural
question would be to ask if an equality similar to (2.9) holds in the limit as N — oo

(He,9) = (ne, (e, Wg)), te[0,T], (2.10)

for any possible limits Nyt = Nooo T and Hyt = Nooo Hi. Supposing that (2.10) is
true, a consequence is that the limiting process H becomes a posteriori useless for the
determination of 7: we will show in Theorem 2.7 (see also Remark [£I0]) that, using
(210), one can characterize the limit of 7y as the unique solution to a linear SPDE (2.30))
involving only 7 and not the auxiliary process H.

Equality (2ZI0) is certainly true in the case without space (that is the case considered
in [16], 27], equivalent to o = 0 in (LI])). One result of the paper is to show that (ZI0])
remains true in the subcritical case 0 < «a < % (although the proof for this equality is not
straightforward, see Section [£.4] and Proposition [£.9)).

On the contrary, we will show that (Z.10) does not hold in the supercritical case o > %:
the limiting processes n and H found in Theorem 2.8 lead to different expressions in
(ZI0): when g = 1 in (ZI0), one obtains that (H:, 1) = (Ho, 1) = x(a) # 0 (see (238)
and (L3)). On the other hand, (v, ¥(-, %)) = [s ¥(z,Z)dz is a constant C' (equal to %,
recall Lemma [34]) and we see from (2.38)) that (n;, C') = 0.

The reason for this difference is that, when a > %, the predominant scaling (i.e. N1%)
comes from the rate of convergence of the discrete Riemann sum \A—IN\ Yjeny Y(xi, x5) to-
wards the integral [qU(z;,#)dZ (Lemma B4). This scaling is strongly related to the
singularity of the kernel W: if we had replaced ¥ by a regular (e.g. C!) function, the

rate of convergence of this Riemann sum would become % and the predominant scaling

of the whole system would still be \/N. If one naively replaces in (Z9) the empiri-

cal measure vy by its McKean-Vlasov limit v, the singularity in space disappears: the

function & ~ (v, ¥(-,2)g(-,7)) is continuous (provided g is). In particular, in (2.9]),

the term (nn., (v, ¥g)) does not contribute to the scaling N'®. It only appears in

(nnt, (Nt —ve, Ug)), which is a function of Hy ¢ but not of 7y alone. Hence, there is
1

no hope to have a closed formula for n when a > 5: we obtain as N — oo a system of

coupled deterministic equations in (7, ), see (2.33]).

Semi-martingale representation of the fluctuation processes. The starting point of the anal-
ysis is to write a semi-martingale decomposition for both processes ny and Hy. We see in
(2:I0)) the use of the process H: the singular part in the semi-martingale decomposition
of ny is completely expressed in terms of Hy.
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Proposition 2.2 (Semi-martingale representation of ny, 5). For every test function (6,w,z)

f0,w,x), for all t €[0,T], one has

t t
(v, D)= (vcos 1)+ [ o LIvdf) ds+ [ (e, @07 ds+ MUys (211)
where L[vs] is the propagator defined in ([2.0) and

O[f1(r,7) = @[ f1(0,w, ,0,0,%) = Vo f (B,w,x) -T(0,w,0,0). (2.12)
and where the martz’ngale term is given by
MO f = 2 S [0 f () ABy, te[0,T] (2.13)
ZEAN

Proposition 2.3 (Semi—martingale representation for Hy). For any reqular and bounded
test function (7,7) = g(7,7)

t t t
(e )= (Mo, 9)+ [ (Ho, Zog) ds+ [ Fagds+ [ Guagds+ Mg, (219)

where

Zog(7,7) = LD g(7,7) + LD g(7,7) (2.15)
for
1
LW g(r.7) 1= S8 59(7.7) + Vog(r.7) - {e(0.w) + [TV, 3] (1)}
+V59(1,7) - {e(0,) + [['0,v] (7)}, (2.16)
33(2)9(7—77:) = <V87 W(,.’L’)V@Q(,T)) 'F(G,Q},é,d)), (217)
where the remaining terms Fiy and Gy are
FN,sg = (HN,S ) veg(T77-) : [P\Il7 VN,S - VS] (T)> (218)
GN,sg = <HN,S ) <VN,5 — Vs, qf(,ﬂ?)VéQ(,T)) ' F(Q,w, é,(:))) (219)

and the martingale part Mg{t) s given by

H CLN
5\772 |AN| ]EA f veg(TZ S)Tj S)ql(l;z,x]) dB] st
L,jeAN
an t1 . ) i
2 f Z veg(Ti,SaTj,s)‘P(l‘i,l‘j)—/Veg(Ti,s,T)\I’(:Ei,x)ys(dT) - dB; s
ANy Jo \IAN] ;&R

(2.20)

The proofs of Propositions and [2.3] are given in Section [5.Il The whole point of the
paper is to take the limit as N — oo in the semi-martingale decompositions (2.11]) and

2.14).
2.2. Assumptions. Define the following integer
P:=m+n+1=dim(XxYxS§). (2.21)

The local dynamics term (6,w) ~ ¢(8,w) in ([I.I]) is supposed to be differentiable w.r.t.
(6,w) up to order 3P +9 and satisfies a one-sided Lipschitz condition w.r.t. €, uniformly
in w:

sup{(@ 0)-(c(0,w) - c(f,w))} < L|9 - §|2, (0,0) e X? (2.22)

weY
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for some constant L. We also suppose that (6,w) — ¢(f,w) and its derivatives up to order
3P +9 are bounded in 6 with polynomial bound in w: there exist « > 1 and C > 0 such
that for all differential operator D in (0,w) of order smaller than 3P +9

sup|De(0,w)] <C(1+]|w|), weY. (2.23)
0eX

The interaction term I' in (1) is supposed to be bounded by | I'|_ , globally Lipschitz-

continuous on (X x Y)?, with a Lipschitz constant | T' Lip and differentiable in all variables
up to order 3P + 9 with bounded derivatives. We also require that

> sup (/ |D§ ,T(0,@,0,w)| dé) < +00. (2.24)
k] < 2P+3 0w, \IX

Define the following exponents (where ¢ is given by (Z.23))

7 := max (P,ng +L) +1, (2.25)
k:=m+1and k= Kk + 27, (2.26)
vi=n+2+1and 7:= ¢+ 2. (2.27)

The law ¢ of the particles (6;0)ier, is assumed to be absolutely continuous with respect
to the Lebesgue measure on X = R™ and its density (that we also denote by 6 — ((6) with
a slight abuse of notation) satisfies the integrability condition

dp > m, /XC(H)*” df < +oo0. (2.28)
We also assume that ¢ and p satisfy the moment conditions
fx 0% ¢(df) < +00 and fY ¥ 1 dw) < +oo, (2.29)

where (F,7) are given in (2.20) and (Z27). In what follows, we denote as E(-) the expecta-
tion with respect to the initial condition 6; ¢, the Brownian motions (B;) and the disorder
(wi) (i-e. we work in the averaged model).

2.3. Estimates on the McKean-Vlasov equation. We first recall some results con-
cerning the continuous limit (7). The crucial object here is the nonlinear process as-
sociated to the McKean-Vlasov equation (L7) [39, 28]. The following result is a direct
consequence of [28], Section 3.2:

Proposition 2.4. Under the assumptions made in Section[2.3, there is pathwise existence
and uniqueness of the solution (Hf’w,w,a;)te[oﬂ of the monlinear system

0, = 0o + /Ot (c(éﬁ’w,w) + [F\I’,/\s](éf’“,w,:n)) ds + By,
A = AP (d0)p( dw) da, te[0,7T]. (2.30)
A9 (d0)p(dw) s the law of (7, w),
satisfying sup, < 7 [ (|0|8R v |w|8[) At(dl,dw, dx) < +oo, where K and © are given in (2.20)

and (Z.27).

Proposition 2.5. Under the hypothesis made in Section[2.2, there exists a unique weak
solution t — vy in C([0,T], M1(R™ xR™)) to (L7 satisfying

sup / (161 v [w*) v(d6, dw, dz) < +oo.
t<T
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Moreover, there exists a continuous measure-valued process t — & on X xY such that
v(df, dw, dz) = &(df, dw)dz, te[0,T]. (2.31)

The process & admits a reqular density (t,6,w) — pe(0,w) with respect to d ® pu(dw)

&(df, dw) = pi(0,w)dOu(dw), te[0,T], (2.32)
and this density p satisfies the a priori estimates:
1 L
0 < pe(0,w) g%, weY, te(0,T] (2.33)
1 L
|divgpi (0, w)| < i |+w1| , weY, te(0,T], (2.34)
t¥ots

for some 0 < g < %

The proof of Proposition is postponed to Section

Proposition 2.6. The particle system (L)) and the non-linear process [230) satisfy the
moment conditions

— — 8_
sup sup E ( sup |9i7s|8“) <+o0o and E ( sup sup|0§‘ K) < 400, (2.35)
N > 1ieAn s<T s<T zeS

where K is given in (2.20]).

Proof of Proposition [Z.6. The estimate on the nonlinear process @ is a direct consequence
of Proposition 2.4l The same estimate for the particle system is standard and left to the
reader. ([l

2.4. Fluctuations results. We prove the convergence of the fluctuations processes in
appropriate Sobolev weighted spaces of distributions V and W that are defined in the
next section, using Hilbertian techniques developed by Fernandez and Méléard in [16].
We only state the result here and refer to Section [B.3] for precise definitions of these
spaces.

Fluctuation result in the subcritical case a < % The first main result of the paper is the
following (recall the definition of the propagator L[vs] in ([2.6)):

Theorem 2.7. Suppose a < % Under the hypothesis of Section[2.2, the random process

(nN)N > 1 defined by (L3) converges in law as N — oo to 1€ C([0,T], VE. XY solution

-2(P+2)
mn Vif( P+2) to the linear stochastic partial differential equation
¢
e =70 + fo Lingds+ MM te[0,T] (2.36)
where
ﬁsf(ev("-)?x) = L[Vs]f(67w7x) + <V87 v@f() F(? -,H,w)\I/(-,a:)) ) (237)

Mo is a Gaussian process with explicit covariance given in Proposition [{.1] and M s an
explicit martingale given in Definition[{.24 no and M are independent.
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Convergence result when o > % The second main result concerns the fluctuations of (L))

in the supercritical case. For technical reasons (see Section[4.5)), in addition to the assump-
tions of Section [Z.2] we restrict here to the case where X is no longer R™ but a compact
domain of R™. The example we have particularly in mind here is the Kuramoto case where
X =R/277Z. We also suppose that the support of the distribution y of the disorder is com-
pact. These further assumptions are made in order to ensure uniqueness of a solution to
[238) below, due to the nonstandard nature of the operator .Z; (see Section [A.5]).

Theorem 2.8. Suppose o > % Under the hypothesis of Sections[2.2 and[2.4), the random

process (NN, HN)N > 1 converges in law as N — oo to (n,H), solution in C([0,T], Vg&f:;)@
W%;E’]f:;)) to the system of coupled deterministic equations
t t
ng = / L[VS]*nSderf O H, ds,
0 0 tef0,77], (2.38)

t
Ht=7'l0+f0 f;%sds,

where Ho is a nontrivial initial condition defined in Proposition [{.1) and L{vs]* (respec-
tively ®* and £ ) is the dual of the propagator L[vs] defined in (2.6 (respectively of the
linear form ® defined in [212)) and the linear operator £ defined in (2.15])).

Remark 2.9. The assumptions of Theorems[2.7 and[2.8 do not cover the case of FitzHugh-
Nagumo oscillators (that is when only a one-sided Lipchitz continuity on ¢ as in ([2:22))
and polynomial bound on c is required). A careful reading of the following shows that the
tightness results (Theorems and are indeed true in the FitzZHugh-Nagumo case.
The restrictive conditions of the paper are only required for the uniqueness of the limits.

Comments on the critical fluctuations a = % In the critical case o = %, it is expected that

the correct scaling is ay = VN although the techniques used in this work do not seem
to make this intuition rigorous. Nevertheless, a closer look at the proofs below shows the
following partial result

Proposition 2.10 (Critical fluctuations). When « = %, under the assumptions of Sec-

tion[Z.3, the following convergence holds in C([0,T], V=750,

—2(P+2)
N
% (v -v) =0, as N — oo. (2.39)

3. TIGHTNESS RESULTS

This section is devoted to the tightness of nx and Hy, based on their semi-martingale

decomposition (2.I1)) and (2Z.14).

3.1. First estimates on V.

Lemma 3.1. There exists a constant C' that only depends on o such for all (z,y, 2)

|\If(3;‘,y) - \II($7z)| < Od(yvz) (d(a; ;)a+1 + d(w i)oﬁl ) ’ (31)

Proof of Lemma[31] Straightforward (see for example [20], Lemma 2.5 for a proof). O
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Lemma 3.2. For all 5 >0, there exists a constant C' >0 (that only depends on [3), such
that for all N > 1, for all i€ Ay,

. .\ -8 N ’lf 0< ,8 < 1,
J ¢ .
d(—,—) <C-{NInN iff=1, 3.2
jeA%jm’ 2N 2N NB ;g >1 +
Proof of Lemma[3.2. This lemma has been proven in [28], Lemma 6.