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Abstract. Automatic visual grading of seed lots with a high density of
touching grain kernels is a challenging problem. The structure tensor is
a simple and robust descriptor that was developed to analyze textures
orientation. Contrarily to segmentation methods which rely on an object
based modelling of images, the structure tensor views the sample at a
macroscopic scale, like a continuum. Thanks to this tool, it is possible to
extract useful information on the orientation of grain kernels even in a
bulk. Knowing the rough orientation of a grain kernel could provide an
initialization for segmentation techniques. The comparative results with
ground truth orientations on four different grain kernels demonstrate the
ability of the structure tensor to detect the seed orientations.
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1 Introduction

In agriculture, the global grain harvest reached several billion tons each year.
Seed producers exchange their crops at a price determined by the quality of
their production. This assessment, called grading, is performed for each set on
a representative sample. The difficulty of this assessment is to fully characterize
the sample. To do so, it is necessary to qualify each of its elements. Historically,
this has been performed manually by an operator. This method is exposed to
various problems and the results can vary from one operator to another.

Due to the huge amount of data contained in large images, automatic pro-
cedures are indeed essential to assess grain kernel shape properties such as size,
orientation, aspect ratio, ... The lack of robust, fast and universal procedures to
provide such a geometric description in the case of touching grain kernels is one
of the obstacles to exploit the full potential of images.

The visual grading of grain kernels has been widely discussed during the last
ten years. A number of studies have been conducted to classify grain based on
physical attributes. Some classification studies are done on images with separated
grain kernels [1, 2]. Other studies have been conducted on the grain segmentation
with low density of touching grain kernels [3—6]. Segmentation processes that deal
with touching grain kernels, with low or high densities, under the constraint of
no seeds overlapping, have been lately proposed in [7] and [8].
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The structure tensor is an interesting preprocessing tool which could improve
these segmentation methods in the case of high density of touching grain kernels.
In the presented experiments, the considered seed samples are placed in bulk,
without any arrangement. They are spread over a tray in such way that there is
nearly no overlapping between the objects to avoid occlusion.

The structure tensor appeared in the field of image processing in the late 80’s
[9] for the problem of interest point detection. It was then justified theoretically
and popularized in different contexts such as interest point detection [9], [10],
texture analysis [11], representation of flow-like images [12], optical flow problems
[13] and anisotropic or coherence enhancing diffusion [14]. The results of this
paper demonstrate that the structure tensor provides a fast, robust and precise
enough tool to retrieve grain kernel orientations. The proposed method has the
avantage to be fast and invariant under contrast changes.

In Section 2, the definition of the structure tensor is recalled and some im-
plementation information is provided. Section 3 proposes a way to choose the
correct algorithm parameters. Section 4 demonstrates the interest of using the
structure tensor on real images with low and high density of touching grain ker-
nels. Its output is compared to the ground-truth orientations obtained by an
human operator. These comparisons show that the structure tensor provides a
good orientation estimation which could be used in segmentation approaches.

2 Structure tensor

The structure tensor of an image u is defined as follows
T =G, (Vu,Vul), (1)

where u, = G, *u, u denotes a gray-level image G, and G, are Gaussian filters
with standard deviation ¢ > 0 and p > 0, which control the amount of pre- and
post-smoothing. The parameter o is called the inner scale, the parameter p the
outer scale. For a color image, the structure tensor is computed as the sum of
the structure tensors for each channel.

In practice, the discrete gradient operator V is defined by V = (81,82)T.
In all reported experiments, the partial differential operators 0; are defined as
convolutions with discrete kernels. From an asymptotic point of view any kernel
leading to a consistent discretization should provide good results. However, the
kernel design turns out to be crucial to provide good orientation and anisotropy
estimates. Key properties of discrete kernels are [15]: i) rotation invariance, en-
suring a reliable orientation estimation, ii) separability, ensuring faster compu-
tations and iii) no shift, implying the use of centered finite differences. Following
these criteria, the authors of [15] suggested to use the following operations:

1 -303 1 -3 -10 -3
Opu=-|—-10010 | xu and Jyu=5=| 0 0 0 |~*u.
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Fig. 1. Seeds used to extract the geometric statistics presented in Table 1. Top line,
rice and wheat seeds. Bottom line, two types of barley seeds.
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Fig. 2. Mean maps of the shapes: from left to right, rice, wheat, first and second type

of barley grain kernels, from top to bottom, with or without a green ellipse.

The gradient is computed in the space domain, while the convolution with G, or
G, are based on fast Fourier transforms. The overall computational complexity
for an image with n pixels is therefore O(nlog(n)). In practice, the structure
tensor can be computed in near real-time. In each pixel, the orientation is given
by the direction of the eigenvector associated with the highest eigenvalue of the
structure tensor.

3 Postsmoothing parameter estimation

As seen in the previous section, there is two parameters o the inner scale and
p the outer scale for the structure tensor. The experiments show that o = 0 is
sufficient, due to the quality of the acquisitions, and p is linked to shape of the
grain kernel.

Figure 1 presents isolated rice, wheat and barley seeds. The images are bi-
narized and statistics on the features of isolated seeds are computed. Table 1
presents these statistics which will be helpful for the parameter selection in the
algorithm. The major axis length (respectively minor axis length) is the scalar
specifying the length in pixels of the major axis (respectively minor axis) of the
ellipse that has the same normalized second central moments as the grain kernel.

Figure 2 presents the mean maps of the isolated seed shapes. A green ellipse
is plotted on it to illustrate the interest of using an ellipse to estimate the
statistics in Table 1. The mean shape maps are obtained by performing a partial
procrustes superimposition of the isolated seed shapes. The grain kernel shape
and their three symmetries (two axial and one central) are optimally translated
and rotated before performing the superimposition.

Comparisons with ground truth orientation were performed in order to de-
termine the parameter p. The samples for these experiments are presented in
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Table 1. Geometric statistics on the grain kernels presented in Figure 1.

Rice seeds, Figure 1 (top left)
Features Minimum|Maximum|Mean|Median|Standard deviation
Major axis length 23 51 43 44
Minor axis length 10 15 13 13 1
Wheat seeds, Figure 1 (top right)
Features Minimum|Maximum|Mean|Median|Standard deviation
Major axis length 34 54 43 42 4
Minor axis length 11 24 18 18 3
Barley seeds, first type, Figure 1 (bottom left)
Features Minimum|Maximum|Mean|Median|Standard deviation
Major axis length 61 101 82 82 11
Minor axis length 16 24 20 21 2
Barley seeds, second type, Figure 1 (bottom right)
Features Minimum|Maximum|Mean|Median|Standard deviation
Major axis length 39 115 56 54 10
Minor axis length 16 57 25 24 6
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Fig. 3. Influence of p on the mean (left) and the median (right) of the absolute value
of the angle errors.

Figures 4, 5, 6 and 7. The best parameter is the one which provide the lowest
mean or median of the absolute value of the angle error. The curves in Figure 3
illustrate the influence of p on the mean (left) and the median (right) of the
absolute value of the angle errors. The rice, wheat, first type and second type
of barley results are represented in respectively red star, green plus, blue circle,
and black cross. In each case, the best postsmoothing parameter p is around
one-fourth of the mean pixel length of the minor axis.

4 Comparisons with ground truth orientation

Figures 4, 5, 6 and 7 present a visual comparison between the ground truth ori-
entations (left and plotted in red) and estimated orientations (right and plotted
in green) for respectively the rice, wheat and the two barley grain kernels. Each



Fig. 4. Comparison of ground truth orientations (left) and estimated orientations
(right) for the rice grain kernels.

sample contains one hundred grain kernels. Table 2 presents the statistics on
the absolute value of the angle error for these hundred grain kernels. For all the
four studied grain kernels, on average the error is of 2 to 3 degrees, same for
the standard deviation. The median is around 2 degrees. There are very few bad
orientation estimations, two of them are presented in Figure 8. One can note
that the main estimation errors are due to overlapping or broken grain kernels.

Table 2. Statistics on the absolute value of the angle error.

Seeds p  |[Minimum|Maximum|Mean|Median|Standard deviation

Rice 3 0.150 14.833 [2.806| 2.266 2.629
Wheat | 5 0.023 15.025 [2.628| 1.798 2.494
Barley 1| 5 0.043 24.473 |2.266| 1.572 2.722
Barley 2| 6 0.006 9.274 |2.464| 1.825 2.202

5 Conclusion

The present work justifies the interest of structure tensors to evaluate orienta-
tions of grain kernels in images. Comparison with ground truth results proves
that even if no arrangement is provided by the user, the grain kernel orientation
can be retrieved in the samples. The tests of the present study explain how to
find the best parameters for the structure tensor. The amount of postsmoothing
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Fig. 5. Comparison of ground truth orientations (left) and estimated orientations
(right) for the wheat grain kernels.

is linked to the minor axis of the ellipse which best approximate the grain ker-
nels. The accuracy of the orientation estimation demonstrates the efficiency of
the structure tensor as a preprocessing tool for segmentation methods. Imple-
mentation on industrial segmentation algorithms is done in [16].
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Fig. 6. Comparison of ground truth orientations (left) and estimated orientations
(right) for the barley grain kernels, first type.
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Fig. 7. Comparison of ground truth orientations (left) and estimated orientations
(right) for the barley grain kernels, second type.

Fig. 8. Zooms on two bad orientation estimations. The two images of rice grain kernels
at left are extracted from Figure 4. The two images of barley grain kernels at right are
extracted from Figure 6. In the rice case, the bad orientation is due to a broken kernel.
In the barley case, the bad orientation is due to an overlapping.



