
HAL Id: hal-01112627
https://hal.science/hal-01112627v2

Preprint submitted on 7 Feb 2015 (v2), last revised 8 Jul 2016 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing maximal cliques in link streams
Tiphaine Viard, Matthieu Latapy, Clémence Magnien

To cite this version:
Tiphaine Viard, Matthieu Latapy, Clémence Magnien. Computing maximal cliques in link streams.
2015. �hal-01112627v2�

https://hal.science/hal-01112627v2
https://hal.archives-ouvertes.fr

Computing maximal cliques in link streams

Jordan Viard, Matthieu Latapy, Clémence Magnien

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France

CNRS, UMR 7606, LIP6, F-75005, Paris, France

Abstract

A link stream is a sequence of triplets (t, u, v) indicating that an interaction
occurred between u and v at time t. We generalize the classical notion of cliques
in graphs to such link streams: for a given ∆, a ∆-clique is a set of nodes and
a time interval such that all pairs of nodes in this set interact at least every ∆
during this time interval. We propose an algorithm to enumerate all maximal
cliques of a link stream, and illustrate its practical relevance on a real-world
contact trace.

Keywords: link streams, temporal networks, time-varying graphs, cliques,
graphs, algorithms

1. Introduction

In a graph G = (V,E) with E ⊆ V ×V , a clique C ⊆ V is a set of nodes such
that C×C ⊆ E. In addition, C is maximal if it is included in no other clique. In
other words, a maximal clique is a set of nodes such that all possible links exist
between them, and there is no other node linked to all of them. Enumerating
maximal cliques of a graph is one of the most fundamental problems in computer
science, and it has many applications.

A link stream L = (T, V,E) with T = [α, ω] and E ⊆ T × V × V models
interactions over time: l = (t, u, v) in E means that an interaction occurred
between u ∈ V and v ∈ V at time t ∈ T . Link streams, also called temporal
networks or time-varying graphs depending on the context, model many real-
world data like contacts between individuals, email exchanges, or network traffic
[3, 11, 7, 9].

For a given ∆, a ∆-clique C of L is a pair C = (X, [b, e]) with X ⊆ V and
[b, e] ⊆ T such that for all u ∈ X , v ∈ X , and τ ∈ [b, e − ∆], there is a link
(t, u, v) in E with t ∈ [τ, τ +∆].

More intuitively, all nodes in X interact at least once with each other at
least every ∆ from time b to time e. Clique C is maximal if it is included in no
other clique, i.e. there exists no clique C′ = (X ′, [b′, e′])) such that X ′ ⊂ X or
[b′, e′] ⊂ [b, e]. See Figure 1 for an example.

In real-world situations like the ones cited above, ∆-cliques are signatures of
meetings, discussions, or distributed applications for instance. Moreover, just

Preprint submitted to Theoretical Computer Science February 7, 2015

0 8642 0 8642

0 86420 8642

∆ = 3

a

b

c

a

b

c

a

b

c

a

b

c

Figure 1: Examples of ∆-cliques. We consider the link stream L = ([0, 9], {a, b, c}, E)
with E = ((3, a, b), (4, b, c), (5, a, c), (6, a, b)) and ∆ = 3. There are four maximal 3-cliques
in L: ({a, b}, [0, 9]) (top left), ({a, b, c}, [2, 7]) (top right), ({b, c}, [1, 7]) (bottom left), and
({a, c}, [2, 8]) (bottom right). Notice that ({a, b, c}, [1, 7]) is not a ∆-clique since during time
interval [1, 4] of duration ∆ = 3 there is no interaction between a and c. Notice also that
({a, b}, [1, 9]), for instance, is not maximal: it is included in ({a, b}, [0, 9]).

like cliques in a graph correspond to its subgraphs of density 1, ∆-cliques in
a link stream correspond to its substreams of ∆-density 1, as defined in [9].
Therefore, ∆-cliques in link streams are natural generalizations of cliques in
graphs.

In this paper, we propose a first algorithm for listing all maximal ∆-cliques
of a given link stream. We illustrate the relevance of the concept and algorithm
by computing maximal ∆-cliques of a real-world dataset.

Before entering in the core of the presentation, notice that we consider here
undirected links only: given a link stream L = (T, V,E), we make no distinction
between (t, u, v) ∈ E and (t, v, u) ∈ E. Likewise, we suppose that there is no
loop (t, v, v) in E, and no isolated node (∀v ∈ V, ∃(t, u, v) ∈ E). Finally, we
define ⊥ (resp. ⊤) as the occurrence time of the first (resp last) link in E:
⊥ = min{t, ∃(t, u, v) ∈ E} and ⊤ = max{t, ∃(t, u, v) ∈ E}. If T = [α, ω], then
we assume without loss of generality that ⊥ > α+∆ and ⊤ < ω −∆.

We finally define the first occurrence time of (u, v) after b as the smallest
time t ≥ b such that (t, u, v) ∈ L, and we denote it by fbuv. Converesely we
denote the last occurrence time of (u, v) before e by leuv. We say that a link
(t, u, v) is in C = (X, [b, e]) is u ∈ X , v ∈ X and t ∈ [b, e].

2. Algorithm

One may trivially enumerate all maximal cliques in a graph as follows. One
maintains a set S of previously found cliques (maximal or not). Then for each
C in S, one removes C from S and searches for nodes outside C connected to
all nodes in C, thus obtaining new cliques (one for each such node) larger than
C. If one finds no such node, then C is maximal and it is part of the output.
Otherwise, one adds the newly found cliques to S. The set S is initialized with
the trivial cliques containing only one node, and all maximal cliques have been
found when S is empty.

2

Our algorithm for finding ∆-cliques in link stream L = (T, V,E) (Algo-
rithm 1) relies on the same scheme. We initialize the set S of found ∆-cliques
with the trivial ∆-cliques ({a, b}, [t, t]) for all (t, a, b) in L (line 2). Then, until S
is empty (while loop of lines 3 to 24), we pick an element (X, [b, e]) in S (line 4)
and search for nodes v outside X such that (X ∪{v}, [b, e]) is a ∆-clique (lines 6
to 8). We also look for values b′ < b such that (X, [b′, e]) is a ∆-clique (lines 9
to 15), and likewise values e′ > e such that (X, [b, e′]) is a ∆-clique (lines 16
to 22). If we find such a node, such a b′ or such an e′, then C is not maximal and
we add to S the new cliques larger than C we just found (lines 8, 15 and 22).
Otherwise, C is maximal and it is part of the output (line 24).

Algorithm 1 Maximal ∆-cliques of a link stream

input: a link stream L = (T, V,E) and a duration ∆
output: the set of all maximal ∆-cliques in L

1: S ← ∅, R← ∅
2: for (t, u, v) ∈ E: add ({u, v}, [t, t]) to S

3: while S 6= ∅ do
4: take and remove (X, [b, e]) from S

5: set isMax to True
6: for v in V \X do

7: if (X ∪ {v}, [b, e]) is a ∆-clique then

8: add (X ∪ {v}, [b, e]) to S and set isMax to False
9: f ← maxu,v∈X fbuv ⊲ latest first occurrence time of a link in (X, [b, e])

10: if b 6= f −∆ then

11: if ∃(t, u, v) ∈ E, f −∆ ≤ t < b and {u, v} ∩X 6= ∅ then
12: let b′ be the maximal such t

13: else

14: let b′ be f −∆
15: add (X, [b′, e]) to S and set isMax to False
16: l ← minu,v∈X leuv ⊲ earliest last occurrence time of a link in (X, [b, e])

17: if e 6= l +∆ then

18: if ∃(t, u, v) ∈ E, e < t ≤ l +∆ and {u, v} ∩X 6= ∅ then
19: let e′ be the minimal such t

20: else

21: let e′ be l +∆
22: add (X, [b, e′]) to S and set isMax to False
23: if isMax then

24: add (X, [b, e]) to R

25: return R

As time is a continuous quantity, finding appropriate values for b′ and e′

above is non-trivial. Let us explain the choice of b′ (lines 10 to 15 in details, the
choice of e′ (lines 17 to 22) being symmetrical. Intuitively, we choose b′ as small
as possible, provided we do not miss any maximal ∆-clique. Therefore, for a
given ∆-clique (X, [b, e]), we set b′ to the latest time a link involving a node
in X occurred before b: this link may make it possible to add a node to the

3

2 4 6

c
b

a
2 4 6

c
b

a
2 4 6

c
b

a

2 4 6

c
b

a
2 4 6

c
b

a
2 4 6

c
b

a

2 4 6

c
b

a

Figure 2: A sequence of ∆-cliques built by our algorithm to find a maximal ∆-clique (bottom
row) from an initial trivial ∆-clique (top-left) in the link stream of Figure 1 when ∆ = 3.
From left to right and top to bottom: the algorithm starts with ({a, b}, [6, 6]), and finds
({a, b}, [5, 6]) thanks to lines 9 to 15 of the algorithm. It then finds ({a, b}, [4, 6]) with the
same lines, and ({a, b, c}, [4, 6]) thanks to lines 6 to 8. It finds ({a, b, c}, [4, 7]) from lines 16
to 22, ({a, b, c}, [3, 7]) from lines 9 to 15, and finally ({a, b, c}, [2, 7]) from the same lines.

∆-clique. We also have to ensure that the obtained object remains a ∆-clique
after the transformation. This leads to the two constraints of lines 10 and 17: f
is the latest of the first occurrence times of all links in the clique. If it is equal
to b+∆ (line 10) then there is no b′ < b such that (X, [b′, e]) is a ∆-clique. If it
is different, then such a b′ exists, and we choose it in lines 11–15: we search for
the latest link before b that involves a node in X ; if it occurs after f −∆ then
we choose b′ as the time of this link; otherwise we set b′ to f −∆, which is the
smallest possible value such that (X, [b′, e]) is a clique.

We display in Figure 2 an example of a sequence of such operations from
an initial trivial clique to a maximal clique in an illustrative link stream. The
algorithm builds this way a set of ∆-cliques of L, which we call the configuration
space; we display the configuration space for this simple example in Figure 3
together with the relations induced by the algorithm between these ∆-cliques.

To prove the validity of Algorithm 1, we must show that all the elements it
outputs are cliques, that they are maximal, and that all maximal cliques are in
its output.

Lemma 1. In Algorithm 1, all elements of S are ∆-cliques of L.

Proof. We prove the claim by induction on the iterations of the while loop (lines
3 to 24).

Initially, all elements of S are ∆-cliques (line 2).
Let us assume that S only contains ∆-cliques at the i-th iteration of the

loop (induction hypothesis). The loop may add new elements to S at lines 15,
22 and 8.

4

a , b
3 ;5

a,b,c
3 ;5

a , b
3 ;6

a , b
0 ;5

a,c
2 ;5

a,b,c
2 ;5

a,c
2 ;6

a,c
4 ;8

a,c
3 ;8

b,c
1 ;4

b,c
1 ;5

a , b
6 ;9

a , b
5 ;9

a,c
4 ;5

a,c
4 ;6

a,c
3 ;5

a,b,c
4 ;6

a,c
3 ;6

a , b
3 ;4

a , b
0 ;4

a,b,c
3 ;6

a,c
5 ;5

a,c
5 ;6

a,c
5 ;8

a,c

2;8

a,b,c
4 ;7

a,b,c
3 ;7

a , b
4 ;9

a , b
5 ;6

a , b
4 ;6

b,c
4 ;4

b,c
4 ;5

b,c
3 ;4

b,c
4 ;6

b,c
3 ;5

b,c
4 ;7

b,c
3 ;6

b,c
3 ;7

a,b,c

2;7

a,b,c
2 ;6

b,c
1 ;6

b,c

1;7

a , b
3 ;9

a,b

0;9

a , b
6 ;6

a , b
0 ;6

a , b
3 ;3

a , b
0 ;3

Figure 3: The configuration space built by our algorithm from the link stream of Figures 1
and 2 when ∆ = 3. Each element is a ∆-clique and it is linked to the ∆-cliques the algorithm
builds from it (links are implicitely directed from top to bottom). Plain links indicate ∆-
cliques discovered by lines 9 to 15 or lines 16 to 22 of the algorithm, which change the time
span of the clique. Dotted links indicate ∆-cliques discovered by lines 6 to 8, which change
the set of nodes involved in the clique. The bold path is the one detailed in Figure 2. Colors
correspond to the maximal ∆-cliques displayed in Figure 1.

In all cases, the added element is built from an element C = (X, [b, e]) of S
(line 4), which is a ∆-clique by induction hypothesis.

Let us show that (X, [b, l + ∆]), where l is computed in line 16, necessarily
is a ∆-clique. As (X, [b, e]) is a ∆-clique all links in X ×X appear at least once
every ∆ from b to l ≤ e. Moreover, since l is the earliest last occurrence time
of a link in C, for all u′ and v′ in X there is necessarily a link (t, u′, v′) in L

with l ≤ t ≤ e. Notice also that l ≥ e − ∆, otherwise (X, [b, e]) would not be
a ∆-clique. Therefore a link between u′ and v′ occurs at least once between l

and l +∆ for all u′ and v′ in X . Finally, (X, [b, l+∆]) is a ∆-clique and since
e < e′ ≤ l +∆, the element (X, [b, e′]) added to S at line 22, is a ∆-clique.

The same arguments hold for line 15, and it is trivial (from the test at line
7) that line 8 only adds ∆-cliques.

Finally, at the end of the (i + 1)-th iteration of the loop, S only contains
∆-cliques, which ends the induction.

Lemma 2. All the elements of the set returned by Algorithm 1 are maximal
∆-cliques of L.

Proof. Let C = (X, [b, e]) be an element of R returned by the algorithm. Only
elements of S are added to R (at line 24), and so according to Lemma 1 it is a
∆-clique. Assume it is not maximal; then we are in one of the three following
situations.

5

There exists v in V \X such that (X ∪ {v}, [b, e]) is a ∆-clique. Then v is
found at lines 6–7, and line 8 sets the boolean isMax to false. Therefore, line 23
ensures that C = (X, [b, e]) is not added to R, and we reach a contradiction.

There exists e′ > e such that (X, [b, e′]) is a ∆-clique and we assume without
loss of generality that there is no link between nodes in X from e to e′. Then, let
us consider l ∈ [b, e], computed in line 16, which is the earliest last occurrence
time of a link in C. We necessarily have l ≥ e′ − ∆ because (X, [b, e′]) is a
∆-clique. Since e′ > e, this implies l > e − ∆. As a consequence, the test in
line 17 of the algorithm is satisfied, and line 22 sets the boolean isMax to false.
Like above, we reach a contradiction.

There exists b′ < b such that (X, [b′, e]) is a ∆-clique. Similarly to the
previous case, we reach a contradiction.

Finally, C necessarily is maximal, which proves the claim.

Lemma 3. All maximal ∆-cliques of L are in the set returned by Algorithm 1.

Proof. It is easy to see that if S contains a maximal ∆-clique then it is added to
the set R returned by the algorithm, and so we show that all maximal ∆-cliques
are in S at some stage. To do so, first notice that each ∆-clique A added to
S in the while loop of our algorithm (lines 3 to 24) is built from a ∆-clique B

taken from the set S at line 4. We denote this by B → A.
Now, let us consider any maximal ∆-clique C = (Y, [x, y]), and let us denote

by x′ ≥ x (resp. y′ ≤ y) the first (resp. last) occurrence time of a link involving
an element of Y after x (resp. before y). Notice that this link is not necessarily
in C, as the other involved node may be outside Y . We define C′ = (Y, [x′, y])
and C′′ = (Y, [x′, y′]).

If x′ = x then trivially C′ = C. If x 6= x′ then we show that C′ → C.
Assume C′ is the element taken from S at line 4: X = Y , b = x′ > x and e = y.
As C is maximal, there exist u and v in Y such that the first occurrence of (u, v)
in C is (x+∆, u, v) (otherwise, there would be an ǫ such that (Y, [x−ǫ, y]) would
be a ∆-clique, and so C would not be maximal). In addition, for all u and v

in Y , x ≤ fxuv ≤ x +∆ (otherwise C would not be a ∆-clique). Since there is
no link involving nodes in X = Y from x to x′ = b, the value of f computed
in line 9 is f = x + ∆. Since x′ 6= x, we have f = x + ∆ 6= x′ + ∆ = b + ∆
and condition of line 10 holds. Now, by definition of x′, there is no value of t,
x = f−∆ ≤ t < b = x′, such that a there is a link (t, u, v) with u or v in X = Y .
The condition in line 11 is therefore not satisfied, and line 14 sets b′ to f−∆ = x;
the ∆-clique added to S at line 22 is nothing but (X, [b′, e]) = (Y, [x, y]) = C,
hence C′ → C.

Similarily, C′′ = C′ or C′′ → C′. Therefore, if C′′ is in S at some stage,
then C′ and C also will.

In order to show that C′′ is in S at some stage, we build a sequence of
∆-cliques Cn, Cn−1, . . . , C0 such that Cn = C′′, and C0 = ({u, v}, [t, t]) with
(t, u, v) ∈ E. We build this sequence in order to ensure that for all i, Ci → Ci+1.
As C0 is in S from line 2, this ensures that C′′ = Cn is finally added to S, and
so C also is, thus ending the proof.

6

For the sake of the proof, we will in addition show that the following property
Pi holds for all i: Ci = (Xi, [bi, ei]) is a ∆-clique and there is a link involving
an element of Xi at time bi and at time ei. Since Cn = C′′, property Pn is true
from the construction above. We will show that, for all i, if it is true for Ci then
it is also true for Ci−1.

Let us consider Ci = (Xi, [bi, ei]). We distinguish two main cases.
If bi = ei and |Xi| = 2 then Ci is of the form ({x, y}, [t, t]), and so Ci =

C0, which ends the proof. If bi = ei and |Xi| 6= 2 then we define Ci−1 as
(Xi \ {x}, [bi, ei]) for any x in Xi; it is trivial to check that Ci−1 → Ci from
lines 6 to 8, and that Pi−1 is true.

If bi 6= ei, then we distinguish the following three sub-cases.

• If there exists x and y in Xi such that (bi, x, y) ∈ E and if |Xi| > 2, then
we define Ci−1 as (Xi\{x}, [bi, ei]) if there is no x

′ such that (ei, x, x
′) ∈ E,

and as (Xi \ {y}, [bi, ei]) otherwise.

• If there exists x and y in Xi such that (bi, x, y) ∈ E as above, but now
|Xi| = 2, we define Ci−1 as (Xi, [bi, z]) where z is the largest z < ei such
that there is a link (z, u, v) ∈ E with u or v in Xi.

• Otherwise (there is no link (bi, x, y) with x and y in Xi), then we define
Ci−1 as (Xi, [a, ei]) where a is the smallest a > bi such that there is a link
(a, x, y) ∈ E with x or y in Xi.

We will show for each case that Ci−1 → Ci and that Pi−1 is true. To do so,
let us assume that Ci−1 is the element taken from S at line 4 of the algorithm:
X = Xi−1, b = bi−1 and e = ei−1.

In the first case, it is trivial to check that Ci−1 → Ci from lines 6 to 8. Let
us show that Pi−1 is true. Clearly, Ci−1 is a ∆-clique. Since only one of the
vertices x or y is removed, the link (bi = bi−1, x, y) is such that x or y is in
Xi−1. If there is no x′ such that (ei, x, x

′) ∈ E then because of Pi there exists
some link (ei, u, v) such that u or v is in Xi\{x} = Xi−1, and therefore Pi−1

holds. If such a x′ exists, then the link (ei = ei−1, x, x
′) involved a node of Xi−1

and Pi−1 also holds.
In the second case, Pi−1 trivially holds and we denote by x and y the two

elements of Xi. We have X = Xi−1 = Xi = {x, y}, b = bi−1 = bi, and
e = ei−1 = z. The value of l computed in line 16 is the last occurrence time of
(x, y) before e = ei−1 = z.

We first show that the condition in line 17 is satisfied, i.e. e 6= l+∆. Let us
show that there exists a t, ei−∆ ≤ t < ei, such that (t, x, y) ∈ E: if ei− bi ≤ ∆
then t = bi satisfies this property; if ei − bi > ∆, then if the property is not
satisfied then there is an ǫ such that the interval [ei − ǫ, ei − ∆ − ǫ] contains
no occurrence of a link between x and y, which contradicts the fact that Ci

is a ∆-clique. Moreover, by definition of z there is no link involving x or y

from z = ei−1 = e to ei, and so there exists a t, ei −∆ ≤ t ≤ ei−1, such that
(t, x, y) ∈ E. Finally, l is the last occurrence time of (x, y) before ei−1 and

7

therefore we have ei−∆ ≤ l ≤ ei−1. As z < ei, we have l > z−∆ and therefore
l 6= e−∆.

We now show that the condition of line 18 also is satisfied. From Pi, there
exists a link (ei, u, v) such that u or v is in X . Let us take t = ei. We then
have e = ei−1 = z < ei = t and we have shown above that l ≥ ei −∆ = t−∆,
therefore condition of line 18 is satisfied.

In addition, by definition of z there is no occurrence of a link involving x or
y strictly before ei and after e = ei−1 = z. Therefore, line 19 sets e′ = t = ei,
and the ∆-clique added at line 22 is (X, [b, e′]) = (Xi, [bi, ei]) = Ci, hence
Ci−1 → Ci.

In the third case, it is also trivial that Pi−1 holds (just notice that Ci−1

necessarily is a ∆-clique as there is no link between elements of Xi = Xi−1 at
bi and between bi and bi−1). We have X = Xi−1 = Xi, b = bi−1 = a > bi, and
e = ei−1 = ei.

We first show that the condition in line 10 is satisfied. As Ci is a ∆-clique,
and as there is no link between two nodes in Xi at bi, then there must exist a
link for all pairs of nodes in Xi at a time t in]bi,min(bi +∆, ei)]. There is no
link involving nodes of Xi before a, by definition of a, and so t necessarily is in
[a,min(bi+∆, ei)]. The value of f computed in line 9 is the latest first occurrence
time after b = bi−1 = a of a link between two nodes of X = Xi−1 = Xi.
Therefore, f also is in [a,min(bi+∆, ei)]. Therefore, f ≤ bi+∆ < a+∆ = b+∆
and so f −∆ < b.

In addition, similarly to condition of line 18 in the previous case, condition
of line 11 is satisfied when t = bi. This ultimately leads to Ci−1 → Ci, which
ends the proof.

From these lemmas, we finally obtain the following result.

Theorem 1. Given a link stream L and a duration ∆, Algorithm 1 computes
the set of all maximal ∆-cliques of L.

Enumerating maximal cliques in graph G = (V,E) is equivalent to enumer-
ating maximal ∆-cliques in L = ([0, 0], V, E′) where (0, u, v) ∈ E′ if and only
if (u, v) ∈ E. Therefore, enumerating ∆-cliques in a link stream is exponential
(in particular the number of ∆-cliques may be exponential). To this regard, our
algorithm is optimal: the number of elements of the configuration space built by
the algorithm is bounded by the number of subsets of the set of links times the
number of subsets of the set of link arrival times, and the number of operations
performed for each of them is polynomial.

Still, several optimisations may speed up our algorithm (without changing
its worst-case complexity), and we discuss some now.

First, Algorithm 1 may build and add to S the same ∆-clique many times.
To avoid redundancy of computations, one may store the ∆-cliques seen so far.
Then, a ∆-clique is added to S only the first time it is seen. This ensures
that the number of runnings of the main loop is the number of links in the
configuration space; in the naive version presented above, this number is the

8

sum of the lengths of all paths from any initial trivial ∆-clique to the maximal
ones it can reach.

Notice also that f and l, computed in lines 9 and 16, are necessarily in
[b,min(e, b + ∆)] and [max(b, e −∆), e], respectively. One may therefore focus
the search on these intervals rather than [b, e].

Going further, let us notice that if V (C) is the set of nodes satisfying condi-
tion of line 7, then the set V (C′) of nodes satisfying this condition for the cliques
C′ added to S at lines 8, 15 and 22 is included in V (C). One may therefore
associate to each element of S a set of candidate nodes to be considered at line 6
in place of V \X , thus drastically reducing the number of iterations of this loop.

Finally, notice that Algorithm 1 makes no assumption on the order in which
elements of S are processed. This order corresponds to the way we explore
the configuration space. In particular, if S is a first-in-first-out structure (like
a queue), the algorithm performs a BFS of the configuration space; if it is a
last-in-first-out structure (like a stack) then it performs a DFS. The execution
time is the same in all cases. The size of S may vary, but the space complexity
of the algorithm is dominated by the size of the set of already seen cliques just
discussed, that does not change. Still, different exploration methods have differ-
ent advantages and drawbacks. A BFS rapidly discovers all maximal cliques of
small sizes and durations, which makes it suitable for computing the clique size
distribution, or if one is interested in discovering as many maximal cliques as
possible as rapidly as possible, even if they are all small ones. Conversely, a DFS
first discovers large cliques and so it is appealing if one searches for non-trivial
cliques.

3. Experimentation

We implemented Algorithm 1 with all optimisations discussed above and
provide the Python source code at [10]. We illustrate here its practical rele-
vance by computing maximal ∆-cliques of a link stream representing real-world
contacts between individuals, captured with sensors. This trace was collected
at a french high school in 2012, see [6] for full details. It induces a link stream
of 181 nodes and 45047 links, connecting 2220 distinct pairs of nodes over a
period of 729500 seconds (approximately 8 days). Each link (t, u, v) means that
the sensor carried by individual u or v detected the sensor carried by the other
individual at time t, which means in turn that these two individuals were close
enough from each other at time t for the detection to happen. We call this a
contact between individuals u and v.

We used here ∆ = 3600 seconds = 1 hour. Therefore, a ∆-clique C =
(X, [b, e]) means here that the individuals in set X were pairwise in contact at
least once every hour from time b to time e.

Our Python implementation succeeds in finding all the 8212 maximal ∆-
cliques in this link stream in a few hours on a standard computer. We display
in Figure 4 the impact of the configuration space exploration strategy on the
program behaviour, as discussed above. It shows clearly that, as expected, BFS

9

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of iterations (in millions)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Nu
m
be

r o
f m

ax
im

al
 c
liq

ue
s
fo
un

d

BFS

DFS

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of iterations (in millions)

0

10000

20000

30000

40000

50000

60000

70000

80000

M
ax
(d
ur
at
io
n
x
nu
m
be
r o

f n
od
es
) f
ou
nd

BFS

DFS

Figure 4: Behaviour of our algorithm depending on the way it explores its configuration space
(DFS or BFS). Left: number of maximal cliques discovered as a function of the number of
iterations of the main loop of the algorithm. Right: maximal size of discovered cliques as
a function of the number of iterations of the main loop of the algorithm. A clique size is
estimated here by its number of nodes times its duration (in seconds).

rapidly discovers many small cliques, while DFS rapidly discovers non-trivial
cliques. Although many discovered cliques are very small, we also find rather
large and long cliques: they contain up to 7 individuals, and last up to 10 hours.
Such structures are non-trivial, and worth studying in a dedicated work.

4. Conclusion

We introduced the notion of ∆-cliques in link streams, and proposed a first
algorithm to compute the maximal such cliques. We implemented this algorithm
and detected interesting ∆-cliques in real-world data.

Clearly, our algorithm may be improved further. Trying to adapt the Bron-
Kerbosch algorithm [2] and some of its variants [8, 4, 1, 5], the most widely used
algorithms for computing cliques in graphs, is particularly appealing. Indeed,
the configuration spaces built by these algorithms are trees, and they are much
smaller than our own configuration spaces. This is achieved by maintaining a set
of candidate nodes that may be added to previously discovered cliques, which
does not directly translate to our situation because of time in link streams. Still,
we believe that progress is possible in this direction.

We also consider the case of links with duration as a promising perspective:
each link (b, e, u, v) means that u and v are in contact from time b to e. In this
case there is no need for a ∆ anymore, as density in this context is nothing
but the probability that two randomly chosen nodes are linked together at a
randomly chosen time. The definition of cliques in link streams with durations
follows directly, and our algorithm may be extended to compute maximal such
cliques.

Acknowledgments.

This work is supported in part by the french Direction Générale de l’Armement

(DGA), by the CODDDE ANR-13-CORD-0017-01 grant from the Agence Nationale

10

de la Recherche, and by grant O18062-44430 of the French program PIA – Usages,

services et contenus innovants.

[1] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete
Applied Mathematics, 65:21–46, 1996.

[2] Coen Bron and J Kerbosch. Algorithm 457: finding all cliques of an undi-
rected graph. Communications of the ACM, 16(9), 1973.

[3] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola San-
toro. Time-varying graphs and dynamic networks. CoRR, abs/1012.0009,
2010.

[4] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing al-
gorithms. SIAM Journal of Computing, 14(1):210–223, 1985.

[5] David Eppstein and Darren Strash. Listing all maximal cliques in large
sparse real-world graphs. Experimental Algorithms, pages 364–375, 2011.

[6] Julie Fournet and Alain Barrat. Contact patterns among high school stu-
dents. PLoS ONE, 9:e107878, 2014.

[7] Petter Holme and Jari Saramäki. Temporal networks. Physics Reports,
519:97–125, 2012.

[8] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case
time complexity for generating all maximal cliques and computational ex-
periments. Theoretical Computer Science, 363:28–42, 2006.

[9] Jordan Viard and Matthieu Latapy. Identifying roles in an IP network with
temporal and structural density. In Computer Communications Workshops
(INFOCOM WKSHPS), pages 801–806, 2014.

[10] Jordan Viard and Matthieu Latapy. Source code in python for computing
cliques in link streams: https://github.com/jordanV/delta-cliques,
2014.

[11] Klaus Wehmuth, Artur Ziviani, and Eric Fleury. A Unifying Model for
Representing Time-Varying Graphs. Research Report RR-8466, ENS Lyon,
2014.

11

	Introduction
	Algorithm
	Experimentation
	Conclusion

